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There are several classifications of linear Integral Equations. Some of them include; Voltera Integral 

Equations, Fredholm Linear Integral Equations, Fredholm-Voltera Integrodifferential. In the past, 

solutions of higher-order Fredholm-Volterra Integrodifferential Equations [FVIE] have been presented. 

However, this work uses a computational techniques premised on the third kind Chebyshev polynomials 
method. The performance of the results for distinctive degrees of approximation (M) of the trial solution 

is cautiously studied and comparisons have been additionally made between the approximate/estimated 

and exact/definite solution at different intervals of the problems under consideration. Modelled 
Problems have been provided to illustrate the performance and relevance of the techniques. However, it 

turned out that as M increases, the outcomes received after every iteration get closer to the exact solution 

in all of the problems considered. The results of the experiments are therefore visible from the tables of 

errors and the graphical representation presented in this work. 
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1. INTRODUCTION 

Integrodifferential equations have been observed in several ways and on several occasions. These include; 

Biology models, Chemical Kinetics, Mechanics, glass-forming procedures, and so many other difficult areas 

like Dynamics, Economics, Electromagnetism, Astro-Physics, Modelling, and Nano-Hydrodynamics. 

Worthy of note is the fact that many authors have also given numerous and analytical methods for solving 

Integrodifferential equations. Some examples include; 

Eslahchi et al. (2012) combined the Adomian’s decompositions technique with a Wavelet-Galerking approach 

to solving Integrodifferential Equations. To establish an approximate solution of higher-order linear Fredholm 

Integrodifferential equations, a realistic matrix technique can be used (Kurt & Sezer, 2008) which possess a 

constant coefficient beneath the initial boundary condition in phrases of Taylor polynomials, numerical 

solution of mixed linear Integrodifferential difference equations is considered using the Chebyshev collocation 

method. 

This method is mainly dependent on Chebyshev expansion approach. The specified conditions and the mixed 

linear Integrodifferential difference equation are transformed into matrix equations, which equate to a system 
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of linear algebraic equations, in this approach (Gulsu et al., 2010). A numerical solution of the system of linear 

Voltera Integrodifferential equations is proposed in (Rashidinia & Tahmasebi, 2012) where the Taylor series 

method was developed and modified to solve the system of linear Voltera Integrodifferential equations. Sezer 

and Gulsu (2005) explores the polynomial solution from the most generic linear Fredholm Integrodifferential 

difference equation using the Taylor matrix technique. Wazwaz (2011) also considered non-linear Voltera 

Integrodifferential equations, but with a comparative approach to solving Integrodifferential equations, using 

the differential numerical approach; Lapace transform-Adomian decomposition methods were specifically 

combined. (Rashed, 2004; Wazwaz, 2010) used the application Lagrange interpolation to compute the 

numerical solutions of integralodifferential equations. Yusufoglu (2007) solved Integrodifferential equations 

by hiring an efficient algorithm. Akgonullu et al. (2011) presented higher-order linear Fredholm 

Integrodifferential equations with variable coefficients in terms of Hermite polynomials. Taiwo and Fesojaye 

(2015) solved Fractional-order Integrodifferential equations by presenting perturbation Least-square 

Chebyshev method. A new numerical scheme for solving the Volterra-Integrodifferential equation system 

using Genocchi polynomials is presented in (Loh & Phang, 2018). Sakran (2019) constructs an algorithm for 

solving singularly perturbed Volterra integral type and integrodifferntial equations based on a finite expansion 

in Chebyshev polynomials of the third kind. Rabiei et al. (2019) investigated the numerical solution of Volterra 

integrodifferential equations using the General linear method; in the work, the order conditions of the proposed 

method are derived using B-series and rooted trees techniques. Lotfi and Alipanah (2020) describes the 

Legendre spectral element method for solving integrodifferential equations. Samaher (2021) proposes a 

reliable iterative method for resolving many types of Volterra-Fredholm integrodifferential equations, and the 

iterative method is used to obtain series solutions to the problems under consideration. Adebisi et al. (2021) 

employed the Galerkin method to solve Volterra integrodifferntial equations using Chebyshev polynomials as 

the basis function. 

The work of (Shah & Singh, 2015) prompted us to study the linear Integrodifferential equations. In the work, 

the basis function used for the class of initial value problems was the Homotopy Analysis Method this triggered 

a study of the work, and it was again applied to Integrodifferential equations (Linear Case). We taken into 

consideration a standard Higherer-order linear Voltera, and Fredholm Integrodifferential equation of the form; 

B01φ
m(z) + Bφm−1(z) + ⋯+ Bm−1φ

′(z) + Bmφ(z) + +λ∫ K(z, s)φ(s)dt
i(z)

h(z)

= f(z) (1) 

subject to the conditions 

φ(p) = P & φ(q) = Q (2) 

where 𝐵′𝑠 are real constants; 𝑖, ℎ are finite constants; 𝐾(𝑧, 𝑠) and 𝑓(𝑧) are specified given real-valued 

functions; 𝜑 are unknown constants to be determined. We then solved these problems by assuming an 

approximate solution given by Equation (4) below. 

2. BASIC DEFINITION 

This section contains basic definition that are essential to the research work in this paper. 

2.1. Integrodifferential Equations (Wazwaz, 2010) 

Integrodifferential equations (IDEs) are equations in which the unknown function 𝜑(𝑧) is written with the 

integral sign and also has an ordinary derivative𝜑(𝑘). The following is a typical Integrodifferential equation: 

𝜑(𝑘)(𝑧) = 𝑓(𝑧) + 𝜆∫ 𝐾(𝑧, 𝑠)𝜑(𝑠)𝑑𝑠
𝑖(𝑧)

ℎ(𝑧)

 (3) 

𝑖(𝑧) and ℎ(𝑧) are integration limits that can be constants, variables, or blended. is a free parameter, 𝑓(𝑧) is a 

specified function, and 𝐾(𝑧, 𝑠) stands for kernel. 
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If the limit 𝜑(𝑧) is substituted by a variable of integration z, we have the Volterra Integrodifferential equation, 

and if the limit of integration is constants, we have the Fredholm Integrodifferential equation. 

2.2. Collocation Method 

A method of evaluating an approximate solution in a suitable collection of functions, sometimes referred to as 

a trial solution or basis function. 

2.3. Exact Solution 

If a solution may be expressed in a closed form, it's known as an exact solution. Examples are polynomials, 

exponential functions, trigonometric functions, or an aggregate of or extra of these standard functions. 

2.4. Approximate Solution 

An approximate solution denoted by 𝜑𝑀(𝑧) is given in the form 

𝜑𝑀(𝑧) = ∑𝑏𝑗𝜁𝑚(𝑧)

𝑀

𝑖=0

 (4) 

where 𝑏𝑗(𝑗 ≥ 0) are to be determined. 

2.5. Chebyshev Polynomials of Third Kind (Loh & Phang, 2018) 

The Chebyshev polynomial of the third kind in [-1, 1] of degree m is represented by 𝑉𝑚(𝑧), where: 

𝑉𝑚(𝑧) = cos
(𝑚 +

1
2
)𝜗

cos (
𝜗
2
)
, where 𝑧 = cos 𝜗 (5) 

This elegance of Chebyshev polynomials satisfied the subsequent recurrence relation given by 

𝑉0(𝑧) = 1, 𝑉1(𝑧) = 2𝑧 − 1, 𝑉𝑚(𝑧) = 2𝑧𝑉𝑚−1(𝑧) − 𝑉𝑚−2(𝑧), 𝑚 = 2, 3,⋯ (6) 

The Chebyshev polynomial of the third kind in [𝛼, 𝛽] of degree, m is represented by 𝑉𝑚
∗(𝑧), where: 

𝑉𝑚
∗(𝑧) = cos

(𝑚 +
1
2
)𝜗

cos (
𝜗
2
)
,  cos 𝜗 =

2𝑧 − (𝛼 + 𝛽)

𝛽 − 𝛼
, 𝜗 𝜖 [0, 𝜋] (7) 

3. THE RESEARCH METHODOLOGY 

Equation (1) was solved using the third kind of Chebyshev polynomials and the standard collocation method. 

3.1. The Standard Collocation Method Employs a Third-Order Chebyshev Polynomial Basis 

The standard collocation method can be used to solve the well-known problem provided in equation (1), subject 

to the conditions given in equation (2). This is accomplished by assuming a form trail solution. 

φm(z) = ∑bjVj
∗(z)

M

i=0

 (8) 

where bj,   j = 0,1 M are undefined constants and Vj
∗(z)(j ≥ 0) are 1/3-order Chebyshev polynomials described 

in equations (5-7). In most instances, a larger M, produces a better approximate solution, and bj is the 
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specialized coordinate referred to as the degree of freedom. Thus, differentiating equation (8) with respect to 

𝑚𝑡ℎ-times as functions of 𝑧, to obtain the following equations 

𝜑′𝑚(𝑧) =∑𝑏𝑗𝑉𝑗
∗′(𝑧)

𝑀

𝑖=0

𝜑′′𝑚(𝑧) =  ∑𝑏𝑗𝑉𝑗
∗′′(𝑧)

𝑀

𝑗=0

⋮

𝜑(𝑚)(𝑧) =∑𝑏𝑗𝑉𝑗
∗(𝑚)

(𝑧)

𝑀

𝑗=0 }
 
 
 
 

 
 
 
 

 (9) 

As a result of putting Equations (8-9) into Equation (1), we get 

𝐵01 ∑𝑏𝑗𝑉𝑗
∗(𝑚)(𝑧)

𝑀

𝑗=0

𝐵11 ∑𝑏𝑗𝑉𝑗
∗(𝑚−1)(𝑧)

𝑀

𝑗=0

𝐵21 ∑𝑏𝑗𝑉𝑗
∗(𝑚−2)(𝑧)

𝑀

𝑗=0

  

𝐵𝑚1 ∑𝑏𝑗𝑉𝑗
∗(𝑧) +

𝑀

𝑗=0

𝜆∫ 𝐾(𝑧, 𝑡) (∑𝑏𝑗𝑉𝑗
∗(𝑡)

𝑀

𝑗=0

)𝑑𝑡 =
𝑖(𝑧)

ℎ(𝑧)

𝑓(𝑧) (10) 

The integral part of Equation (10) is evauated to produce 

𝐵01 ∑𝑏𝑗𝑉𝑗
∗(𝑚)

(𝑧)

𝑀

𝑖=0

+ 𝐵11 ∑𝑏𝑗𝑉𝑗
∗(𝑚−1)

(𝑧)

𝑀

𝑗=0

+ 𝐵21 ∑𝑏𝑗𝑉𝑗
∗(𝑚−2)

(𝑧)

𝑀

𝑗=0

+  

+ 𝐵𝑚1 ∑𝑏𝑗𝑉𝑗
∗(𝑧) +

𝑀

𝑗=0

𝜆𝐺(𝑧) = 𝑓(𝑧) (11) 

and 𝐺(𝑧) = ∫ 𝐾(𝑧, 𝑡)(∑ 𝑏𝑗𝑉𝑗
∗(𝑡)𝑀

𝑖=0 )𝑑𝑡
𝑖(𝑧)

ℎ(𝑧)
  

We collocate the resulting equation after simplification at the point 𝑧 = 𝑧𝑘 

𝐵01 ∑𝑏𝑗𝑉𝑗
∗(𝑚)

(𝑧𝑘)

𝑀

𝑖=0

+ 𝐵11 ∑𝑏𝑗𝑉𝑗
∗(𝑚−1)

(𝑧𝑘)

𝑀

𝑗=0

+ 𝐵21 ∑𝑏𝑗𝑉𝑗
∗(𝑚−2)

(𝑧𝑘)

𝑀

𝑗=0

+  

⋯𝐵𝑚1 ∑𝑏𝑗𝑉𝑗
∗(𝑧𝑘) +

𝑀

𝑗=0

𝜆𝐺(𝑧𝑘) = 𝑓(𝑧𝑘) (12) 

where 

𝑧𝑘 = 𝛼 +
(𝛽 − 𝛼)𝑘

𝑀
;  𝑘 = 1, 2, … ,𝑀 − 1 (13) 

Equation (12) is then transformed into a matrix as 

𝐵𝑧 = 𝑑𝑧𝑘 (14) 

where 
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𝐵 =

(

  
 

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⋯

𝑏1,𝑚
𝑏2,𝑚
𝑏3,𝑚

⋮ ⋱ ⋮
𝑏𝑚,1 𝑏𝑚,2 𝑏𝑚,3 ⋯ 𝑏𝑚,𝑚)

  
 

 (15) 

 

𝑧 = (𝑧1, 𝑧2, 𝑧3,⋯ , 𝑧𝑚)
𝑇 (16) 

𝑑 = (𝑓(𝑑1), 𝑓(𝑑2), 𝑓(𝑑3)… , 𝑓(𝑑𝑚))
𝑇 (17) 

Consequently, Equation (12) yields a (M-1) algebraic linear system of equations in (M+1) unknown constants, 

and the specified conditions in Equation (12) yield m additional equations (2). We now have an algebraic linear 

system of equations with (M+1) variables. These equations are then solved using Maple 18 software to provide 

(M+1) unknown constants 𝑏𝑗 (𝑗 ≥ 0), which are then used to approximate the solution given by Equation (8). 

4. PROBLEMS AND RESULTS 

With third-kind Chebyshev as the basis functions, the standard collocation approximation approach on 

higherer-order integrodifferential equations was demonstrated. At different intervals of the problems under 

consideration, the results obtained by the exact solution were compared with the approximate solution. 

4.1. Problem 1 (Akgonullu et al., 2011) 

Here, we looked at the Fredholm Integrodifferential equation of second order. 

𝜑′′(𝑧) = 𝑒𝑧 −
4

3
𝑧 +∫ 𝑧𝑡𝜑(𝑡)𝑑𝑡.

1

0

 (18) 

with initial conditions 

𝜑(0) = 1, 𝜑′(0) = 2 (19) 

The exact solution is as follows 

𝜑(𝑧) = 𝑧 + 𝑒𝑧 (20) 

4.2. Problem 2 (Wazwaz, 2011) 

Here, we considered the second-order linear Volterra Integrodifferential equation 

𝜑′′(𝑧) = 2 − 2z sin 𝑧 − ∫ (𝑧 − 𝑡)𝜑(𝑡)𝑑𝑡.
𝑧

0

 (21) 

with initial conditions 

𝜑(0) = 0, 𝜑′(0) = 0 (22) 

The exact solution is given as 

𝜑(𝑧) = 𝑧 𝑠𝑖𝑛 𝑧 (23) 

4.3. Problem 3 (Wazwaz, 2011) 

Here, we considered the second-order linear Volterra Integrodifferential equation 

𝜑(′𝑣)(𝑧) = −1 + 𝑧 −∫ (𝑧 − 𝑡)𝜑(𝑡)𝑑𝑡.
𝑧

0

 (24) 
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with initial conditions 

𝜑(0) = −1, 𝜑′(0) = 1, 𝜑′′(0) = 1, 𝜑′′′(0) = 1 (25) 

The exact solution is 

𝜑(𝑧) = sin 𝑥 − cos 𝑥 (26) 

Note: We defined absolute error as follows: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = |𝜑(𝑧) − 𝜑𝑀(𝑧)| (27) 

where, 𝜑(𝑧) stands for the exact solution and 𝜑𝑀(𝑧) stands for the approximate solution obtained for the 

various M values. 

4.4. Tables of Errors and Approximate for the Problems 

Table 1. Table of Error and Approximate for Problem 1 

Z 𝝋 (Exact) 
𝝋 (Approximate) 

For Case M = 5 

𝝋 (Approximate) 

For Case M = 10 

Absolute (Error) 

For M = 5 

Absolute (Error) 

For M = 10 

0.0 1.0000000000000 1.0000000020000 1.000004792000 2.00 e-09 4.79e-06 

0.2 1.4214027581602 1.4213780016409 1.421407783585 2.48 e-05 5.03e-06 

0.4 1.8918246976413 1.8917670852221 1.891831437531 5.76 e-05 6.74e-06 

0.6 2.4221188003905 2.4220279027664 2.422126707764 9.09 e-05 7.91e-06 

0.8 3.0255409284925 3.0254159909159 3.025548507593 1.25 e-04 7.58e-06 

1.0 3.7182818284590 3.7181120074800 3.718293781960 1.61 e-04 1.11e-05 

 

Table 2. Table of Error and Approximate for Problem 2 

Z 𝝋 (Exact) 
𝝋 (Approximate) 

For Case M = 5 

𝝋 (Approximate) 

For Case M = 10 

Absolute (Error) 

For M = 5 

Absolute (Error) 

For M = 10 

0.0 0.000000000000 -5.000000000e-11 -1.13494000e-07 5.00e-11 1.13e-10 

0.2 0.039733866159 0.0396474110875 0.039734121852 8.65e-05 2.56e-07 

0.4 0.155767336923 0.1555676200122 0.155767558521 1.91e-04 2.22e-07 

0.6 0.338785484037 0.2394579599488 0.338785316341 9.93e-04 1.68e-07 

0.8 0.573884872711 0.5734637964333 0.573884334512 4.21e-04 5.38e-07 

1.0 0.841470984808 0.7045186581451 0.841470029934 5.53e-04 9.55e-07 

 

Table 3. Table of Error and Approximate for Problem 3 

Z 𝝋 (Exact) 
𝝋 (Approximate) 

For Case M = 6 

𝝋 (Approximate) 

For Case M = 10 

Absolute (Error) 

For M = 6 

Absolute (Error) 

For M = 10 

0.0 -1.000000000000 -0.999999999900 1.000000006000 1.00e-10 6.00e-09 

0.2 -0.781397247046 -0.781397490149 -0.781397249066 2.43e-07 2.10e-09 

0.4 -0.531642651694 -0.531645288439 -0.531642645501 2.64e-05 6.20e-09 

0.6 -0.260693141515 -0.260702948221 -0.260693148269 9.81e-05 6.80e-09 

0.8 0.020649381552 0.020625391964 0.020649386322 2.31e-05 4.77e-09 

1.0 0.841470984808 0.7045186581451 0.841470029934 5.53e-04 9.55e-07 
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5. CONCLUSION  

In terms of error and approximate solutions, Table 1-3 provide the numerical solutions for the Fredholm-

Volterra Integrodifferential equations computed using the third kind of Chebyshev polynomial basis function. 

In all of the problems solved, the approximate solution is much closer to the precise solution when evaluated 

at an equally spaced interior point. 

However, as shown in the tables of errors, the obtained results provide a good approximation to the precise 

solution for varying degrees of M, in other words, as M increases, the obtained results provide a good 

approximation to the exact solution with a few iterations. As a result, we conclude that the method was realistic 

and effective under the given circumstances. 
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