Determinants and Inverses of Circulant Matrices with Gaussian Pell Numbers

Meral YAȘAR KARTAL © ${ }^{*}$
${ }^{1}$ Niğde Ömer Halisdemir University, Science and Art Faculty, Department of Mathematics, NIGDE

(Alınış / Received: 28.03.2022, Kabul / Accepted: 20.07.2022, Online Yayınlanma / Published Online: 23.08.2022)

Keywords

Circulant matrix, Determinant, Inverse, Gaussian Pell numbers

Abstract

In this paper, by considering the circulant matrix $M_{n}=$ $\operatorname{circ}\left(G P_{1}, G P_{2}, \ldots, G P_{n}\right)$ whose entries are the Gaussian Pell numbers, we calculate the determinants and inverses of M_{n} in terms of Gaussian Pell numbers.

Elemanları Gaussian Pell Sayıları Olan Sirkülant Matrislerin Determinantları ve Tersleri

Anahtar Kelimeler

Sirkülant matris, Determinant, Matris tersi,
Gauss Pell sayıları

Abstract

Öz: Bu çalışmada, elemanları Gauss Pell sayıları olan $M_{n}=\operatorname{circ}\left(G P_{1}, G P_{2}, \ldots, G P_{n}\right)$ sirkülant matrisinin determinantı ve tersi yine Gauss Pell sayıları cinsinden hesaplanmıștır.

[^0]
1. Introduction and Preliminaries

Circulant matrices have a wide range of applications, for example in image processing, coding theory, signal processing, numerical computation, self-regress design, etc. For detail one can see [1], [2].
There are many studies in the literature which is about circulant matrices and their properties such as their determinants and inverses involving some famous numbers.
Lind studied on the determinant $D_{n, r}$ of the circulant matrix $\operatorname{circ}\left(F_{r}, F_{r+1}, \ldots, F_{r+n-1}\right)$ in 1970 [3]. In [4], the author gave the bounds for the spectral and Euclidean norms of the circulant matrices involving Fibonacci and Lucas numbers. In [5], [6] the authors defined generalized k-Horadam sequence and investigated some its properties. In addition, a new generalization to compute determinants and inverses of the circulant matrix $C_{n}(H)=$ $\operatorname{circ}\left(H_{k, 1}, H_{k, 2}, \ldots, H_{k, n}\right)$ where $H_{k, n}$ is the generalized k-Horadam numbers was presented. Also, in another study of the same authors, a new upper and lower bounds for the spectral norm of an r-circulant matrix H whose entries are generalized k-Horadam numbers were presented. Furthermore, they obtained new formulas to calculate the eigenvalues and determinant of the matrix H [7]. Shen et al. obtained the determinants of the circulant matrix with classical Fibonacci and Lucas numbers. In addition, the inverses of these matrices were derived in [8]. In [9], the determinants and inverses of the circulant matrix involving Jacobsthal and Jacobsthal-Lucas numbers were obtained in terms of these numbers. In another study, the same authors studied on the r-circulant matrix $W_{n}=\left(W_{1}, W_{2}, \ldots, W_{n}\right)$ associated with the numbers defined by the recurrence relation $W_{n}=p W_{n-1}+q W_{n-2}$ with initial conditions $W_{0}=a$ and $W_{1}=b$. They obtained determinants, inverses and some bounds for spectral norms of r-circulant matrix W_{n} [10]. Jiang et al. studied on some types of circulant matrices. They proved that these matrices with Gaussian Fibonacci numbers were invertible matrices for $n>2$ and they gave the determinants and inverses of these matrices in [11]. In [12], the authors calculated the determinant of the circulant matrix $F_{n}=$ $\operatorname{circ}\left(F_{1}^{*}, F_{2}^{*}, \ldots, F_{n}^{*}\right)$ where F_{n}^{*} is the complex Fibonacci numbers. In addition, they showed that this matrix is invertible and inverse matrix can be obtained in terms of complex Fibonacci numbers. In [13], the author used the
algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the generalized k-Horadam numbers and some estimations were obtained.
Horadam and Mahon introduced Pell and Pell-Lucas polynomials. Moreover, some properties related with these sequences were studied in [14]. In [15], sum formulas for squares of terms of complex Pell and Pell-Lucas number sequences were studied and certain products of terms of the Pell and Pell-Lucas sequences were determined. In [16], the gell numbers were defined as the generalization of Pell numbers. Moreover, the authors derived Binetlike formula, generating function and exponential generating function for this sequence. The authors, introduced the quadra Fibona-Pell,Fibona-Jacobsthal and Pell-Jacobsthal and the hexa Fibona-Pell-Jacobsthal sequences. These sequences are the compound sequences of Fibonacci, Pell and Jacobsthal sequences. They derived the Binetlike formulas, the generating functions and the exponential generating functions of these sequences. Also, some binomial identities were obtained for them [17]. In [18], the authors considered the Pell, Pell-Lucas and Modified Pell sequences, and they defined some new 2×2 matrices, then showed that the identities presented before can be produced by using them. In [19], the authors defined the Gaussian Pell and Gaussian Pell-Lucas sequences. They obtained some identities for these numbers.
In this paper, we consider the circulant matrix $M_{n}=\left(G P_{1}, G P_{2}, \ldots, G P_{n}\right)$, where $G P_{n}$ is the Gaussian Pell numbers. Firstly, we obtained the determinant of this matrix in terms of Gaussian Pell numbers. Then we calculate the inverse of the circulant matrix M_{n}.
We conclude this section with some preliminaries related our study.
The $n \times n$ circulant matrix $C_{n}=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, associated with the numbers $c_{0}, c_{1}, \ldots, c_{n-1}$ is defined as
$C_{n}=\left[\begin{array}{cccc}c_{0} & c_{1} & \ldots & c_{n-1} \\ c_{n-1} & c_{0} & \ldots & c_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1} & c_{2} & \ldots & c_{0}\end{array}\right]$.
Determinant and inverse of nonsingular circulant matrix C_{n} are given as in the following
$\operatorname{det} C_{n}=\prod_{r=0}^{n-1} g\left(w^{r}\right), \quad C_{n}^{-1}=\operatorname{circ}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$
where $a_{s}=\frac{1}{n} \sum_{r=0}^{n-1} g\left(w^{r}\right)^{-1} w^{-r s} \quad(s=0,1, \ldots, n-1), g(x)=\sum_{i=0}^{n-1} c_{i} x^{i}$ and $w=\exp \left(\frac{2 \pi i}{n}\right)$ [2].
Lemma 1.1. [2] Let $C_{n}=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be a circulant matrix. Then we have the following
i. $\quad C_{n}$ is invertible if and only if $f\left(w^{k}\right) \neq 0(k=0,1, \ldots, n-1)$, where $f(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$ and $w=\exp \left(\frac{2 \pi i}{n}\right)$
ii. If C_{n} is invertible then its inverse is also a circulant matrix.

2. Main Results

In this section, we consider the circulant matrix M_{n} with Gaussian Pell numbers. Firstly, we give the determinant of the matrix M_{n}. Then we prove that M_{n} is an invertible matrix and we formulate the inverse matrix in terms of Gaussian Pell numbers.

Definition 2.1. The Gaussian Pell numbers are defined as
$G P_{n}=2 G P_{n-1}+G P_{n-2}, \quad n \geq 2$
with the initial conditions $G P_{0}=i, G P_{1}=1$ [19].
Theorem 2.2. Let M_{n} be a circulant matrix with Gaussian Pell numbers as $M_{n}=\operatorname{circ}\left(G P_{1}, G P_{2}, \ldots, G P_{n}\right)$. Then we have
$\operatorname{det} M_{n}=\left(1-G P_{n+1}\right)^{n-2}\left(1-2 G P_{n}-i G P_{n}\right)+\sum_{k=1}^{n-2}\left(G P_{k}-i G P_{k+1}\right)\left(1-G P_{n+1}\right)^{k-1}\left(G P_{n}-i\right)^{n-k-1}$
for $n \geq 3$.

Proof. For $n \geq 3$, set
$K=\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ -2 & 0 & 0 & 0 & \cdots & 0 & 1 \\ -1 & 0 & 0 & 0 & \cdots & 1 & -2 \\ 0 & 0 & 0 & 0 & \cdots & -2 & -1 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 1 & -2 & \cdots & 0 & 0 \\ 0 & 1 & -2 & -1 & \cdots & 0 & 0\end{array}\right]$
and
$L_{1}=\left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-2} & 0 & 0 & \cdots & 0 & 1 \\ 0 & \left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-3} & 0 & 0 & \cdots & 1 & 0 \\ 0 & \left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-4} & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & \left(\frac{G P_{n}-i}{1-G P_{n+1}}\right) & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0\end{array}\right]$.
Then we have the following matrix
$K M_{n} L_{1}=\left[\begin{array}{cccccccc}1 & f_{n} & G P_{n-1} & G P_{n-2} & G P_{n-3} & \cdots & G P_{3} & G P_{2} \\ i & g_{n} & G P_{n-2} & G P_{n-3} & G P_{n-4} & \cdots & G P_{2} & G P_{1} \\ 0 & 0 & G P_{1}-G P_{n+1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & G P_{0}-G P_{n} & G P_{1}-G P_{n+1} & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & G P_{0}-G P_{n} & G P_{1}-G P_{n+1} & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & G P_{0}-G P_{n} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & G P_{0}-G P_{n} & G P_{1}-G P_{n+1}\end{array}\right]$
where
$f_{n}=\sum_{k=1}^{n-1} G P_{k+1}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}$
and
$g_{n}=1-2 G P_{n}+\sum_{k=1}^{n-2} G P_{k}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}$.
So, we obtain
$\operatorname{det} K \operatorname{det} M_{n} \operatorname{det} L_{1}=\left[1-2 G P_{n}+\sum_{k=1}^{n-2} G P_{k}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}-i \sum_{k=1}^{n-1} G P_{k+1}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}\right]\left(1-G P_{n+1}\right)^{n-2}$
while
$\operatorname{det} K=\operatorname{det} L_{1}=\left\{\begin{array}{cc}1, & n \equiv 1,2(\bmod 4) \\ -1, & n \equiv 0,3(\bmod 4)\end{array}\right.$.
Hence, we get
$\operatorname{det} M_{n}=\left(1-G P_{n+1}\right)^{n-2}\left(1-2 G P_{n}-i G P_{n}\right)+\sum_{k=1}^{n-2}\left(G P_{k}-i G P_{k+1}\right)\left(1-G P_{n+1}\right)^{k-1}\left(G P_{n}-i\right)^{n-k-1}$.
Thus, the proof is completed.
Theorem 2.3. Let $M_{n}=\operatorname{circ}\left(G P_{1}, G P_{2}, \ldots, G P_{n}\right)$ be a circulant matrix. For $n \geq 3, M_{n}$ is invertible.
Proof. Let $n \geq 3$. The Binet formula for Gaussian Pell number is
$G P_{n}=c \alpha^{n}+d \beta^{n}$
where $c=\frac{1+(\sqrt{2}-1) i}{2 \sqrt{2}}$ and $d=\frac{-1+(\sqrt{2}+1) i}{2 \sqrt{2}}$. It is clear that $\alpha+\beta=2$ and $\alpha \beta=-1$. Hence we have

$$
\begin{aligned}
f\left(w^{k}\right) & =\sum_{j=1}^{n} G P_{j}\left(w^{k}\right)^{j-1} \\
& =c \alpha\left(\frac{1-\alpha^{n}}{1-\alpha w^{k}}\right)+d \beta\left(\frac{1-\beta^{n}}{1-\beta w^{k}}\right) \\
& =\frac{c \alpha\left(1-\alpha^{n}\right)\left(1-\beta w^{k}\right)+d \beta\left(1-\beta^{n}\right)\left(1-\alpha w^{k}\right)}{1-2 w^{k}-w^{2 k}} \\
& =\frac{1-G P_{n+1}+w^{k}\left(i-G P_{n}\right)}{1-2 w^{k}-w^{2 k}}
\end{aligned}
$$

Since $G P_{n}=P_{n}+i P_{n-1}, n>1, w^{k}=\cos \theta+i \sin \theta$ where $\theta=\frac{2 k \pi}{n}$ and $0<\theta<2 \pi$. Then

$$
\begin{aligned}
x & =1-G P_{n+1}+w^{k}\left(i-G P_{n}\right) \\
& =\left[1-P_{n+1}-P_{n} \cos \theta+\left(P_{n-1}-1\right) \sin \theta\right]+i\left[-P_{n}+\left(1-P_{n-1}\right) \cos \theta-P_{n} \sin \theta\right]
\end{aligned}
$$

We assume that
$\operatorname{Re}(x)=1-P_{n+1}-P_{n} \cos \theta+\left(P_{n-1}-1\right) \sin \theta$
and
$\operatorname{Im}(x)=-P_{n}+\left(1-P_{n-1}\right) \cos \theta-P_{n} \sin \theta$.
We prove that $\operatorname{Re}(x) \neq 0$ or $\operatorname{Im}(x) \neq 0$ for $1-2 w^{k}-w^{2 k} \neq 0$. For the reason that Pell sequence is an increasing sequence, we have the followings.

If $\sin \theta>0$ and $\cos \theta>0, \operatorname{Re}(x)<0$.
If $\sin \theta<0$ and $\cos \theta<0, \operatorname{Im}(x)>0$.
If $\sin \theta>0$ and $\cos \theta<0, \operatorname{Re}(x)<0$.
If $\sin \theta<0$ and $\cos \theta>0, \operatorname{Im}(x)<0$.
It is verified that when $\sin \theta=0$ or $\cos \theta=0, x \neq 0$.
Hence, $1-G P_{n+1}+w^{k}\left(i-G P_{n}\right) \neq 0$ for any $w^{k}(k=1,2, \ldots, n-1)$, that is $f\left(w^{k}\right) \neq 0$. By Lemma 1.1 the proof is completed.

Lemma 2.4. Let $B=\left(b_{i j}\right)$ be an $(n-2) \times(n-2)$ matrix of the form
$b_{i j}=\left[\begin{array}{cl}G P_{1}-G P_{n+1}, & i=j \\ G P_{0}-G P_{n}, & i=j+1 \\ 0, & \text { otherwise }\end{array}\right.$
then the inverse $B^{-1}=\left(b_{i j}^{\prime}\right)$ is given by
$b_{i j}^{\prime}=\left[\begin{array}{cl}\frac{\left(G P_{n}-G P_{0}\right)^{i-j}}{\left(G P_{1}-G P_{n+1}\right)^{i-j+1}}, & i \geq j \\ 0, & i<j\end{array}\right.$

Proof. Let $c_{i j}=\sum_{k=1}^{n-2} b_{i k} b_{k j}^{\prime}$. It is clear that $c_{i j}=0$ for $i<j$. For $i=j$, we get
$c_{i i}=b_{i i} b_{i i}^{\prime}=\left(G P_{1}-G P_{n+1}\right) \frac{1}{\left(G P_{1}-G P_{n+1}\right)}=1$.
For $i \geq j+1$, we obtain

$$
\begin{aligned}
c_{i j} & =\sum_{k=1}^{n-2} b_{i k} b_{k j}^{\prime}=b_{i, i-1} b_{i-1, j}^{\prime}+b_{i i} b_{i j}^{\prime} \\
& =\left(G P_{0}-G P_{n}\right) \frac{\left(G P_{n}-G P_{0}\right)^{i-j-1}}{\left(G P_{1}-G P_{n+1}\right)^{i-j}}+\left(G P_{1}+G P_{n+1}\right) \frac{\left(G P_{n}-G P_{0}\right)^{i-j}}{\left(G P_{1}-G P_{n+1}\right)^{i-j+1}} \\
& =0 .
\end{aligned}
$$

So, we see that $B B^{-1}=I_{n-2}$, where I_{n-2} is $(n-2) \times(n-2)$ identity matrix. Similarly, it can be shown that $B^{-1} B=I_{n-2}$. Hence, the proof is completed.

Theorem 2.5. Let $n \geq 3$, then the inverse of M_{n} is
$M_{n}^{-1}=\operatorname{circ}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$
where
$m_{1}=\frac{i}{f_{n}}-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k+1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k}$
$m_{2}=\frac{1-2 i}{f_{n}}+\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-1}$
$m_{3}=\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{1}{\left(G P_{1}-G P_{n+1}\right)}$
$m_{4}=\frac{-2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{G P_{0}-G P_{n}}{\left(G P_{1}-G P_{n+1}\right)^{2}}$
and
$m_{j}=\frac{(-1)^{j-1} 2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{\left(G P_{0}-G P_{n}\right)^{j-3}}{\left(G P_{1}-G P_{n+1}\right)^{j-2}}, \quad j=5,6, \ldots, n$.
Proof. Let
$L_{2}=\left[\begin{array}{cccccc}1 & -\frac{f_{n}}{G P_{1}} & \frac{f_{n} G P_{n-2}-g_{n} G P_{n-1}}{G P_{1} g_{n}-G P_{0} f_{n}} & \frac{f_{n} G P_{n-3}-g_{n} G P_{n-2}}{G P_{1} g_{n}-G P_{0} f_{n}} & \cdots & \frac{f_{n} G P_{1}-g_{n} G P_{2}}{G P_{1} g_{n}-G P_{0} f_{n}} \\ 0 & 1 & \frac{G P_{n-1} G P_{0}-G P_{n-2} G P_{1}}{G P_{1} g_{n}-G P_{0} f_{n}} & \frac{G P_{n-2} G P_{0}-G P_{n-3} G P_{1}}{G P_{1} g_{n}-G P_{0} f_{n}} & \cdots & \frac{G P_{2} G P_{0}-G P_{1} G P_{1}}{G P_{1} g_{n}-G P_{0} f_{n}} \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1\end{array}\right]$
where
$f_{n}=\sum_{k=1}^{n-1} G P_{k+1}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}$
and
$g_{n}=1-2 G P_{n}+\sum_{k=1}^{n-2} G P_{k}\left(\frac{G P_{n}-i}{1-G P_{n+1}}\right)^{n-k-1}$.
Then we can write
$K M_{n} L_{1} L_{2}=U \oplus B$,
where $U=\left[\begin{array}{cc}G P_{1} & 0 \\ G P_{0} & -\frac{f_{n} G P_{0}}{G P_{1}}\end{array}\right]$ is 2×2 matrix, B is as in Lemma 2.4 and $U \oplus B$ is the direct sum of the matrices U and B. Let $L=L_{1} L_{2}$, then we obtain
$M_{n}^{-1}=L\left(U^{-1} \oplus B^{-1}\right) K$.
By Lemma 1.1., the inverse of the matrix M_{n} is circulant. Let
$M_{n}^{-1}=\operatorname{circ}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$.
Since the last row of the matrix L are
$0,1,-\frac{\left(G P_{0} G P_{n-1}-G P_{1} G P_{n-2}\right)}{G P_{0} f_{n}-G P_{1} g_{n}},-\frac{\left(G P_{0} G P_{n-2}-G P_{1} G P_{n-3}\right)}{G P_{0} f_{n}-G P_{1} g_{n}}, \cdots,-\frac{\left(G P_{0} G P_{2}-G P_{1} G P_{1}\right)}{G P_{0} f_{n}-G P_{1} g_{n}}$
and $Y_{n j}$ be the $n j$-th entry of the product $L\left(U^{-1} \oplus\right) B^{-1}$ for $1 \leq j \leq n$, we have
$Y_{n 1}=\frac{1}{f_{n}}, Y_{n 2}=\frac{i}{f_{n}}$
and for $3 \leq j \leq n$
$Y_{n j}=\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-j+1}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-j+2}$.
If the row matrix $\left(Y_{n 1}, Y_{n 2}, \ldots, Y_{n n}\right)$ and the matrix K is multiplied, the last row of M_{n}^{-1} is obtained. Namely,

$$
\begin{aligned}
m_{1} & =Y_{n 2}-2 Y_{n 3}-Y_{n 4} \\
& =\frac{i}{f_{n}}-\frac{4(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-1}-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-3}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-2} \\
& =\frac{i}{f_{n}}-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k+1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k} \\
m_{2} & =Y_{n 1}-2 Y_{n 2}-Y_{n 3} \\
& =\frac{1}{f_{n}}-\frac{2 i}{f_{n}}-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-1} \\
& =\frac{1-2 i}{f_{n}}-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{n-2}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{n-k-1}
\end{aligned}
$$

$m_{3}=Y_{n n}=\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{1}{G P_{1}-G P_{n+1}}$

$$
\begin{aligned}
m_{4} & =Y_{n, n-1}-2 Y_{n n} \\
& =\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{2}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{3-k}-\frac{4(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{1}{G P_{1}-G P_{n+1}} P_{2-k} \\
& =-\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{G P_{0}-G P_{n}}{\left(G P_{1}-G P_{n+1}\right)^{2}}
\end{aligned}
$$

and for $5 \leq j \leq n$

$$
\begin{aligned}
m_{j}= & Y_{n, n-j+3}-2 Y_{n, n-j+4}-Y_{n, n-j+5} \\
= & \frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{j-2}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{j-k-1}-\frac{4(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{j-3}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{j-k-2} \\
& -\frac{2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \sum_{k=1}^{j-4}(-1)^{k-1} \frac{\left(G P_{0}-G P_{n}\right)^{k-1}}{\left(G P_{1}-G P_{n+1}\right)^{k}} P_{j-k-3} \\
= & \frac{(-1)^{j-1} 2(1-i)}{G P_{0} f_{n}-G P_{1} g_{n}} \frac{\left(G P_{0}-G P_{n}\right)^{j-3}}{\left(G P_{1}-G P_{n+1}\right)^{j-2}} .
\end{aligned}
$$

3. Conclusion

In conclusion, we obtain formulas for the determinant and inverse of circulant matrices whose entries are Gaussian Pell numbers.

References

[1] Gray, R. M. 2005. Toeplitz and Circulant matrices: A review. Now Publisher Inc., Hanover.
[2] Davis, P. J. 1979. Circulant Matrices. Wiley, New York.
[3] Lind, D. A. 1970. A Fibonacci Circulant. Fibonacci Quarterly, 8:5 (1970), 449-455.
[4] Solak, S. 2005. On the Norms of Circulant Matrices with the Fibonacci and Lucas Numbers. Applied Mathematics and Computation, 160 (2005) 125-132.
[5] Yazlik, Y., Taskara, N. 2013. On the Inverse of Circulant Matrix via Generalized k-Horadam Numbers. Applied Mathematics and Computation, 223 (2013), 191-196.
[6] Yazlik Y., Taskara N. 2012. Spectral norm, eigenvalues and determinant of circulant matrix involving generalized k-Horadam numbers. Ars Comb., 104 (2012) 505-512.
[7] Yazlik, Y., Taskara, N. 2013. On the Norms of an r-circulant Matrix with the Generalized k-Horadam Numbers. J. Inequal. Appl., Article ID. 394 (2013).
[8] Shen, S. Q., Cen, J. M., Hao, Y. 2011. On the Determinants and Inverses of Circulant Matrices with Fibonacci and Lucas Numbers. Applied Mathematics and Computation, 217 (2011), 9790-9797.
[9] Bozkurt, D., Tam, T. Y. 2012. Determinants and Inverses of Circulant Matrices with Jacobsthal and JacobsthalLucas Numbers. Applied Mathematics and Computation, 219 (2012), 544-551.
[10] Bozkurt, D., Tam, T. Y. 2015. Determinants and Inverses of r-circulant Matrices associated with a number sequence. Linear and Multilinear Algebra, 63:10 (2015), 2079-2088.
[11] Jiang, Z., Xin, H., Lu, F. 2014. Gaussian Fibonacci Circulant Type Matrices. Abstract and Applied Analysis, Article ID 592782, (2014), 10 pages.
[12] Altınıșık, E., Yalçın, N. F., Büyükköse, Ş. 2015. Determinants and Inverses of Circulant Matrices with Complex Fibonacci Numbers. Special Matrices, 3:1 (2015), 82-90.
[13] Shi, B. 2018. The Spectral Norms of Geometric Circulant Matrices with the Generalized k-Horadam Numbers. Journal of Inequalities and Applications, 14 (2018).
[14] Horadam, A. F., Mahon, J. M. 1985. Pell and Pell-Lucas Polynomials. Fibonacci Quarterly, 23:1 (1985) 7-20.
[15] Gökbas, H., Köse, H. (2017). Some sum formulas for products of Pell and Pell-Lucas numbers. Int. J. Adv. Appl. Math. and Mech, 4:4 (2017) 1-4.
[16] Dișkaya, O., Menken, H. 2020. On the Sequence of Gell Numbers, Journal of Universal Mathematics, 3:1 (2020), 77-82.
[17] Dișkaya, O., Menken, H. 2019. On the Quadra Fibona-Pell and Hexa Fibona-Pell-Jacobsthal Sequences. Mathematical Sciences and Applications E-Notes, 7:2 (2019) 149-160.
[18] Dasdemir, A. 2011. On the Pell, Pell-Lucas and Modified Pell Numbers By Matrix Method. Applied Mathematical Sciences, 5:64 (2011), 3173-3181.
[19] Halıcı, S., Öz, S. 2016. On some Gaussian Pell and Pell-Lucas Numbers. Ordu Üniv. Bil Tek. Derg., 6:1, (2016), 8-18.

[^0]: *Corresponding Author, email: myasar@ohu.edu.tr

