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Abstract: In this paper, by considering the circulant matrix 𝑀𝑛 =
𝑐𝑖𝑟𝑐(𝐺𝑃1 , 𝐺𝑃2, … , 𝐺𝑃𝑛) whose entries are the Gaussian Pell numbers, we calculate the 
determinants and inverses of 𝑀𝑛 in terms of Gaussian Pell numbers. 

Elemanları Gaussian Pell Sayıları Olan Sirkülant Matrislerin Determinantları ve 
Tersleri 

Anahtar Kelimeler 
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Determinant, 
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Gauss Pell sayıları 

Öz: Bu çalışmada, elemanları Gauss Pell sayıları olan 𝑀𝑛 = 𝑐𝑖𝑟𝑐(𝐺𝑃1, 𝐺𝑃2, … , 𝐺𝑃𝑛) 
sirkülant matrisinin determinantı ve tersi yine Gauss Pell sayıları cinsinden 
hesaplanmıştır. 
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1. Introduction and Preliminaries

Circulant matrices have a wide range of applications, for example in image processing, coding theory, signal 
processing, numerical computation, self-regress design, etc. For detail one can see [1], [2]. 
There are many studies in the literature which is about circulant matrices and their properties such as their 
determinants and inverses involving some famous numbers. 
Lind studied on the determinant  𝐷𝑛,𝑟  of the circulant matrix  𝑐𝑖𝑟𝑐(𝐹𝑟 , 𝐹𝑟+1, … , 𝐹𝑟+𝑛−1) in 1970 [3]. In [4], the author 

gave the bounds for the spectral and Euclidean norms of the circulant matrices involving Fibonacci and Lucas 
numbers. In [5], [6] the authors defined generalized k-Horadam sequence and investigated some its properties. In 
addition, a new generalization to compute determinants and inverses of the circulant matrix 𝐶𝑛(𝐻) =

𝑐𝑖𝑟𝑐(𝐻𝑘,1, 𝐻𝑘,2, … , 𝐻𝑘,𝑛)  where 𝐻𝑘,𝑛 is the generalized 𝑘 −Horadam numbers was presented. Also, in another study 

of the same authors,  a new upper and lower bounds for the spectral norm of an 𝑟 −circulant matrix  𝐻  whose 
entries are generalized 𝑘 −Horadam numbers were presented. Furthermore, they obtained new formulas to 
calculate the eigenvalues and determinant of the matrix 𝐻 [7]. Shen et al. obtained the determinants of the circulant 
matrix with classical Fibonacci and Lucas numbers. In addition, the inverses of these matrices were derived in [8]. 
In [9], the determinants and inverses of the circulant matrix involving Jacobsthal and Jacobsthal-Lucas numbers 
were obtained in terms of these numbers. In another study, the same authors studied on the 𝑟 −circulant matrix 
Ѡ𝑛 = (𝑊1,𝑊2, … ,𝑊𝑛)  associated with the numbers defined by the recurrence relation 𝑊𝑛 = 𝑝𝑊𝑛−1 + 𝑞𝑊𝑛−2  with 
initial conditions 𝑊0 = 𝑎 and 𝑊1 = 𝑏. They obtained determinants, inverses and some bounds for spectral norms 
of 𝑟 −circulant matrix Ѡ𝑛 [10]. Jiang et al. studied on some types of circulant matrices. They proved that these 
matrices with Gaussian Fibonacci numbers were invertible matrices for 𝑛 > 2 and they gave the determinants and 
inverses of these matrices in [11]. In  [12], the authors calculated the determinant of the circulant matrix Ƒ𝑛 =
𝑐𝑖𝑟𝑐(𝐹1

∗, 𝐹2
∗, … , 𝐹𝑛

∗)  where 𝐹𝑛
∗ is the complex Fibonacci numbers. In addition, they showed that this matrix is

invertible and inverse matrix can be obtained in terms of complex Fibonacci numbers. In [13], the author used the 
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algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper 
and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the 
generalized k-Horadam numbers and some estimations were obtained. 
Horadam and Mahon introduced Pell and Pell–Lucas polynomials. Moreover, some properties related with these 
sequences were studied in [14]. In [15], sum formulas for squares of terms of complex Pell and Pell-Lucas number 
sequences were studied and certain products of terms of the Pell and Pell-Lucas sequences were determined. In 
[16], the gell numbers were defined as the generalization of Pell numbers. Moreover, the authors derived Binet-
like formula, generating function and exponential generating function for this sequence. The authors, introduced 
the quadra Fibona-Pell,Fibona-Jacobsthal and Pell-Jacobsthal and the hexa Fibona-Pell-Jacobsthal sequences. 
These sequences are the compound sequences of Fibonacci, Pell and Jacobsthal sequences. They derived the Binet-
like formulas, the generating functions and the exponential generating functions of these sequences. Also, some 
binomial identities were obtained for them [17]. In [18], the authors considered the Pell, Pell-Lucas and Modified 
Pell sequences, and they defined some new 2 × 2 matrices, then showed that the identities presented before can 
be produced by using them. In [19], the authors defined the Gaussian Pell and Gaussian Pell-Lucas sequences. They 
obtained some identities for these numbers. 
In this paper, we consider the circulant matrix 𝑀𝑛 = (𝐺𝑃1, 𝐺𝑃2 , … , 𝐺𝑃𝑛), where 𝐺𝑃𝑛 is the Gaussian Pell numbers. 
Firstly, we obtained the determinant of this matrix in terms of Gaussian Pell numbers. Then we calculate the 
inverse of the circulant matrix 𝑀𝑛. 
We conclude this section with some preliminaries related our study. 
The 𝑛 × 𝑛 circulant matrix 𝐶𝑛 = 𝑐𝑖𝑟𝑐(𝑐0, 𝑐1, … , 𝑐𝑛−1), associated with the numbers 𝑐0, 𝑐1, … , 𝑐𝑛−1 is defined as  
 

𝐶𝑛 = [

𝑐0 𝑐1 … 𝑐𝑛−1

𝑐𝑛−1 𝑐0 … 𝑐𝑛−2

⋮ ⋮ ⋱ ⋮
𝑐1 𝑐2 … 𝑐0

]. 

 
Determinant and inverse of nonsingular circulant matrix 𝐶𝑛 are given as in the following 
 
𝑑𝑒𝑡𝐶𝑛 = ∏ 𝑔(𝑤𝑟)𝑛−1

𝑟=0 ,    𝐶𝑛
−1 = 𝑐𝑖𝑟𝑐(𝑎0, 𝑎1, … , 𝑎𝑛−1) 

 

where 𝑎𝑠 =
1

𝑛
∑ 𝑔(𝑤𝑟)−1𝑤−𝑟𝑠𝑛−1

𝑟=0     (𝑠 = 0,1, … , 𝑛 − 1),   𝑔(𝑥) = ∑ 𝑐𝑖𝑥
𝑖𝑛−1

𝑖=0   and  𝑤 = 𝑒𝑥𝑝 (
2𝜋𝑖

𝑛
) [2]. 

 
Lemma 1.1. [2] Let 𝐶𝑛 = 𝑐𝑖𝑟𝑐(𝑐0, 𝑐1, … , 𝑐𝑛−1) be a circulant matrix. Then we have the following 
 

i. 𝐶𝑛 is invertible if and only if 𝑓(𝑤𝑘) ≠ 0 (𝑘 = 0,1, … , 𝑛 − 1), where 𝑓(𝑥) = ∑ 𝑐𝑗𝑥
𝑗𝑛−1

𝑗=0  and 𝑤 = 𝑒𝑥𝑝 (
2𝜋𝑖

𝑛
) 

ii. If 𝐶𝑛 is invertible then its inverse is also a circulant matrix. 
 
 
2. Main Results 
 
In this section, we consider the circulant matrix 𝑀𝑛 with Gaussian Pell numbers. Firstly, we give the determinant 
of the matrix 𝑀𝑛. Then we prove that 𝑀𝑛 is an invertible matrix and we formulate the inverse matrix in terms of 
Gaussian Pell numbers. 
 
Definition 2.1. The Gaussian Pell numbers are defined as 
 
𝐺𝑃𝑛 = 2𝐺𝑃𝑛−1 + 𝐺𝑃𝑛−2, 𝑛 ≥ 2 
 
with the initial conditions 𝐺𝑃0 = 𝑖, 𝐺𝑃1 = 1 [19]. 
 
Theorem 2.2. Let 𝑀𝑛 be a circulant matrix with Gaussian Pell numbers as 𝑀𝑛 = 𝑐𝑖𝑟𝑐(𝐺𝑃1 , 𝐺𝑃2, … , 𝐺𝑃𝑛). Then we 
have 
 

𝑑𝑒𝑡𝑀𝑛 = (1 − 𝐺𝑃𝑛+1)
𝑛−2(1 − 2𝐺𝑃𝑛 − 𝑖𝐺𝑃𝑛) + ∑(𝐺𝑃𝑘 − 𝑖𝐺𝑃𝑘+1)(1 − 𝐺𝑃𝑛+1)

𝑘−1(𝐺𝑃𝑛 − 𝑖)𝑛−𝑘−1

𝑛−2

𝑘=1

 

 
for 𝑛 ≥ 3. 
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Proof. For 𝑛 ≥ 3, set 
 

𝐾 =

[
 
 
 
 
 
 

1 0 0 0 ⋯ 0 0
−2 0 0 0 ⋯ 0 1
−1 0 0 0 ⋯ 1 −2

0 0 0 0 ⋯ −2 −1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 −2 ⋯ 0 0
0 1 −2 −1 ⋯ 0 0]

 
 
 
 
 
 

 

 
and 
 

𝐿1 =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 ⋯ 0 0

0 (
𝐺𝑃𝑛−𝑖

1−𝐺𝑃𝑛+1
)

𝑛−2

0 0 ⋯ 0 1

0 (
𝐺𝑃𝑛−𝑖

1−𝐺𝑃𝑛+1
)

𝑛−3

0 0 ⋯ 1 0

0 (
𝐺𝑃𝑛−𝑖

1−𝐺𝑃𝑛+1
)

𝑛−4

0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 (
𝐺𝑃𝑛−𝑖

1−𝐺𝑃𝑛+1
) 1 0 ⋯ 0 0

0 1 0 0 ⋯ 0 0]
 
 
 
 
 
 
 
 
 
 

. 

 
Then we have the following matrix 
 

𝐾𝑀𝑛𝐿1 =

[
 
 
 
 
 
 
 
1 𝑓𝑛 𝐺𝑃𝑛−1 𝐺𝑃𝑛−2 𝐺𝑃𝑛−3 ⋯ 𝐺𝑃3 𝐺𝑃2

𝑖 𝑔𝑛 𝐺𝑃𝑛−2 𝐺𝑃𝑛−3 𝐺𝑃𝑛−4 ⋯ 𝐺𝑃2 𝐺𝑃1

0 0 𝐺𝑃1 − 𝐺𝑃𝑛+1 0 0 ⋯ 0 0
0 0 𝐺𝑃0 − 𝐺𝑃𝑛 𝐺𝑃1 − 𝐺𝑃𝑛+1 0 ⋯ 0 0
0 0 0 𝐺𝑃0 − 𝐺𝑃𝑛 𝐺𝑃1 − 𝐺𝑃𝑛+1 ⋯ 0 0
0 0 0 0 𝐺𝑃0 − 𝐺𝑃𝑛 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐺𝑃0 − 𝐺𝑃𝑛 𝐺𝑃1 − 𝐺𝑃𝑛+1]

 
 
 
 
 
 
 

 

 
where 
 

𝑓𝑛 = ∑ 𝐺𝑃𝑘+1 (
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1𝑛−1

𝑘=1

 

 
and 
 

𝑔𝑛 = 1 − 2𝐺𝑃𝑛 + ∑ 𝐺𝑃𝑘

𝑛−2

𝑘=1

(
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1

. 

 
So, we obtain 
 

𝑑𝑒𝑡𝐾𝑑𝑒𝑡𝑀𝑛𝑑𝑒𝑡𝐿1 = [1 − 2𝐺𝑃𝑛 + ∑ 𝐺𝑃𝑘 (
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1𝑛−2

𝑘=1

− 𝑖 ∑ 𝐺𝑃𝑘+1 (
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1𝑛−1

𝑘=1

] (1 − 𝐺𝑃𝑛+1)
𝑛−2 

 
while 
 

𝑑𝑒𝑡𝐾 = 𝑑𝑒𝑡𝐿1 = {
1, 𝑛 ≡ 1,2(𝑚𝑜𝑑4)

−1, 𝑛 ≡ 0,3(𝑚𝑜𝑑4)
. 

 
Hence, we get 
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𝑑𝑒𝑡𝑀𝑛 = (1 − 𝐺𝑃𝑛+1)
𝑛−2(1 − 2𝐺𝑃𝑛 − 𝑖𝐺𝑃𝑛) + ∑(𝐺𝑃𝑘 − 𝑖𝐺𝑃𝑘+1)(1 − 𝐺𝑃𝑛+1)

𝑘−1(𝐺𝑃𝑛 − 𝑖)𝑛−𝑘−1

𝑛−2

𝑘=1

. 

Thus, the proof is completed. 
 
Theorem 2.3. Let 𝑀𝑛 = 𝑐𝑖𝑟𝑐(𝐺𝑃1, 𝐺𝑃2, … , 𝐺𝑃𝑛) be a circulant matrix. For 𝑛 ≥ 3,𝑀𝑛 is invertible. 
 
Proof. Let 𝑛 ≥ 3. The Binet formula for Gaussian Pell number is 
 
𝐺𝑃𝑛 = 𝑐𝛼𝑛 + 𝑑𝛽𝑛 
 

where  𝑐 =
1+(√2−1)𝑖

2√2
 and 𝑑 =

−1+(√2+1)𝑖

2√2
. It is clear that 𝛼 + 𝛽 = 2 and 𝛼𝛽 = −1. Hence we have 

 

𝑓(𝑤𝑘) = ∑ 𝐺𝑃𝑗(𝑤
𝑘)𝑗−1

𝑛

𝑗=1

= 𝑐𝛼 (
1 − 𝛼𝑛

1 − 𝛼𝑤𝑘
) + 𝑑𝛽 (

1 − 𝛽𝑛

1 − 𝛽𝑤𝑘
)

=
𝑐𝛼(1 − 𝛼𝑛)(1 − 𝛽𝑤𝑘) + 𝑑𝛽(1 − 𝛽𝑛)(1 − 𝛼𝑤𝑘)

1 − 2𝑤𝑘 − 𝑤2𝑘

=
1 − 𝐺𝑃𝑛+1 + 𝑤𝑘(𝑖 − 𝐺𝑃𝑛)

1 − 2𝑤𝑘 − 𝑤2𝑘

 

 

Since 𝐺𝑃𝑛 = 𝑃𝑛 + 𝑖𝑃𝑛−1, 𝑛 > 1, 𝑤𝑘 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 where 𝜃 =
2𝑘𝜋

𝑛
 and 0 < 𝜃 < 2𝜋. Then  

 
𝑥 = 1 − 𝐺𝑃𝑛+1 + 𝑤𝑘(𝑖 − 𝐺𝑃𝑛)

= [1 − 𝑃𝑛+1 − 𝑃𝑛𝑐𝑜𝑠𝜃 + (𝑃𝑛−1 − 1)𝑠𝑖𝑛𝜃] + 𝑖[−𝑃𝑛 + (1 − 𝑃𝑛−1)𝑐𝑜𝑠𝜃 − 𝑃𝑛𝑠𝑖𝑛𝜃].
 

 
We assume that 
 
𝑅𝑒(𝑥) = 1 − 𝑃𝑛+1 − 𝑃𝑛𝑐𝑜𝑠𝜃 + (𝑃𝑛−1 − 1)𝑠𝑖𝑛𝜃 
 
and 
 
𝐼𝑚(𝑥) = −𝑃𝑛 + (1 − 𝑃𝑛−1)𝑐𝑜𝑠𝜃 − 𝑃𝑛𝑠𝑖𝑛𝜃. 
 
We prove that 𝑅𝑒(𝑥) ≠ 0 or 𝐼𝑚(𝑥) ≠ 0 for 1 − 2𝑤𝑘 − 𝑤2𝑘 ≠ 0. For the reason that Pell sequence is an increasing 
sequence, we have the followings. 
 
If 𝑠𝑖𝑛𝜃 > 0 and 𝑐𝑜𝑠𝜃 > 0, 𝑅𝑒(𝑥) < 0. 
If 𝑠𝑖𝑛𝜃 < 0 and 𝑐𝑜𝑠𝜃 < 0, 𝐼𝑚(𝑥) > 0. 
If 𝑠𝑖𝑛𝜃 > 0 and 𝑐𝑜𝑠𝜃 < 0, 𝑅𝑒(𝑥) < 0. 
If 𝑠𝑖𝑛𝜃 < 0 and 𝑐𝑜𝑠𝜃 > 0, 𝐼𝑚(𝑥) < 0. 
 
It is verified that when 𝑠𝑖𝑛𝜃 = 0 or 𝑐𝑜𝑠𝜃 = 0, 𝑥 ≠ 0. 
Hence, 1 − 𝐺𝑃𝑛+1 + 𝑤𝑘(𝑖 − 𝐺𝑃𝑛) ≠ 0 for any 𝑤𝑘  (𝑘 = 1,2, … , 𝑛 − 1), that is 𝑓(𝑤𝑘) ≠ 0. By Lemma 1.1 the proof is 
completed. 
 

Lemma 2.4. Let 𝐵 = (𝑏𝑖𝑗) be an (𝑛 − 2) × (𝑛 − 2) matrix of the form 

 

𝑏𝑖𝑗 = [
𝐺𝑃1 − 𝐺𝑃𝑛+1, 𝑖 = 𝑗
𝐺𝑃0 − 𝐺𝑃𝑛 , 𝑖 = 𝑗 + 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

then the inverse 𝐵−1 = (𝑏𝑖𝑗
′ ) is given by 

 

𝑏𝑖𝑗
′ = [

(𝐺𝑃𝑛 − 𝐺𝑃0)
𝑖−𝑗

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗

0, 𝑖 < 𝑗

. 
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Proof. Let 𝑐𝑖𝑗 = ∑ 𝑏𝑖𝑘𝑏𝑘𝑗

′𝑛−2
𝑘=1 . It is clear that 𝑐𝑖𝑗 = 0 for 𝑖 < 𝑗. For 𝑖 = 𝑗, we get  

 

𝑐𝑖𝑖 = 𝑏𝑖𝑖𝑏𝑖𝑖
′ = (𝐺𝑃1 − 𝐺𝑃𝑛+1)

1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
= 1. 

 
For 𝑖 ≥ 𝑗 + 1, we obtain 
 

𝑐𝑖𝑗 = ∑ 𝑏𝑖𝑘𝑏𝑘𝑗
′ = 𝑏𝑖,𝑖−1𝑏𝑖−1,𝑗

′ + 𝑏𝑖𝑖𝑏𝑖𝑗
′

𝑛−2

𝑘=1

= (𝐺𝑃0 − 𝐺𝑃𝑛)
(𝐺𝑃𝑛 − 𝐺𝑃0)

𝑖−𝑗−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑖−𝑗

+ (𝐺𝑃1 + 𝐺𝑃𝑛+1)
(𝐺𝑃𝑛 − 𝐺𝑃0)

𝑖−𝑗

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑖−𝑗+1

= 0.

 

 
So, we see that 𝐵𝐵−1 = 𝐼𝑛−2, where 𝐼𝑛−2 is (𝑛 − 2) × (𝑛 − 2) identity matrix. Similarly, it can be shown that  
𝐵−1𝐵 = 𝐼𝑛−2. Hence, the proof is completed. 
 
Theorem 2.5. Let 𝑛 ≥ 3, then the inverse of 𝑀𝑛 is 
 
𝑀𝑛

−1 = 𝑐𝑖𝑟𝑐(𝑚1, 𝑚2, … ,𝑚𝑛) 
 
where 
 

𝑚1 =
𝑖

𝑓𝑛
−

2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘+1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘

𝑛−2

𝑘=1

 

 

𝑚2 =
1 − 2𝑖

𝑓𝑛
+

2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘−1

𝑛−2

𝑘=1

 

 

𝑚3 =
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
 

 

𝑚4 =
−2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

𝐺𝑃0 − 𝐺𝑃𝑛

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
2

 

 
and 
 

𝑚𝑗 =
(−1)𝑗−12(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

(𝐺𝑃0 − 𝐺𝑃𝑛)𝑗−3

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑗−2

, 𝑗 = 5,6, … , 𝑛. 

 
Proof. Let 
 

𝐿2 =

[
 
 
 
 
 
 
 
 1 −

𝑓𝑛
𝐺𝑃1

𝑓𝑛𝐺𝑃𝑛−2 − 𝑔𝑛𝐺𝑃𝑛−1

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛

𝑓𝑛𝐺𝑃𝑛−3 − 𝑔𝑛𝐺𝑃𝑛−2

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛
⋯

𝑓𝑛𝐺𝑃1 − 𝑔𝑛𝐺𝑃2

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛

0 1
𝐺𝑃𝑛−1𝐺𝑃0 − 𝐺𝑃𝑛−2𝐺𝑃1

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛

𝐺𝑃𝑛−2𝐺𝑃0 − 𝐺𝑃𝑛−3𝐺𝑃1

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛
⋯

𝐺𝑃2𝐺𝑃0 − 𝐺𝑃1𝐺𝑃1

𝐺𝑃1𝑔𝑛 − 𝐺𝑃0𝑓𝑛
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1 ]

 
 
 
 
 
 
 
 

 

 
where 
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𝑓𝑛 = ∑ 𝐺𝑃𝑘+1 (
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1𝑛−1

𝑘=1

 

 
and 

𝑔𝑛 = 1 − 2𝐺𝑃𝑛 + ∑ 𝐺𝑃𝑘 (
𝐺𝑃𝑛 − 𝑖

1 − 𝐺𝑃𝑛+1

)
𝑛−𝑘−1

.

𝑛−2

𝑘=1

 

 
Then we can write 
 
𝐾𝑀𝑛𝐿1𝐿2 = 𝑈 ⊕ 𝐵, 
 

where 𝑈 = [
𝐺𝑃1 0

𝐺𝑃0 −
𝑓𝑛𝐺𝑃0

𝐺𝑃1

] is 2 × 2 matrix, 𝐵 is as in Lemma 2.4 and 𝑈 ⊕ 𝐵 is the direct sum of the matrices 𝑈 and 

𝐵. Let 𝐿 = 𝐿1𝐿2, then we obtain 
 
𝑀𝑛

−1 = 𝐿(𝑈−1 ⊕ 𝐵−1)𝐾. 
 
By Lemma 1.1., the inverse of the matrix 𝑀𝑛 is circulant. Let 
 
𝑀𝑛

−1 = 𝑐𝑖𝑟𝑐(𝑚1, 𝑚2, … ,𝑚𝑛). 
 
Since the last row of the matrix 𝐿 are 
 

0,1, −
(𝐺𝑃0𝐺𝑃𝑛−1 − 𝐺𝑃1𝐺𝑃𝑛−2)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

, −
(𝐺𝑃0𝐺𝑃𝑛−2 − 𝐺𝑃1𝐺𝑃𝑛−3)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

, ⋯ , −
(𝐺𝑃0𝐺𝑃2 − 𝐺𝑃1𝐺𝑃1)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

 

 
and 𝑌𝑛𝑗  be the 𝑛𝑗-th entry of the product 𝐿(𝑈−1 ⊕)𝐵−1 for 1 ≤ 𝑗 ≤ 𝑛, we have 

 

𝑌𝑛1 =
1

𝑓𝑛
, 𝑌𝑛2 =

𝑖

𝑓𝑛
 

 
and for 3 ≤ 𝑗 ≤ 𝑛 
 

𝑌𝑛𝑗 =
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑ (−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘−𝑗+2

𝑛−𝑗+1

𝑘=1

. 

 
If the row matrix (𝑌𝑛1, 𝑌𝑛2, … , 𝑌𝑛𝑛) and the matrix 𝐾 is multiplied, the last row of 𝑀𝑛

−1 is obtained. Namely, 
 
𝑚1 = 𝑌𝑛2 − 2𝑌𝑛3 − 𝑌𝑛4

=
𝑖

𝑓𝑛
−

4(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘−1

𝑛−2

𝑘=1

−
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘

𝑛−3

𝑘=1

𝑃𝑛−𝑘−2

=
𝑖

𝑓𝑛
−

2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘+1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘

𝑛−2

𝑘=1

𝑃𝑛−𝑘

 

 
 
𝑚2 = 𝑌𝑛1 − 2𝑌𝑛2 − 𝑌𝑛3

=
1

𝑓𝑛
−

2𝑖

𝑓𝑛
−

2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘−1

𝑛−2

𝑘=1

=
1 − 2𝑖

𝑓𝑛
−

2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑛−𝑘−1

𝑛−2

𝑘=1
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𝑚3 = 𝑌𝑛𝑛 =
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

1

𝐺𝑃1 − 𝐺𝑃𝑛+1

 

 
 
𝑚4 = 𝑌𝑛,𝑛−1 − 2𝑌𝑛𝑛

=
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃3−𝑘

2

𝑘=1

−
4(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

1

𝐺𝑃1 − 𝐺𝑃𝑛+1

𝑃2−𝑘

= −
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

𝐺𝑃0 − 𝐺𝑃𝑛

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
2

 

 
and for 5 ≤ 𝑗 ≤ 𝑛 
 
𝑚𝑗 = 𝑌𝑛,𝑛−𝑗+3 − 2𝑌𝑛,𝑛−𝑗+4 − 𝑌𝑛,𝑛−𝑗+5

=
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑗−𝑘−1

𝑗−2

𝑘=1

−
4(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑗−𝑘−2

𝑗−3

𝑘=1

−
2(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

∑(−1)𝑘−1
(𝐺𝑃0 − 𝐺𝑃𝑛)𝑘−1

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑘
𝑃𝑗−𝑘−3

𝑗−4

𝑘=1

=
(−1)𝑗−12(1 − 𝑖)

𝐺𝑃0𝑓𝑛 − 𝐺𝑃1𝑔𝑛

(𝐺𝑃0 − 𝐺𝑃𝑛)𝑗−3

(𝐺𝑃1 − 𝐺𝑃𝑛+1)
𝑗−2

.

 

 
 
3. Conclusion 
 
In conclusion, we obtain formulas for the determinant and inverse of circulant matrices whose entries are Gaussian 
Pell numbers. 
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