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Abstract— This study presents a soft computing tool for the 

computer-aided design of disturbance rejection FOPID 

controllers based on the maximization of Reference to 

Disturbance Ratio (RDR) index. The study illustrates the 

utilization of software routines to implement a soft computing 

scheme in order to solve a closed loop disturbance rejection 

FOPID control system design problem for a target gain margin 

specification. Authors demonstrate that the complex design 

efforts, which involve a high level of mathematical knowledge, 

can be easily performed by using basic software routines when 

soft computing techniques are employed effectively in the 

computation processes. Illustrative design examples are shown to 

show effectiveness of the proposed design method.   

 

Index Terms— Disturbance rejection control, FOPID 

controller, genetic algorithm, phase margin, RDR 

 

I. INTRODUCTION 

RACTIONAL CALCULUS has come out at the end of the 

17th century, and today it becomes a popular 

mathematical tool to solve modeling and design problems in 

engineering and applied science [1-3]. However, its utilization 

in control engineering practice has been delayed due to the 
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computational load of fractional order operators. Approximate 

realization of fractional order operators and development of 

soft computation tools contributes to the solution of these 

computationally complex design problems. 

Time-domain design methodologies can yield more relevant 

results for the control system design practice because they 

perform a design effort based on the time response of the 

control systems. This design strategy is practically reasonable 

because the control system performances of the real systems 

are generally evaluated according to their time responses by 

using test signals that are applied to the system. However, 

derivation of the analytical controller design rules regarding 

the time responses of higher order control systems or 

fractional order systems is rather difficult to obtain in the time 

domain design, and this turns into an important design 

limitation for development of analytical tuning rules in the 

time domain for complex system models. However, frequency 

domain analysis has an important role in control theory, since 

complex control systems can be easily studied in the 

frequency domain [4]. In the frequency domain, there are 

several graphical methods that can work not only with low-

order systems but also with high-order systems and/or 

fractional order systems. The main reasons for preferring the 

frequency domain in the analysis and design of fractional 

order control systems are that stability analysis and analytical 

solutions in order to obtain controller design rules are more 

straightforward in the frequency domain due to allowing 

rather simple expressions of the linear time invariant high-

order system models in the frequency domain compared to the 

time domain models. For these reasons, intensive studies have 

been carried out especially on the controller design based on 

the frequency domain modeling [5]. To evaluate behavior of 

the control system in the frequency domain, several graphical 

tools such as the Bode diagram, the Nichols and Nyquist 

diagrams and the root locus plots have been used. 

In the frequency domain controller design, the phase margin 

is an important measure in order to express the robustness of 

the system. The phase margin is also related to controller 

performance; for instance, it affects the damping rate of the 
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system [6]. Several controller design topics cover the phase 

margin together with the gain margin [6, 7]. The results 

associated with phase and gain margin can be graphically 

displayed by using the Bode diagrams. 

In real-world control applications, the control systems are 

exposed to a number of disturbance effects due to the system 

noise or external factors acting on the control system. Those 

disturbances may be unpredictable and they may influence the 

control systems in real control actions and prevent them from 

showing the expected control performance in the real-world 

systems. Therefore, it is very substantial to minimize the 

impacts of disturbances on the system response while 

designing a controller for the real-world control applications. 

Various studies have been presented in order to reduce the 

undesirable effects of disturbances on the control performance 

and improve the robust stability of the control systems [8-11, 

12, 13]. 

In this study, the reference to disturbance ratio (RDR) in 

cooperation with the gain margin specification is employed in 

the design task to increase the disturbance rejection capacity 

of closed loop control systems. The RDR measure is used to 

calculate the quantitative evaluation of the dominance of 

reference input signal on the input disturbance signal at the 

system output [14, 15, 27]. While a control system shows 

satisfactory disturbance rejection performance in the case of 

1RDR  , the control system does not show any disturbance 

rejection skills and performance of the control system is 

vulnerable to the impacts of disturbances in the case of 

1RDR  . 

Today, closed loop control systems are widely used in many 

industrial control applications. The classical controller design 

process involves determining optimal controller coefficients in 

a way that responses of the designed control system meet 

several design specifications such as robust stability, 

disturbance rejection, fault tolerance etc. Therefore, multi-

objective optimization methods have been widely used in the 

controller design problems. The optimization is the process of 

choosing the best possible tuning options under certain 

criteria. Many different optimization algorithms have been 

implemented to perform this task. The selection of a suitable 

optimization method is important in the design stage and 

assets of optimization methods have a role in optimal 

controller tuning problems. While one algorithm can find a 

satisfactory solution for the problem, the other optimization 

algorithm may not reach the desired result. Metaheuristic 

algorithms have been commonly utilized for obtaining the 

near-optimum solutions. They are preferred to reach the 

optimal solution in an acceptable time, particularly in the case 

of large-scale, mathematically not-well structured, 

complicated optimization problems. Today, metaheuristic 

optimization algorithms can be classified into several 

categories, for example the biology-based, the physics-based, 

swarm- based, the social-based etc. This algorithm has been 

frequently used in optimal tuning of fractional-order controls 

[16-18]. Recent works have been implemented the chaotic 

yellow saddle goatfish algorithm[19], hybrid Lévy flight 

distribution and simulated annealing algorithm[20], a multi-

objective genetic algorithm (MOGA) and particle swarm 

optimization[21]. These works reveal that metaheuristic 

methods can deal with the complicated optimization problems 

for controller design, However they haven’t clearly stated and 

discussed the soft computation details in their works. In the 

current study, we present soft computation details that were 

used for the proposed design scheme. 

Mathematical complication in the solution of constrained 

optimization problems can be alleviated by using soft 

constraints [22]. The soft constraints refer to a constraint that 

can be violated in the optimization problem at a penalty cost 

and the optimization algorithm can progressively continue for 

the reduction or removal of the penalty costs [22]. Hard 

constraints cannot be violated at any cost. For further 

theoretical consideration, a deepened theoretical discussion on 

the soft and hard constraints was presented in [23] and their 

roles in the optimization process [24]. However, the practice 

of the soft constraints has appeared and developed through the 

soft computing applications [25, 26]. 

Soft computation methods can facilitate very complicated 

design tasks in engineering problems. In this perspective, the 

main motivation of this study is the proposal and 

implementation of some soft computation techniques in an 

optimal disturbance rejection FOPID controller design 

problem. Analytical solution of this optimization problem is 

quite complicated because of difficulties in fractional calculus 

and the mathematical modeling of environmental disturbances. 

Authors aim to demonstrate that such complicated design 

tasks can be easily performed by using basic software 

routines. Different from the similar works, the study 

introduces these soft computation routines (soft constraints, 

crossover frequency calculation via zero crossing detection 

etc.) in detail, and illustrates an application of them in a 

disturbance reject FOPID design problem. 

In the current study, fractional order control coefficients 

were adjusted by combining the phase margin constraint and 

RDR index. The RDR index is maximized for a gain margin 

specification in order to improve the disturbance rejection 

performance of the FOPID control systems. The phase margin 

specification is defined as the soft constraints of the 

optimization problem. Thus enables software realization of the 

complex phase margin analyses and eliminates a need for 

complicated mathematical derivations. Such a softening of the 

hard constraints also modifies the search spaces and 

contributes to search performance of the metaheuristic 

optimization methods by allowing progressive approximation 

to optimal solutions. For the solution of this optimal tuning 

problem, authors implemented the most fundamental and 

popular metaheuristic search method that is a genetic 

algorithm. Two illustrative FOPID controller design examples 

were shown to evaluate the efficiency of the proposed optimal 

disturbance reject FOPID controller design methodology. 

51

http://dergipark.gov.tr/bajece


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 11, No. 1, January 2023                                               

  

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

II. PRELIMINARIES AND PROBLEM STATEMENTS 

A.  RDR Analysis for Disturbance Rejection 

RDR analyses were suggested for quantitative evaluation of 

disturbance rejection capacity of the closed-loop control 

systems [14, 15, 27]. Consideration of the RDR index in 

fractional-order FOPID control designs allows improving 

disturbance rejection control performance [15, 27-31]. 

Effective disturbance rejection controller design approaches 

based on the RDR index have also been presented and their 

improvements for disturbance rejection control were shown 

[27-31]. 

The communication channel based analysis on the negative 

feedback loop yields the following RDR formulation for the 

control systems [14, 15, 29]. 
2

( ) ( )RDR C j            (1) 

Since the RDR index can take very high values, their values 

are expressed in decibel(dB) as follows: 

( ) 20log ( )dBRDR C j         (2) 

To improve disturbance rejection performance, the RDR 

constraint that expresses a lower boundary in the RDR 

spectrum was suggested for the operating frequency range 

min max[ , ]  of control systems [27] and a minimum RDR 

constraint was expressed as 

min{ ( )}dBRDR M  for min max[ , ]   .     (3) 

Figure 1 shows a closed loop FOPID control system with 

the additive input disturbance model ( )D s for the RDR index. 

The function ( )C s  is the transfer function of FOPID 

controller and it is widely expressed as 

( ) i
p d

k
C s k k s

s




    .                            (4) 

)(sC)(sF )(sG

)(sD

)(sR )(sQ
+ +

 

Fig.1. FOPID control system with ste-point filter 

 

In contrast to the classical PID controller, a FOPID 

controller have two additional fractional order coefficients, 

which are fractional integrator orders   and fractional 

derivative orders   in addition to the pk , 
dk  and ik   gain 

coefficients. These additional fractional order integral and 

derivative orders provide an opportunity to improve control 

system performance [3, 5]. By considering Equation (1), the 

RDR formulas of the FOPID control systems were derived as 

follows [15]  

2

2

( ) ( cos( ) cos( ) )
2 2

( sin( ) sin( ) )
2 2

p i d

d i

RDR k k k

k k

 

 

 
    

 
   





  

 

(5) 

The phase margin is a well-known property in classical 

control systems and it is expressed as an important criterion 

for ensuring the robustness of the system stability [6, 7]. The 

phase margin also affects the closed-loop damping ratio of the 

second order systems [6]. 

The phase margin is widely used for the stabilization of 

control systems, and the general form of the phase margin (

m ) for the open loop transfer function ( ) ( ) ( )L s C s G s  

is written by 

 ( ) ( )m c cArg G j C j     .               (6) 

Here, 
c refers to the crossover frequency that is defined as 

the angular frequency that satisfy ( ) ( ) 1c cG j C j   . 

Therefore, the calculation of the phase margin requires a 

solution of nonlinear, complex valued equations and it causes 

difficulties in the mathematical solution of this problem. The 

phase margin basically represents the difference between the 

phase at the crossover frequency of the open loop control 

system and the   angle and rather easy to solve graphically.         

B. A Brief Review of Genetic Algorithm 

Genetic algorithm (GA) is one of the most popular 

metaheuristic search techniques, which can provide easy 

solutions for today’s complex design problems. The GA is 

based on the natural selection principles and the algorithm was 

suggested by John Holland in 1975. The basic idea in this 

method is based on the survival of the good individuals 

(solutions) in the genetic pool (solution population). It tries to 

find the best result or the closest one to be the best in its 

search space [32-34]. The search mechanism of the genetic 

algorithm resembles the transmission of the physical and 

biological characteristics of living things to the next 

generation through the genes. As each generation is formed by 

the combination of better features from the previous 

generations, the best individual survives with higher chance in 

selection mechanisms and each generation gets better as 

generations progress. Fitness values of each individual are 

used in a selection mechanism that tends to select the better 

fitting individuals. After selection of more fitting individuals 

to the solution, the next generation of individuals is 

reproduced through a series of genetic processes such as 

mutation and crossover. The basic algorithmic steps are shown 

in Figure 2 [35]. The GA algorithm has become a very 

effective evolutionary computational method.  

52

http://dergipark.gov.tr/bajece


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 11, No. 1, January 2023                                               

  

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

Start

Result

Randomly Generate 

Initial Population

Evaluate All Individuals

Stop?

Yes

No
Selective Reproduction

Crossing Over

Mutation

 
Fig.2. A fundamental flow chart for the genetic algorithm 

III.  SOFTWARE REALIZATION OF OPTIMAL FRACTIONAL ORDER 

PID CONTROL SYSTEM DESIGN 

This section summarizes the mathematical background and 

the software realization of the computer-aided design method 

that are implemented for the optimal tuning problem of 

FOPID controls coefficients based on the maximization of 

RDR index and complying with the phase margin 

specification. 

We consider a fractional plant function that is expressed in 

a general form as follows: 

0

2 1 0

( )
k

a
G s

b s b s b


      
(7) 

The closed loop transfer function, which is composed of the 

controlled system model (Equation (7)) and the fractional 

order PID controller (Equation (4)), can be written by  
 

     

0 0 0

2 0 1

0 0 0

( )
( )

( )

( )

d p i

k

d

p i

a k s a k s a kQ s
T s

R s b s a k s b s

b a k s a k

  

    





  

 
 

 

  

 . (8) 

This transfer function is implemented by using the fotf() 

function of fotf toolbox [36]. Figure 3 shows the pseudocode 

that describes a software implementation of the closed loop 

FOPID control system model.  

A pseudocode for RDR index calculation according to the 

equation (5) is shown in Figure 4. The code returns the 

minimum RDR value in a frequency range ( min max[ , ]  ) to 

implement the 

min max( ) min{ ( , ), [ , ]}c dB
RDR

RDR x RDR x     .
 

The crossover frequency ( c ) is commonly found by 

solving ( ) ( ) 1c cG j C j   . One can write this equation 

by forming open loop transfer function 

( ) ( ) ( ) |s jL s C s G s   in the frequency region and writing 

the magnitude of the resulting complex rational function by 

0 0 0

2 1 0

( ) ( )
1

( ) ( ) ( )

d c p c i

k

c c c

a k j a k j a k

b j b j b j

  

   

 

  



 

 


 
. (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. A pseudocode for implementation of fractional order transfer 

functions by using fotf toolbox 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. A pseudocode for RDR the index and the minimum RDR calculation 

for the realization of the equation (9) 

 

Algorithm fractional order transfer function is 

Inputs: Coefficients of G(s) a0,b2,b1,b0, 

            Order of G(s) k, alpha 

            Coefficients of C(s) kp,kd,ki, 

            Order of C(s) u, lamda 

            Coefficients of T(s) c0,c1,c2,c3,c4,d2,d1,d0 

            Order of T(s) beta0, beta1, beta2, beta3, 

beta4, gamma0, gamma1, gamma2, 

Outputs: Symbolic model of T(s) Ts, 

 

% Coefficients of closed loop transfer function  

c0=a0*ki; 

c1=a0*kp+b0; 

c2=a0*kd; 

c3=b1; 

c4=b2; 

beta0=0; 

beta1=lamda; 

beta2=lamda+u; 

beta3=lamda+alfa; 

beta4=k+lamda; 

d2=a0*kd; 

d1=kp*a0; 

d0=ki*a0; 

gamma2=(lamda+u); 

gamma1=lamda; 

gamma0=0; 

% Software realization of the closed loop transfer 

function by using fotf toolbox 

Ts=fotf([c4 c3 c2 c1 c0],[beta4 beta3 beta2 beta1 

beta0],[d2 d1 d0],[gamma2 gamma1 gamma0]); 

Return Ts 

Algorithm minimum RDR is 

Inputs: Coefficients of C(s) kp,kd,ki, 

            Order of C(s) u, lamda, 

            Angular frequency vector w, 

             RDR value vector RDRdB 

Outputs: Minimum RDR value minRDRdB 

 

% Calculation of logarithmic RDR values according  

equations(5) 

RDRdB=20*log10((kp+ki*cos((pi/2)*lamda)*w.^(-

lamda)+kd*cos((pi/2)*u)*w.^(u)).^2+(kd*sin((pi/2)*

u)*w.^(u)-ki*sin((pi/2)*lamda)*w.^(-lamda)).^2); 

 

% Calculation of minimum RDR index 

minRDRdB =min(RDRdB); 

Return minRDRdB 
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The equation 9 requires a nonlinear equation solving 

method to find crossover frequency ( c ). To solve this 

complex equation by using the soft computing technique, one 

can form a zero crossing by taking the logarithm of both side 

of the equation and obtain 

10( ) log ( ) ( ) 0c c cf G j C j    . To solve this 

equation and roughly find the sampled crossover frequency 

c  and the phase at the crossover frequency (

 ( ) ( )i iArg G j C j  ), a zero-crossing detection 

mechanism as depicted in Figure 5 is used. Thus, this 

nonlinear equation can be easily solved by using zero crossing 

detection with an error (tolerance) less than the unit sampling 

distance (
1i i   ). 

 

 

 

 

 

 

 

 
Fig.5. A soft computing technique for searching the crossover frequency 

c via the zero crossing detection 

 

Figure (6) shows a pseudocode for the zero-crossing 

detection algorithm that can be used for approximate 

calculation of the crossover frequency as in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. A pseudocode for the zero-crossing detection algorithm that can be 

used for approximate calculation of the crossover frequency 

 

Then, the objective function to minimize is written as [29] 
2

0

1
( )

( )c

E x
RDR x 

 
  

 
,   (10) 

where 0 0   is a very small real number in order to avoid 

zero divisions in the case of a zero value of 
c

RDR . Here, the 

vector [ , , , , ]p i dx k k k    is the controller coefficients. The 

standard definition of the optimization problem is written as 

min ( )
x

E x ,         (11) 

     S.t.:   
m T    .                          (12) 

This objective function maximizes the 
c

RDR  index that 

allows an improved input disturbance rejection performance 

for the additive input disturbance signal ( )D s (See Figure 1). 

The phase margin specification of the system is introduced by 

the inequality constraint. This phase margin constraint is 

necessary for the stabilization of the control system. The target 

phase margin value is set 
2

3
T


   for robust stabilization of 

the system. According to Equation (12), the parameter
m  

stands for the phase margin of the current system, the 
T  

denotes the target phase value. The   is a small positive 

number to define an approximation of system phase margin (

m ) to the target phase margin (
T ) within the   tolerance 

range. This range allows the enhancement of RDR 

performance during the optimization process of genetic 

algorithms in the expanse of a small allowable deviation from 

target phase margin. Thus it softens the phase constraint and 

facilitates the constrained optimization problem ((Equations 

(11) and (12)). Figure 7 shows a pseudocode to implement this 

optimization problem according to a soft constraint 

m T    . In this code, when the phase constraint 

m T     is not satisfied, the absolute phase margin error 

m T   is amplified by a factor of  1010  in order to reduce 

search possibility of such candidate solutions in the search 

space. Assignment of very high error values for these 

candidate solutions prevents the survival of them in next 

generations and eliminates these solutions that violate the soft 

constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7. A pseudocode for solving optimization problem according to a soft 

constraint ( 0.01  , 0 0.001  ) 

A software realization of this design problem in Matlab is 

carried out by employing soft computing techniques. This 

avoids the requirement of solving very difficult analytical 

equations to develop practical computer-aided design tools. 

The Matlab codes that were written for this design tool are 

presented in the Appendix section. 

0)( 
c

f 

0)( 1 if 

0)( if 

0)()( 1  ii ff 

c


Algorithm zero-crossing detection is 

Inputs: Value vector of the function f, 

            Angular frequency vector w, 

Outputs: Crossover frequency wc 

 

For i is from 1 to length of f 

if f(i-1)*f(i)<0 

wc=w(i); 

end 

Return wc 

 

 

 

Algorithm objective function is 

Inputs: Target phase margin phi_m, 

            Calculated phase margin phi_t, 

             Minimum RDR value minRDRdB 

Outputs: Objective function to minimize E 

 

if | phi_m- phi_t| <0.01 

E=(1/(( minRDRdB)^2)+0.001) 

else 

E=| phi_m- phi_t| *1010 

end 

Return E 
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IV. ILLUSTRATIVE EXAMPLES 

In this section, two illustrative design examples are 

presented.  

Example 1: Let's design a disturbance rejection FOPID 

control for the fractional order plant model given below [37]:  

  2.2 0.9

1

0.8 0.5 1
G s

s s


 
            (13) 

The closed loop transfer function of the system is written as  
 

     2.2 0.9
( )

0.8 0.5 (1 )

d p i

d p i

k s k s k
T s

s k s s k s k

  

    



  

 


    

 . (14) 

Target phase margin for the control system is set as 

2

3
T


  . Optimal FOPID controller coefficients were 

searched by using GA optimization for the fractional order 

controller parameter ranges LB = [1 1 1 0.3 0.3] and UB = 

[500 500 500 2 2] according to [ , , , , ]p i dx k k k   . The 

optimal disturbance reject FOPID controller was obtained as  

0.8984

1.2533

452.6156
( ) 307.4346  145.9923C s s

s
   .   (15) 

 
Fig.8. Bode diagram of the designed control system 

The stability of systems can be evaluated by examining the 

Bode diagram. When the amplitude graph is 0 dB, the distance 

of the system phase to -180 degrees (  radian) represents 

the phase margin. In Figure 8, the phase margin is shown with 

a thick orange solid line. The phase margin value for the 

designed system is obtained as 2.0848m  . Figure 9 shows 

the step responses of the proposed FOPID controller and Zhao 

et al.’s optimal FOPID controller. Figure 10 shows a close 

view of Figure 9 in order to compare step performances in 

terms of the rise time, the settling time and the maximum 

overshoot. The figure indicates improvement of the step 

response performance by means of the proposed FOPID 

controller in this example. 

 
Fig.9. Step responses of the control systems 

 
Fig.10. A close view of the step responses in Figure 9 

Figure 11 shows the RDR spectrum of the FOPID control 

systems. Higher RDR values indicate the improved 

disturbance rejection control performance in the 

corresponding frequency. The proposed FOPID controller can 

provide higher RDR values in the majority of the RDR 

spectrum and this indicates the proposed FOPID controller can 

present a better disturbance rejection performance, particularly 

at the higher frequency region compared to Zhao et al.’s 

FOPID controller. To further improve setpoint control 

performance, authors used the 2DOF setpoint filter FOPID 

control system (See Figure 1) in disturbance rejection control 

simulations. The setpoint filter is configured as 1
( )

3 1
F s

s



  

that avoids high overshoot step response when settling to the 

setpoint 1 as in Figure 12. (Zhao et al.’s FOPID control system 

does not include a set-point filter) These simulations were 

performed in the Simulink environment by using the fotf 

toolbox [36]. Figure 12 shows step disturbance responses of 

the controllers. An additive step disturbance was applied to the 

control system at 40 sec simulation time. Figure 13 shows a 

close view of disturbance rejection control for both 

controllers. 

 

2.0848m   
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Fig.11. The RDR spectrums of the control systems 

 
Fig.12. Step responses and disturbance responses of the FOPID controllers 

in case of an additive step disturbance insertion into the plant input at 40 sec 

 

Figure 14 shows system responses when a sinusoidal 

disturbance signal with the amplitude of 1 and a frequency of 

3.14 rad/sec was inserted into the control system. The figure 

shows that the disturbance rejection control performance is 

improved by the proposed FOPID control system in this 

frequency. 

 
Fig.13. A close view of the disturbance responses in Figure 12 

 
Fig.14. Sinusoidal disturbance responses of the control systems 

 

Example 2: Let's design a disturbance rejection FOPID 

control for the fractional order plant model given below [38]: 

  1.3

0.5

1.5 1
G s

s




               (16) 

The closed loop transfer function of the system is written as 
 

   1.3

0.5 0.5 0.5
( )

0.5 1.5 (1 0.5 ) 0.5

d p i

d p i

k s k s k
T s

k s s k s k

  

   



 

 


   
(17) 

A target phase margin to be achieved by using the control 

system is set as 
2

3
T


  . The optimal FOPID controller 

coefficients obtained by using GA optimization for a FOPID 

parameter search ranges LB = [1 1 1 0.5 0.3] and UB = [50 50 

50 2 2] according to [ , , , , ]p i dx k k k   . Then, optimal 

disturbance reject FOPID controller design is obtained as 

0.7535

0.5358

32.1662
( ) 49.9128  18.3780C s s

s
   .     (18) 

Figure 15 shows a Bode diagram of the designed control 

system. The phase margin is indicated with a thick orange 

solid line in this figure. The phase margin value for the 

designed system is obtained as 2.1027m  . Figure 16 shows 

step responses of the proposed FOPID controller and 

Tabatabaei et al.’s optimal FOPID controller[38]. Figure 17 

shows a close view of Figure 16 in order to compare step 

performances. The figure indicates the improvement of the 

step response performance by means of the proposed FOPID 

controller in this example. 

Figure 17 shows the RDR spectrum of the FOPID control 

systems. The proposed FOPID controller provides a superior 

RDR performance, and this indicates that the proposed FOPID 

controller presents a better disturbance rejection control 

performance compared to the Tabatabaei et al.’s FOPID 

controller. To improve setpoint control performance, authors 

used 2DOF setpoint filter FOPID control system (See Figure 

1) in disturbance rejection control simulations for the 

proposed FOPID controller. The setpoint filter is configured as 

1
( )

3 1
F s

s



  that avoids the high overshoot step response 
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when settling to the setpoint 1. (Tabatabaei et al.’s FOPID 

control system does not include a set-point filter) 

 
Fig.15. Bode diagram of the proposed control system 

 
Fig.16. Step responses of the control systems 

 
Fig.17. The RDR spectrums of the control systems 

 

Figure 18 shows step disturbance response of the 

controllers. An additive step disturbance was applied to the 

control system at 40 sec simulation time. Figure 19 shows a 

close view of disturbance rejection control of both controllers. 

 
Fig.18. Step responses and disturbance responses of the FOPID controllers 

in case of an additive step disturbance insertion into the plant input at 40 sec 

 
Fig.19. A close view of step responses in Figure 18 

Figure 20 shows system responses when a sinusoidal input 

disturbance with the amplitude of 1 and a frequency of 3.14 

rad/sec was inserted into the system. Figure shows that the 

disturbance rejection performance in this frequency is 

improved by the proposed FOPID control system. 

 
Fig.20. Sinusoidal disturbance responses of the control systems 

2.1027m   
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V.  CONCLUSIONS 

In summary, this study demonstrated a software 

implementation of the disturbance reject FOPID controller 

design methodology that was based on the RDR index 

maximization subject to a soft constraining of the phase 

margin. Thus, a difficult mathematical optimization problem 

can be effectively solved by using soft computing techniques. 

The proposed control system performance was compared 

with other optimal FOPID system design methods. Simulation 

results reveal the improvement of the step response and the 

disturbance rejection performance compared to other optimal 

tuning methods. Future work can address the addition of more 

design constraints by using soft computing routines in order to 

solve more sophisticated design problems. 
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APPENDIX 

The matlab code of this design tool is given below. The 

objective function is costFunc(x): 
function E = costFunc(x) 

% x chromosome represents candidate controller 

coefficients    

kp=x(1); 

ki=x(2); 

kd=x(3); 

lamda=x(4); 

u=x(5); 

% frequency setting for RDR index 

walt=0;  

wust=100; 

dw=0.5;  

w=walt:dw:wust; 

% Calculation of logarithmic RDR index to 

implement equations(5)and(2)  

RDRdB=20*log10((kp+ki*cos((pi/2)*lamda)*w.^(-

lamda)+kd*cos((pi/2)*u)*w.^(u)).^2+(kd*sin((pi

/2)*u)*w.^(u)-ki*sin((pi/2)*lamda)*w.^(-

lamda)).^2); 

% Calculation of minimum RDR index that 

implements equation(9) 

rdr=min(RDRdB); 

%Plant parameters 

a0=1; 

b0=1; 

b1=0.5; 

alfa=0.9; 

b2=0.8; 

k=2.2; 

%Phase margin specification 

TargetPhaseMar=2*pi/3; 

Pc=-pi;  

% Coefficients of closed loop transfer 

function  

c0=a0*ki; 

c1=a0*kp+b0; 

c2=a0*kd; 

c3=b1; 

c4=b2; 

beta0=0; 

beta1=lamda; 

beta2=lamda+u; 

beta3=lamda+alfa; 

beta4=k+lamda; 

d2=a0*kd; 

d1=kp*a0; 

d0=ki*a0; 

gamma2=(lamda+u); 

gamma1=lamda; 

gamma0=0; 

% The software realization of the closed loop 

transfer function  

sistem=fotf([c4 c3 c2 c1 c0],[beta4 beta3 

beta2 beta1 beta0],[d2 d1 d0],[gamma2 gamma1 

gamma0]); 

% The software realization of phase margin 

calculations  

X=bode(sistem,w); 

 Tw=squeeze(X.ResponseData); 

 Tw1=squeeze(Tw); 

 Mw=abs(Tw1); 

 Pw=angle(Tw1); 

% Determination of crossover frequency by 

using soft computing 

% The following code detects zero crossing 

for i=2:length(Mw) 

if log10(Mw(i))*log10(Mw(i-1))<0 

         Wc=w(i); 

         Pc=Pw(i); 

break; 

end 

end 

%Phase margin according to equation (6) 

Qp=pi+Pc; 

% Implementation of optimization problem 

according to soft constraint  

% for phase margin specification 

if abs(TargetPhaseMar-Qp)<0.01 

  E=(1/((rdr)^2)+0.01); 

else 

  E=abs(TargetPhaseMar-Qp)*1e+10; 

end 

end 

The code runs Matlab genetic algorithm for the 

objective function costFunc(x): 
clc; 

clear all; 

close all; 

ObjectiveFunction = @costFunc; 

nvars = 5; 

LB = [1 1 1 0.5 0.3]; % Lower bound 

UB = [50 50 50 2 2]; % Upper bound 

opts = 

gaoptimset('PlotFcn',{@gaplotbestf,@gaplotbest

indiv}); 

[x,fval,exitFlag,Output,population,scores] = 

ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,[

],opts); 

fprintf('****Optimization completed ****\n') 

fprintf('kp : %f \n',x(1)); 

fprintf('ki : %f \n',x(2)); 

fprintf('kd : %f \n',x(3)); 

fprintf('lampda : %f \n',x(4)); 

fprintf('mu : %f \n',x(5)); 

fprintf('Minimum value of objective function : 

%f \n',fval); 

(To run this code for fotf() function, fotf toolbox should be 

placed in the same folder.)  
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