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Abstract

In recent years, IoT has been expected to provide support during natural disasters, and studies focusing
on ant colony optimization (ACO) have been conducted for providing evacuation routes for evacuees. We
previously proposed a modi�ed algorithm for ACO that improved on the slow convergence of ACO, but the
problem with ACO-based evacuation is the time it takes the evacuees to reach a safe zone.

In this study, we proposed a route suggestion algorithm that improves particle swarm optimization (PSO)
to reduce the time required for ACO evacuation, and compared the performance of ACO and the proposed
PSO. We also proposed a method that combines ACO and PSO and evaluated its performance.
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1. Introduction

Wide-area disasters caused by earthquakes can lead to several human casualties in di�erent ways; for
example, casualties caused by structural damage and �re in the process of evacuation. In such a situation,
it is necessary to evacuate quickly to a safe place. However, due to structural damage or �re caused by an
earthquake, evacuation may become di�cult because routes that would otherwise have been available are no
longer available. Evacuees need to be able to obtain information for such situations.

In recent years, the widespread use of smartphones and other portable communication devices has facil-
itated and improved information sharing, and disaster preparedness in this new era of information sharing
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has been been widely researched [1] [2]. Therefore, a system that automatically presents evacuation routes
via smartphones is e�ective [3].

Our goal is to reduce the number of steps required to evacuate to a safe location in situations where the
original path is restricted due to structural damage or �re caused by an earthquake.

2. Related Work

2.1. Particle Swarm Optimization(PSO)

Particle swarm optimization (PSO)[4] was developed by J. Kennedy and R. Eberhart in 1995. The basic
idea is to "share information with the entire �ock," which was derived from the behavior of a �ock of birds in
�nding food. The particles that make up the �ock do not behave freely, but follow certain rules by combining
information speci�c to the particles that make up the �ock with information shared by the entire �ock.

Figure 1: PSO behavior

The method of determining the direction of movement of a PSO is explained (Figure 1). Each particle
in the swarm has information about its "position" and "velocity", and the search is performed collectively.
The optimal solution is searched for by updating the position and velocity of each particle.

In the tth search, if the velocity of particle i is Vi(t) and the position is Xi(t), the velocity Vi(t+ 1) and
position Xi(t+ 1) for the t+ 1th search are updated using the following equation.

Vi(t+ 1) = wVi(t) + c1r1(X
pbest
i (t)−Xi(t))

+ c2r2(X
gbest(t)−Xi(t)) (1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

where Xpbest
i (t) is the location of the best solution of particle i in the search up to the tth time, and

Xgbest(t) is the location of the best solution of the particle group.
By subtracting the position Xi(t) of particle i at the tth time from each position, we obtain a vector to

its own best solution and a vector to the best solution of the group of particles.
wVi(t) represents the vector of inertia, w, c1, and c2 are the coe�cients and weights of each vector, and

r1 and r2 are random numbers from 0 to 1. These vectors are combined to determine the next direction to
go.

The procedure is as follows.

1. Initialize the position and velocity of the particles using random numbers.

2. For each particle, update the position according to equation (2).

3. Based on the information of all particles, update pbest and gbest.

4. Update the velocity.

Set the number of times to search in advance, and repeat steps 2 to 4 until that number of times is completed.
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2.2. Ant Colony Optimization(ACO)

Ant colony pptimization (ACO) [5] is based on ant behavior. Ants use a volatile pheromone to make their
movements. An ant that �nds food brings the food back to its nest while secreting the pheromone on the
ground. Subsequent ants use the pheromone applied to the ground to reach the food, and they themselves
overwrite the pheromone in their path. The result is a pathway that many ants take. As a result, pheromones
in the pathways that many ants take gradually accumulate and become more concentrated. In contrast, the
concentration of pheromones in the pathways that ants do not take gradually decreases due to volatilization.

When there are multiple pathways with di�erent path lengths, ants can form the shortest path. The
process of path generation in this case is as follows.

1. Ants without pheromone information will wander randomly and search for food.

2. If the speed of ant progression is constant, ants that choose shorter pathways compared to longer
pathways will make more frequent trips to the food and nest.

3. Pathways that many ants have traveled leave a thick pheromone residue, increasing the probability
that subsequent ants will choose the same pathway.

4. Pheromones secreted along shorter pathways will increase in concentration over time, whereas pheromones
along longer pathways will disappear due to volatilization.

Figure 2: Route selection

The process of creating a path is explained in Figure 2.
Let the starting point be S and the target point be G. There are three paths between S and G with

di�erent distances. Three ants for each of the three paths start working simultaneously and in parallel. If
the ants are moving at the same speed, the ant that chooses the red path in the center will be the one
that reaches the target point. When the ants return to the starting point, they head for the target point
G again, referring to the pheromone applied to the path. Since pheromones are weakened by volatilization,
pheromones other than the central pathway are gradually not selected. Since ants prefer pathways with
dense pheromones, they can select the shortest pathway, which is the pathway that is applied more often.

2.3. Information-sharing under disaster using Mobile Ad Hoc Network

In the event of a disaster, evacuees need to move quickly to a safe place, and information on the location
of the safe place and the route to it is essential for evacuation. However, safe routes change when �res
or collapses occur. Furthermore, base stations may collapse due to earthquakes or other disasters, which
may cause communication infrastructure equipment to stop functioning. In such a situation, evacuees will
not know where the safe place is, and they will not know where to turn. In such a situation where the
infrastructure is no longer available, there is research on the use of MANET to exchange information among
evacuees.

Ota et al. [6] used a mobile ad hoc Network (MANET) during the evacuation to share information on
safe and dangerous areas using several methods.
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2.4. Evacuation guidance system based on ACO

Ohta et al. used ACO to construct an evacuation route. Goto et al.[7] extended ACO to prioritize
avoidance of dangerous locations. In the study by Goto et al., deodorant pheromones were given to ACO for
evacuation route search. Deodorant pheromones have two functions: counteracting and attenuating. The
counteracting function reduces the amount of pheromone in areas judged to be dangerous. As a result, the
approach to the dangerous area can be reduced. The attenuation function is nearly the same as the di�usion
function of the deodorizing pheromone. By attenuating the amount of pheromone around the route leading
to the dangerous area, it prevents people from moving to the route leading to the dangerous area.

In addition, Ohta and Goto et al. [8] found that the number of steps required for evacuation is shorter
when ACO is used to simulate evacuees than when they move randomly. The algorithm used in the ACO-
based evacuation system used in Goto et al.'s study to determine pheromone updates and movement direc-
tions is shown below. Normal pheromone is a pheromone applied to the evacuation route. It is the updated
equation for normal pheromone when the evacuee has reached a safe place (Equation 3). The pheromone
value τij(t+ 1) on (i, j) coordinates at time t+ 1 is as follows.

τij(t+ 1) = (1− ρ)τij(t) +
∑
k∈Gt

∆τkij (3)

Gt is the evacuee who has reached a safe location at time t, and the pheromone τij(t) decreases based on
the volatility rate ρ at each step. Once the evacuee k has reached a safe location, τij(t) increases by ∆τkij .

∆τkij is determined by equation (4). The α is the amount of pheromone to be applied and Tk is the set of
coordinates (i, j) that the evacuee k passed when he/she reached a safe place, i.e., the evacuation route.

∆τkij =

{
α if(i, j) ∈ Tk
0 (otherwise)

(4)

Set an upper limit τmax and a lower limit τmin with respect to the pheromone value τij(t) (Equation 5).

0 < τmin ≤ τij(t) ≤ τmax (5)

This method of pheromone application is referred to as normal ACO (nACO) in this paper.
Deodorant pheromone τij(t)

′ < 0 decreases normal pheromone τij(t). The pheromone information con-
sidering deodorant pheromone on (i, j) coordinates is as follows (Equation 6).

τij(t)
′′ = τij(t)

′ + τij(t) (6)

Once the deodorant pheromone has been applied in the vicinity, the pheromone in the vicinity is reduced
as follows (Equation 7).

τij(t+ 1) = (1− σn
k
ij(t)+1)τij(t) (7)

σ is the deodorant rate and nkij(t) + 1 is the distance from the coordinate (i, j) where evacuee k found
the danger zone. This causes the deodorant pheromone to spread over a certain area. The ACO algorithm,
which adds the de�nition of deodorant pheromone to nACO, is the ACO algorithm used in this paper.

At each step, the evacuee moves from the current location to one of the eight surrounding squares. The
direction of movement is determined probabilistically.
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pxy(t) =
τij(t)∑

(i,j)∈Xk(t) τij(t)
(8)

Pxy(t) denotes the probability of moving to the (x, y) coordinates at time t, and Xk(t) denotes the
location where evacuee k is available for movement. Equation (8) shows the probability of moving from the
eight surrounding squares to the square with the highest relative pheromone value.

Goto's research identi�ed reducing the number of steps required to evacuate to a safe place in the
simulation as a future work. In ACO, when there are no pheromones around, evacuees move randomly.
Therefore, the number of steps increases.

In this study we aim to reduce the number of steps by using location-based evacuation.

3. Proposal method

3.1. Overview

In this study, we propose evacuation guidance using PSO to reduce the number of steps. In addition,
PSO is extended with a vector that considers the avoidance of obstacles.

The proposed method runs on a simulator, and in this study, a multi-agent simulator was created using
java. The agents correspond to evacuees. The operational procedure of the simulation is shown (Figure 3 ).
A loop in which all evacuees perform an action is de�ned as one step.

Figure 3: Simulator �owchart
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3.2. MAP loading

This time the simulator reads a text �le of a speci�c size as a map. Enter the following items in the text
�le.

1. Road (passable) (Figure 4 white)

2. Wall (Impassable)(Figure 4 Black)

3. Hazardous areas due to �re or collapse (impassable) (Figure 4 red)

4. Safe Place (Figure 4 Green)

Here is an example of inputting a map samplemap.txt of size 4×4 (Figure 4 ).

samplemap.txt

1 1 4 4
3 1 4 4
3 1 1 1
2 2 2 2

Figure 4: Map loaded with samplemap.txt

3.3. Initialization

Set various parameters in the initial setup.

• Number of evacuees

• Refugee Generation Location

• Parameters related to vector

• Conditions for termination

3.4. Determining the direction of movement

The evacuees with PSO consists of a vector of inertia (
−→
b1), a vector toward its own best solution (

−→
b2)

and a vector toward the best solution of the particle swarm (
−→
b3).

As an extension, we added an obstacle avoidance vector (
−→
b4).

This vector is a vector in a random direction di�erent from the direction of the obstacle in which the
evacuee is proceeding to avoid a collision. Set

−→
b1 -
−→
b4 as follows.

−→
b1 : Inertia vector of evacuees

−→
b2 : Vector of evacuees toward the dense area
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−→
b3 : Vector toward safe place

−→
b4 : Vector of repulsion emitted from obstacles

Let the weight of
−→
b1 be w and the weights of

−→
b2 -
−→
b4 be r2-r4 respectively, and the direction of movement

is as follows (Equation 9) (Figure 5).

Direction of movement = w
−→
b1 + r2

−→
b2 + r3

−→
b3 + r4

−→
b4 (9)

r2 to r4 are random numbers of numbers within a certain range for each step.

Figure 5: Determining the direction of movement

The scalar values for each vector were as follows (Equation 10)-(Equation 13), respectively.

|
−→
b1 | = 0.1 (10)

|
−→
b2 | =

1√
Xpbest −Xi

(11)

|
−→
b3 | =

1√
Xgbest −Xi

(12)

|
−→
b4 | =

1

2x
(13)

The Xpbest represents the location where the evacuees are crowded, Xgbest represents the location of the
safe place, and Xi represents the location of the ith evacuee. The x represents the distance between the
evacuee and the obstacle, and the closer the distance, the greater the repulsion.

3.5. Movement

When moving, the evacuee is allowed to move one square of eight squares around themself for each step.
In other words, the moving speed of the evacuee is constant. As a result of the calculation of the movement
direction selection, they move forward to one of the 8 squares around them according to the angle of their
movement. If the direction of movement is impassable by a wall or a hazardous area, the evacuee proceeds
probabilistically in the direction in which they can move.

3.6. Conditions for Termination

The simulation ends when the number of evacuees who have achieved a safe location plus the number of
evacuees who cannot reach their destination matches the default number of evacuees.
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4. Evacuation performance of the proposed PSO

In this section, we show the usefulness of PSO considering obstacle avoidance as described in the section
on the proposed method. We also compare evacuation movements with and without obstacle avoidance.

Using the map in Figure 6, an experiment was conducted in which evacuees were randomly assigned to
move toward a safe location. The information on the map is summarized in Table 1.

Figure 6: Map used in the preliminary experiment

Table 1: Map information

Color information

White Road(passable)

Black Wall(impossible to pass)

Green Safe place(destination)

Yellow Evacuee

The parameters of the experiment are shown in Table 2.

Table 2: Parameters of PSO
Parameter Value

Evacuees 100

MAP Size 80×80
w 0.7

r2 0.79 - 0.97

r3 0 - 0.17

4.1. PSO algorithm not considering obstacle avoidance

Simulations were performed using PSO without considering obstacle avoidance (Figure 7).
To make it visible what route the evacuees took, pink was applied to the paths they took. The darker the

color, the more people passed through. In the experiment, some evacuees were unable to evacuate because
the walls on their way to a safe place became an obstacle.
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Figure 7: Execution result without considering obstacle avoidance

4.2. PSO algorithm considering obstacle avoidance

Simulation experiments were conducted with a similar map using PSO with extended vectors considering
obstacles (Figure 8).

Figure 8: Execution result considering obstacle avoidance

Experiments were conducted to obtain paths that allowed evacuees to avoid obstacles and move to a safe
location.

4.3. Comparison results

The number of people who completed the evacuation was compared according to the number of steps in
Figures 7 and 8 (Figure 9). The number of evacuees was assumed to be 100.

The number of people who completed the evacuation was higher when obstacle avoidance was considered.
This experiment was conducted to demonstrate the superiority of PSO considering obstacle avoidance

as described in the proposed method. The results show that the number of evacuees did not increase from
a certain value when obstacle avoidance was not taken into account. This is because of the collision with
the obstacles on the way to the safe place. When obstacle avoidance was taken into account, all evacuees
were able to evacuate to a safe location. Therefore, it can be said that it is better to use a vector that takes
obstacles into account in order for evacuees to reach a safe place.
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Figure 9: Comparison of the number of people who have completed evacuation

5. Evaluation experiments of the proposed PSO and ACO

In this section, we describe the evaluation experiments for PSO and ACO conducted using our evacuation
guidance simulations. Two types of maps are used to evaluate the rate of ful�llment of evacuation termination
conditions (evacuation completion rate) and the number of steps it takes to ful�ll them during a disaster
event and a non-disaster event, respectively. The ACO described in a related study is used as a comparison
for the PSO.

Information on the MAP used in this experiment is shown in Table 3.

Table 3: Map information

Parameter name value

Evacuees 100

MAP size 80×80
Color information

White Road(passable)

Black Wall(impossible to pass)

Red Fire(impossible to pass)

Green Safe place(destination)

Yellow Evacuee

The experiment is terminated when 60000 steps are reached and when all evacuees have completed their
actions up to that point.

The two conditions under which each evacuee completes the action are as follows.

• Evacuees have been moved to a safe place.

• The evacuee was caught in a �re or collapse and was unable to act.

The evacuation is terminated when 6,000 steps are reached because of the time limit set for the evacuation.

5.1. Experiment 1

Simulations were conducted using a map that assumes a situation where the road is narrow and there
are multiple paths to a safe place (Figure 10).
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Figure 10: Map used in Experiment 1

5.1.1. No �re and no collapse simulation

To consider a �re or collapse situation, evacuation must be possible in an unconsidered situation. We
tested whether it is possible to evacuate to a safe place in each of these situations. The parameters set in
the experiment are summarized respectively (Table 4) (Table 5).

Table 4: ACO parameters

Pheromone parameter name value

Volatilization rate(ρ) 0.0002

Coating value(α) 1.1

Upper limit(τmax) 50.0

Lower limit(τmin) 1.0

Deodorant value(τ ′) -50.0

Table 5: PSO parameters

Parameter name value

Inertial weight(w) 0.53

Weight towards a crowded place(r2) 0.79 - 0.97

Weight towards a safe place(r3) 0 - 0.17

Repulsive weight(r4) 0 - 0.03

Each method was performed 500 times, and the average number of steps taken to meet the termination
condition and the evacuation completion rate are summarized in Table 6.

Results show that both have an evacuation completion rate of 1.0. This indicates that all 500 evacuations
were completed. The average step is less for PSO.

5.1.2. Simulation with �re and collapse

In the previous section, an experiment was conducted to move to a safe location without considering �re
or collapse. The evacuation completion rate results show that both ACO and PSO completed the evacuation.
However, when evacuating in the event of an actual disaster, it is necessary to take into account the possibility
of unexpected impassable areas appearing. Therefore, an impassable area was established on the outdoor
map (Figure 10) that expands by one square for every 200 steps, up to 1000 steps (Figure 11).
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Table 6: Experiment 1 Results without �re or collapse

Steps Evacuation completion rate

ACO 10408 1.0

PSO 537 1.0

Figure 11: Map of Experiment 1 assuming an impassable place

Each method was performed 500 times. The average number of steps taken to meet the termination
condition and the evacuation completion rate are shown in Table 7. The results show that the ACO has an

Table 7: Experiment 1 Results of �re and collapse

Steps Evacuation completion rate

ACO 14183 1.000

PSO 1409 0.976

evacuation completion rate of 1.0, while the PSO has a lower rate of 0.976. The average step is less for PSO.

5.2. Experiment 2

Compared to Experiment 1, the evacuation route is thicker and single track. In addition, a situation
with an obstacle (depression) on the way was assumed (Figure 12).

5.2.1. No �re and no collapse simulation

The parameters set in the experiment are shown in Tables 8 and 9.
Each method was performed 500 times. The average number of steps taken to meet the termination

condition and the evacuation completion rate are shown in Table 10. The results show that both evacuations
are completed as the evacuation completion rate is 1.0. The average step is less for PSO.

5.2.2. Simulation with �re and collapse

The outdoor map (Figure 13) has an impassable area that expands by one square for every 200 steps,
up to 1000 steps. Each method was performed 500 times. The average number of steps taken to meet the
termination condition and the evacuation completion rate are shown in Table 11.

The results show that PSO has an evacuation completion rate of 1.0, while ACO has 0.93, which is less.
The average step is less for PSO.
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Figure 12: Map used in Experiment 2

Table 8: ACO parameters

Pheromone parameter name value

Volatilization rate(ρ) 0.0001

Coating value(α) 1.5

Upper limit(τmax) 50.0

Lower limit(τmin) 1.0

Deodorant value(τ ′) -50.0

6. Discussion

6.1. Experiment 1

Under the �re and collapse scenario, PSO had an evacuation completion rate of 0.976. This indicates that
some people did not complete the evacuation even though the simulation met the termination conditions.
The average number of steps required to complete an evacuation was reduced compared to the ACO, but
the percentage of completed evacuations was lower. Therefore, although PSO can be expected to reduce the
number of steps, PSO is not superior to ACO in terms of the evacuation completion rate.

We summarize why PSO, with an average step count of 1654 steps, can lead to a situation where the
process is not completed within 6,000 steps. When the simulator was run with PSO, several evacuees were
observed to approach the �re in an attempt to get to a safe location, unable to take into account the
impassability caused by unexpected �res or collapses (Figure 14).

The PSO thought that the number of times they were approaching the �re would be greater than the
ACO, and as a result, the evacuation would not be completed.

Therefore, we made a new comparison of the number of times the �re was approached (Table 12).

Table 9: PSO parameters

Parameter name value

Inertial weight(w) 0.35

Weight towards a crowded place(r2) 0.027 - 0.2

Weight towards a safe place(r3) 0.11 - 0.23

Repulsive weight(r4) 0.3 - 0.76
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Table 10: Experiment 2 Results without �re or collapse

Steps Evacuation completion rate

ACO 17965 1.0

PSO 2235 1.0

Figure 13: Map of Experiment 2 assuming an impassable place

The results show that the ACO has a higher number of approaches. However, since the number of steps
is di�erent, a new "Fire proximity ratio" was added to the table.

Fire proximity ratio = Fire proximities / Steps (14)

The �re proximity ratio represents the probability that any one of the evacuees in the evacuation will
touch the �re location per step. In PSO, the number of steps increased due to the proximity to the impassable
location and the evacuation was not completed in situations where an unexpected �re completely blocked
the path to safety. Therefore, in situations such as Experiment 1, it is necessary to prevent not only the
number of steps but also the proximity to the �re.

6.2. Experiment 2

The map for Experiment 2 has more actionable locations than Experiment 1, and thus, the number
of steps has increased for both ACO and PSO. The evacuation completion rate for ACO is 0.93. This is
because there are more actionable locations than in Experiment 1, so the number of steps it takes to reach
a safe location increased, and the evacuation could not be completed even after 6,000 steps. When �re is
considered, as in Experiment 2, the PSO is superior to the ACO in both evacuation completion rate and
average number of steps.

In Experiment 2, unlike Experiment 1, PSO performed better in both evacuation completion rate and
average number of steps in the simulation considering �re. The reason lies in the extended �re (Figure 15).
In the case of Experiment 2, which considered �re, the spreading �re did not completely block the path to

Table 11: Experiment 2 Results of �re and collapse

Steps Evacuation completion rate

ACO 28638 0.93

PSO 11880 1.0
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Figure 14: Simulation using PSO of Experiment 1

Table 12: Fire approaches

Steps Evacuation completion rate Fire approaches Fire proximity ratio

ACO 14183 1.0 1045 0.073

PSO 1409 0.976 450 0.248

safety. If the unanticipated impassable did not seem to completely block the path to the safe location, then
better results than the ACO could have been obtained because the path to the safe location could have been
avoided.

6.3. Additional experiment

Experiments were conducted with an algorithm that merges PSO and ACO. This was done to avoid
approaching the �re to complete the evacuation and also to reduce the number of steps. The following
equation is used to determine the direction of movement.

Movement direction = α(PSO movement direction) + (1− α)(ACO movement direction) (15)

Figure 15: Simulation using PSO of Experiment 2
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The α represents the weights; the higher the α value, the more priority is given to the direction of movement
of the PSO, and the lower the value, the more priority is given to the direction of movement of the ACO.

The value of α was increased by 0.1 from 0 to 1, and each was simulated on the map from Experiment
1. The number of steps, the approach rate, and the evacuation achievement rate for each are summarized
(Figure 16, 17, 18).

Figure 16: Change in the number of steps according to the value of α

Figure 17: Change in approach rate according to the value of α

Experimental results show that higher values of α lead to better step counts and lower values to better
approach rates. Therefore, a correlation was obtained between the number of steps and the approach rate
depending on the value of α. To use this algorithm, it is necessary to adjust the value of α according to
the situation. In the situation of Experiment 1, when the value of α is 0.9, the number of steps is low and
evacuation can be performed with a high evacuation completion rate.

In this study, experiments were conducted in a situation where �re was not anticipated, in a situation
where the passage was completely blocked by �re, and in a situation where �re occurred but the passage
was not blocked. In all situations, the number of steps resulted in fewer PSO. In other words, in situations
where location information can be shared, PSO using location information can provide faster evacuation.
The high evacuation completion rate in Experiment 1 indicates that ACO can avoid unexpected disasters
by using deodorant pheromones and can evacuate to a safe place without fail. By conducting comparative
experiments, we were able to obtain the strengths of each.

The number of steps and the evacuation completion rate can be improved by combining the strengths of
each, such as by giving stronger weight to PSO in situations where the �rst priority is quick damage, and
giving stronger weight to ACO in situations where the �rst priority is avoidance of hazardous locations.
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Figure 18: Change in evacuation achievement rate according to the value of α

6.4. Future work

Future work is listed below.

• Intelligence of evacuee behavior in simulators

• Simulation of various situations

• Application of PSO algorithm considering obstacle avoidance to other tasks

This study was only an experiment on simulation, and human evacuation movements were performed at
the same speed every step in the direction obtained by a simple vector calculation. However, there may
be other factors involved in actual evacuation. For example, evacuation movements are expected to change
due to various factors, such as changes in evacuation speed according to the health and mobility of the
evacuees, and changes in evacuation routes according to the people who are acting together. Therefore,
further improvement is needed in the behavior of agents assuming evacuees to perform the simulation. In
addition, although two types of maps were used for evacuation in this study, it is desirable to further optimize
the system by adapting it to other evacuation scenarios.

The ACO or PSO algorithm in this study is an algorithm that forms a route based on evacuee information.
Since we have been studying the use of deep learning to determine the danger of a location based on
camera images from unmanned vehicles such as drones [9], we would like to investigate methods for forming
evacuation routes based on information from unmanned vehicles such as drones and balloons in the future.

7. Conclusion

The objective of this study was to reduce the number of steps it takes to evacuate to a safe location.
Simulations were created and experiments were conducted as an adaptation of the proposed method. The
results showed a reduction in the number of steps compared to the ACO. It was also found that in situations
where the path to a safe place was completely blocked, the number of steps required to avoid the situation
was greater than that of the ACO. Combining ACO with PSO solved that problem as well. Future work
includes intelligence of evacuee behavior in the simulator, adjustment of various parameters, and evacuation
for disasters other than earthquakes.

Some natural disasters, such as tsunamis, require immediate evacuation routes to safe higher ground,
even through some hazardous areas, while other disasters require evacuation routes through safe detours
to avoid collapsing buildings. In this study, we have described the performance of PSO and ACO, and
the performance of route suggestion by combining them. We would like to work in the future to construct
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an evacuation guidance system that combines all types of algorithms for evacuation route suggestion in a
well-balanced manner according to the purpose.
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