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Abstract − We have realized a gap between almost contact metric manifolds and contact met-

ric manifolds in our studies. The examples that were given as Sasaki manifolds don’t satisfy the

condition of being contact metric manifold. As a result of our work, the sliced almost contact man-

ifolds were formed and defined in [1]. In this paper we applied the theory of sliced almost con-

tact manifolds to curves as a curve theory in three dimensional space. We define the π− r eg ul ar

and π−Leg endr e curves, also we give basic theorems on π−Leg endr e curves and an example to

π−Leg endr e curves.
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1. Introduction

Contact geometry, indeed it is not a new area in geometry, has become an important place in different parts

of mathematics and mathematical physics. Especially it has useful applications in differential equations,

optics, general relativity and etc. Christian Huygens [2], Barrow [3] and Isaac Newton [4] are the first math-

ematicians that we see the contact geometry in their works. Many mathematicians like Sophus Lie [5], Gray

[6] used the contact structures in their works on differential equations. Gibbs [7] used contact geometry in

his work on thermodynamics and the others. 20th century is an important period in differantial geometry

because semi-Riemannian geometry took important place in the research in mathematics and physics. Be-

cause the importance comes from the non-empty intersection of the tangent bundle and the orthogonal

bundle which is called radical space by O’neill [8]. During 1950s, Marcel Berger published the major de-

velopments of Riemannian geometry. In 1960s S. Sasaki defined Sasaki manifolds [9]. After these works in

1970s the research focused on Lorentzian geometry. Then, many mathematicians worked on contact man-

ifolds, almost contact manifolds, almost contact metric manifolds, contact metric manifolds and etc. Up to

now lots of different papers and books published on lightlike submanifolds of Sasakian manifolds, Keahler

manifolds, Legendre curves and some of them can be found in [10–16]. In our works we saw that there is

a problem between indefinite-Sasakian manifolds and the submanifolds theory. We investigated the prob-
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lem occurs on contact metric manifolds. Because, the examples of Sasakian manifolds that given are not

contact metric manifolds. Because the equation dη = Φ is non-satisfied by the examples. After our works

we constructed in [1] a new structure to get rid of this problem. We named these structures sliced almost

contact manifolds. We used projection morphisms on the tangent bundle. We divided slices the tangent

bundle by projection morphisms. So, for every slice, the conditions are satisfied for theory. As a result we

get a wider class of contact metric manifolds and the others. Furthermore we calculated the Riemannian

curvature tensor for sliced almost contact metric manifolds [17].

Curve theory is a milestone in the geometry especially understanding the world that we live in. It is well

known that there are characteristic features of every curve. Up to now many curves were defined and studied

by many mathematicians. With the use of differential geometry, the curves began to be studied in depth.

We chose Legendre curves and applied our theory to them. On sliced almost contact metric manifolds we

defined π-regular and π-Legendre curves as an application of our theory to the theory of curves.

2. Preliminaries

In contact geometry if M is a (2n +1)−dimensional differentiable manifold and η is a 1-form on M which

satisfies

ηΛ(dη)n ̸= 0 (2.1)

everywhere on M , then M is called a contact manifold. Let M be a contact manifold. On M the contact

distribution denoted by Dp and it is defined by

Dp = {X ∈ Tp M |η(X ) = 0}

Blair defined the almost contact manifolds in 1976 as follows.

Definition 2.1. [10] Let M be a (2n + 1)−dimensional manifold and the tensor fields φ,ξ, and η are of the

type (1,1), (1,0), and (0,1), respectively, defined on M . If these tensor fields satisfy the equations below, then

(φ,ξ,η) is called a contact structure on M and (M ,φ,ξ,η) is called an almost contact manifold.

φ2X = −X +η(X )ξ (2.2)

η(ξ) = 1

After this definition a new manifold was needed to construct different geometric structures in contact ge-

ometry. For this aim the necessity of a metric was occurred. After almost contact manifolds, almost contact

metric manifolds are defined by Gray.

Definition 2.2. [10] Assume that (M ,φ,ξ,η) is an almost contact manifold with dimension 2n +1. If g is a

Riemannian or Lorentzian metric and g satisfies the equation

g (φ(X ),φ(Y )) = g (X ,Y )−η(X )η(Y ) (2.3)

for all X ,Y ∈χ(M), then (φ,ξ,η, g ) is called an almost contact metric structure and (M ,φ,ξ,η, g ) is called an

almost contact metric manifold.

Definition 2.3. [6] Assume that (M ,φ,ξ,η, g ) is a (2n +1)−dimensional almost contact metric manifold. If
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the equation

dη(X ,Y ) = g (X ,φ(Y )) (2.4)

is satisfied on M , then (M ,φ,ξ,η, g ) is called a contact metric manifold.

Let F be a tensor field of type (1,1) on manifold M . If we define the tensor field NF : χ(M)×χ(M) −→ χ(M)

by

NF (X ,Y ) = F 2[X ,Y ]+ [F (X ),F (Y )]−F [F (X ),Y ]−F [X ,F (Y )] (2.5)

then NF is a tensor field of type (1,2) [18].

Definition 2.4. If J is an almost complex structure on manifold M and NJ ≡ 0, then J is called integrable on

M .

Definition 2.5. Let J be an almost complex structure on M ×R. If J is integrable, then (φ,ξ,η) is called a

normal structure.

Sasaki and Hatakeyama defined Sasaki manifold with the following definition.

Definition 2.6. [9] If (2n+1)−dimensional manifold M has (φ,ξ,η, g ) normal contact metric structure, then

the manifold M is called a Sasakian manifold.

3. Sliced Almost Contact Manifolds

In this paper we carried on the sliced almost contact manifolds Gümüş defined in [1] and [17]. And Gümüş

published in 2018 sliced almost contact manifolds by the following definition.

Definition 3.1. [17] Assume that M is a manifold and T M is a tangent bundle of the manifold M . Let’s

accept, H is a distribution on the tangent bundle T M and ξ ∈ H . If we choose the projection π, ω tensor

field of type (0,1) and φπ tensor field of type (1,1) by , π,φπ : T M → H ,ω : T M →C∞(M ,R) and these tensor

fields satisfy the following conditions,

φ2
πX = −π(X )+ω(X )ξ (3.1)

ω(ξ) = 1

then (M ,φπ,ω,π,ξ) is called a sliced almost contact manifold.

Theorem 3.2. If (M ,φπ,ω,π,ξ) is a sliced almost contact manifold, then the following equations are hold.

i. ω◦φπ = 0

ii. φπ(ξ) = 0

iii. K erφπ =π−1(Sp{ξ})

Proof.

i i . If we put ξ instead of X , then we get the following equation

φ2
π(ξ) =−π(ξ)+ξ= 0

From this result we get

φ3
π(ξ) =φπ(φ2

π(ξ)) =φ2
π(φπ(ξ)) = 0
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φ2
π(φπ(ξ)) =−πφπ(ξ)+ω(φπ(ξ))ξ= 0

We know that the equality πφπ =φπ is valid. If we use this fact, then we reach the equation

φπ(ξ) =ω(φπ(ξ))ξ

If we assume that ω(φπ(ξ)) ̸= 0, then we get

φ2
π(ξ) =ω(φπ(ξ))φπ(ξ) = 0

From here we conclude that φπ(ξ) = 0. If we assume that ω(φπ(ξ)) = 0, then it is clear that φπ(ξ) = 0.

i . On χ(M) for all X ∈χ(M) we have φ3
π(X ) =−φπ(X ). Also

φ3
π(X ) =φ2

π(φπ(X ))

is true. From here we can write

−φπ(X )+ω(φπ(X ))ξ=−φπ(X )

From this equation we conclude that ω◦φπ = 0 because ξ ̸= 0.

i i i . If X ∈ K erφπ, then we can say φπ(X ) = 0. In this equation if we apply φπ both sides we get φ2
π(X ) =

−π(X )+ω(X )ξ= 0. Here, when we do the necessary calculations we reach the following equality.

K erφπ =π−1(Sp{ξ})

Definition 3.3. [1, 17] Assume that (M ,φ,η,ξ) is an almost contact manifold and let H be a distribution on

M . When (M ,φπ,ωπ,π,ξ) is a sliced almost contact manifold and the following equalities

i. i ) φ◦π=φπ

ii. i i ) η◦π=ωπ

are satisfied by(M ,φπ,ωπ,π,ξ), then it is called that the manifold(M ,φπ,ωπ,π,ξ)is a compatible sliced al-

most contact manifold with(M ,φ,η,ξ).

Definition 3.4. Assume that (M ,φπ,ωπ,π,ξ) is a sliced almost contact manifold. If there is a Riemaniann

metric g : T M ×T M →C∞(M ,R) defined on M which satisfies

g (φπX ,φπY ) = g (πX ,πY )−ωπ(X )ωπ(Y ) (3.2)

then (M ,φπ,ωπ, g ,ξ) is called a sliced almost contact metric manifold.

Definition 3.5. [17] Let’s accept (M ,φπ,ωπ,π,ξ) is a sliced almost contact manifold and compatible sliced

almost contact manifold by (M ,φ,η,ξ). If there exists a Riemannian metric g and (M ,φ,η, g ,ξ) is an almost

contact metric manifold ∀X ,Y ∈χ(M) where the following equation

g (φπX ,φπY ) = g (πX ,πY )−ωπ(X )ωπ(Y ) (3.3)

is satisfied, then (M ,φπ,ωπ,π, g ,ξ) is named compatible sliced almost contact metric manifold with
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(M ,φ,η, g ,ξ). If we take g |H = g , then we reach

g (φπX ,φπY ) = g (X ,Y )−ωπ(X )ωπ(Y )

where ωπ(X ) = g (πX ,ξ).

Definition 3.6. [1, 17] Assume that (M ,φπ,ωπ,π, g ,ξ) is a sliced almost contact metric manifold. In that case

Φπ is called second fundamental form and it is described as the following:

Φπ(X ,Y ) = g (πX ,φπY ) (3.4)

Definition 3.7. [1, 17] Let’s accept (M ,φπ,ωπ,π, g ,ξ) is a sliced almost contact metric manifold. When

(M ,φπ,ωπ,π, g ,ξ) satisfies the equation ϵdωπ =Φπ, then (M ,φπ,ωπ,π, g ,ξ,ϵ) is named as ϵ−sliced contact

metric manifold.

4. Normal Sliced Almost Contact Metric and Sasaki Manifolds

Definition 4.1. Assume that (M ,φπ,ωπ,π,ξ) is a sliced almost contact manifold. If we define π̃ as

π̃ : χ(M ×R) →χ(H ×R)

(X , f
d

d t
) → π̃(X , f

d

d t
) = (πX , f

d

d t
)

then we see that π̃2 = π̃. This means that π̃ is a projection morphism on M ×R.

It is known that if [ , ] is a bracket operator, then π̃[ , ] = [π̃, π̃]. So, [ , ] is a bracket operator on M ×R and it is

defined as following

[ , ] :χ(M ×R)×χ(M ×R) →χ(M ×R)

((X , f
d

d t
), (Y , g

d

d t
)) → [(X , f

d

d t
), (Y , g

d

d t
)]

[(X , f
d

d t
), (Y , g

d

d t
)] = ([X ,Y ], (X g −Y f )

d

d t
) (4.1)

([10]). Here, it is easy to show that

π̃[ , ] = [π̃, π̃]

On the other hand if we define

Jπ : χ(M ×R) →χ(H ×R)

(X , f
d

d t
) → Jπ(X , f

d

d t
) = (φπX − f ξ,ωπ(X )

d

d t
)

then Jπ satisfies the following properties:

i. Jπ is linear

ii. J 2
π =−π̃



Gümüş and Camcı / JNRS / 11(1) (2022) 62-76 67

iii. Jπ(χ(M ×R)) = H ×R

So, Jπ is a sliced almost complex structure on M ×R.

Definition 4.2. [1, 17] If NJπ ≡ 0, then Jπ sliced almost complex structure is called integrable.

Definition 4.3. [1, 17] If Jπ sliced almost complex structure is integrable on M ×R, then (φπ,ωπ,π,ξ) sliced

almost contact structure is called a sliced normal structure.

Here, if we compute NJπ((X ,0), (Y ,0)) and NJπ((X ,0), (0, f d
d t )) for NJπ , then we get the components

NJπ((X ,0), (Y ,0)) = (N 1
π(X ,Y ), N 2

π(X ,Y ))

NJπ((X ,0), (0, f
d

d t
)) = (N 3

π(X ), N 4
π(X ))

Let’s start with NJπ((X ,0), (Y ,0)).

NJπ((X ,0), (Y ,0)) = −[(X ,0), (Y ,0)]+ [Jπ(X ,0), Jπ(Y ,0)]

−Jπ[Jπ(X ,0), (Y ,0)]− Jπ[(X ,0), Jπ(Y ,0)]

= −([X ,Y ],0)+ [(φπX ,ωπ(X )
d

d t
), (φπY ,ωπ(Y )

d

d t
)]

−Jπ[(φπX ,ωπ(X )
d

d t
), (Y ,0)]

−Jπ[(X ,0), (φπY ,ωπ(Y )
d

d t
)]

If we do the necessary operations, then we can write

NJπ((X ,0), (Y ,0)) = (−[X ,Y ]+ [φπX ,φπY ]−φπ[φπX ,Y ]

−φπ[X ,φπY ]+ (−Y ωπ(X )+
Xωπ(Y ))ξ, (φπ(X )ωπ(Y )−φπ(Y )ωπ(X )

−ωπ([φπX ,Y ])−ωπ([X ,φπY ]))
d

d t
)

From the equality above we get the components N 1
π and N 2

π.

N 1
π(X ,Y ) = −[X ,Y ]+ [φπX ,φπY ]−φπ[φπX ,Y ]−φπ[X ,φπY ]

+(Xωπ(Y )−Y ωπ(X ))ξ−ωπ[X ,Y ]ξ

If we simplify this equation, then we get the following result.

N 1
π(X ,Y ) = φ2

π[X ,Y ]+ [φπX ,φπY ]−φπ[φπX ,Y ]−φπ[X ,φπY ]

+(Xωπ(Y )−Y ωπ(X )−ωπ[X ,Y ])ξ
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We know that

Nφπ(X ,Y ) = φ2
π[X ,Y ]+ [φπX ,φπY ]−φπ[φπX ,Y ]−φπ[X ,φπY ]

2dωπ(X ,Y ) = Xωπ(Y )−Y ωπ(X )−ωπ[X ,Y ]

From here as a result we get

N 1
π(X ,Y ) = Nφπ(X ,Y )+2dωπ(X ,Y )ξ (4.2)

And for N 2
π(X ,Y ) we can write

N 2
π(X ,Y ) = φπ(X )ωπ(Y )−φπ(Y )ωπ(X )−ωπ([φπX ,πY ])

−ωπ([X ,φπY ])

Now we look for NJπ((X ,0), (0, f d
d t )) to get N 3

π(X ) and N 4
π(X ). By similar calculations we reach the compo-

nents N 3
π and N 4

π.

N 3
π(X ) = −[φπ(X ),ξ]+φπ[X ,ξ] (4.3)

N 4
π(X ) = ξωπ(X )+ωπ[X ,ξ]

It is known that the following equations are valid.

(Lξφπ)X = [ξ,φπ(X )]−φπ[ξ, X ] (4.4)

(Lξωπ)X = ξωπ(X )−ωπ[ξ, X ]

If we use these equations, then we reach the following equations.

N 3
π(X ) = (Lξφπ)X (4.5)

N 4
π(X ) = (Lξωπ)X

Definition 4.4. The necessary and sufficient condition of the sliced almost contact manifold (M ,φπ,ωπ,π,ξ)

to be normal is the tensors N 1
π, N 2

π, N 3
π and N 4

π are all equivalent to zero identically.

Theorem 4.5. Let (M ,φπ,ωπ,π,ξ) be a sliced almost contact manifold. If N 1
π ≡ 0, then N 2

π ≡ N 3
π ≡ N 4

π ≡ 0.

Theorem 4.6. Let (M ,φπ,ωπ,π,ξ, g ) be a sliced almost contact metric manifold. On this manifold M , for all

X ,Y ∈χ(M) we have the following equation.

2g ((▽Xφπ)Y , Z ) = 3dΦωπ(πX ,φπY ,φπZ )−3dΦωπ(πX ,πY ,πZ )

+g (N 2
π(Y , Z ),φπX )+ωπ(X )N 2

π(Y , Z )

+2dωπ(φπY ,πX )ωπ(Z )−2dωπ(φπZ ,πX )ωπ(Y )

Here, we have usedΦωπ(X ,Y ) = g (πX ,φπY ).

Definition 4.7. We define the morphism hπ (hπ : χ(M) → H , X → hπ(X ) = 1
2 (Lξφπ)X ). Here, it is clear that
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πhπ = hππ= hπ.

Theorem 4.8. Let (M ,φπ,ωπ,π,ξ, g ) be a sliced almost contact metric manifold. ∀X ,Y ∈χ(M) we have

π(∇X ξ) =−φπX −φπhπX (4.6)

Here, we have φπhπ =−hπφπ and tr hπ = 0. Also, we can see that hπ is symmetric.

Proof.

On sliced almost contact metric manifolds we have

∇ξφπ = 0 and ∇ξξ= 0

So, we get

g ((Lξφπ)X ,Y ) = g (∇ξφπX −∇φπX ξ−φπ(∇ξX )+φπ∇X ξ,Y )

= g (−∇φπX ξ+φπ∇X ξ,Y )

In this equation, if one of X or Y is equal to ξ, then it is equal to 0. If we take X and Y orthogonal to ξ, then

we have N 2
π = 0 and because of the following

ωπ(X ) =ωπ(Y ) = 0

we get the equation

ωπ[φπX ,πY ]+ωπ[πX ,φπY ] = 0

So, we have

g ((Lξφπ)X ,Y ) =ωπ(∇φπX Y )+ωπ(∇XφπY )

If we use the fact g (Y ,ξ) = 0, then we get the following equation

g (∇φπX Y ,ξ)+ g (Y ,∇φπX ξ) = 0 (4.7)

From this equation we conclude that

g (−∇φπX ξ,Y ) =ω(∇φπX Y )

Similarly we have g (φπY ,ξ) = 0. From this result we get the equation g (∇XφπY ,ξ)+ g (φπY ,∇X ξ) = 0. This

equation gives us the result

g (φπ(∇X ξ),Y ) =ωπ(∇XφπY )

From this result we get the equation

g ((Lξφπ)X ,Y ) =ωπ(∇φπX Y )+ωπ(∇XφπY ) (4.8)

On the other hand because of the following equality

ωπ([φπX ,Y ])+ωπ([X ,φπY ]) = 0 (4.9)
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we have

g (∇φπX Y −∇Y φπX ,ξ)+ g (∇XφπY −∇φπY X ,ξ) = 0 (4.10)

So at the end we reach the following equalities.

g (hπX ,Y ) =ω(∇φπX Y )+ωπ(∇XφπY ) =ωπ(∇Y φπX )+ωπ(∇φπY X )

g (hπX ,Y ) = g (X ,hπY ).

From here we conclude that hπ is symmetric. Since Φπ = dωπ and N 2
π = 0, we can write the following

equation

2g ((∇Xφπ)ξ, Z ) = g (N 1
π(ξ, Z ),φπX )−2dωπ(φπZ , X )

On the other hand we know that

N 1
π(ξ, Z ) =φ2

π[ξ, Z ]−φπ[ξ,φπZ ] and (Lξφπ)Z = [ξ,φπZ ]−φπ[ξ, Z ] (4.11)

From these equalities we reach the equation below.

−φπ(Lξφπ)Z =φ2
π[ξ, Z ]−φπ[ξ,φπZ ] (4.12)

Since the equation

2g ((∇Xφπ)ξ, Z ) = g (−φπ(Lξφπ)Z ,φπX )−2dωπ(φπZ , X )

= g (−(Lξφπ)Z , X )+2ωπ((Lξφπ)Z )ωπ(X )−2g (φπZ ,φπX )

is true, we get

g ((∇Xφπ)ξ, Z ) = 1

2
g (−(Lξφπ)Z , X )− g (πZ ,πX )+ωπ(X )ωπ(Z )

= g (−1

2
(Lξφπ)X , Z )− g (πX , Z )+ g (ωπ(X )ξ, Z )

From this equation we get (∇Xφπ)ξ=−hπX −πX +ωπ(X )ξ. As a result we have the following equations.

−φπ(∇X ξ) =−hπX −πX +ωπ(X )ξ and π(∇X ξ) =−φπX −φπhπX

Theorem 4.9. [1, 17] If (M ,φπ,ωπ,π,ξ, g ) is a sliced almost contact metric manifold, then it is a sliced Sasakian

manifold if and only if the following equation is valid ∀X ,Y ∈χ(M);

(∇Xφπ)Y = g (πX ,πY )ξ−ωπ(Y )πX (4.13)
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Proof.

Since N 1
π ≡ 0 we have

2g ((∇Xφπ)Y ,πZ ) = 2dωπ(φπY , X )ωπ(Z )−2dωπ(φπZ , X )ωπ(Y )

= 2g (g (πY ,πX )ωπ(Z )−ωπ(X )ωπ(Y )ωπ(Z ))

−2g (g (πZ ,πX )ωπ(Y )−ωπ(X )ωπ(Y )ωπ(Z ))

= 2g (g (πY ,πX )ωπ(Z )− g (πZ ,πX )ωπ(Y ))

= 2g (g (πX ,πY )ξ−ωπ(Y )πX , Z )

So, we have

(∇Xφπ)Y = g (πX ,πY )ξ−ωπ(Y )πX (4.14)

Definition 4.10. If (M ,φ,η, g ,ξ) is an (ϵ)-contact metric manifold and (φ,η,ξ) is a normal structure on M ,

then (M ,φ,η,ξ) is called Sasaki manifold.

Theorem 4.11. Let (M ,φπ,π,ωπ, g ,ξ) be a compatible sliced almost contact metric manifold with (M ,φ,η, g ,ξ).

If (M ,φ,η, g ,ξ) is a Sasakian manifold, then (M ,φπ,π,ωπ, g ,ξ) is a sliced Sasakian manifold.

Proof.

We know that ∀X ,Y ∈ χ(M) we have πX ,πY ∈ H ⊂ χ(M). Because of (M ,φ,η, g ,ξ) is a Sasakian manifold

and φ◦π=φω, η◦π=ω we can write

π(▽Xφ)Y = g (πX ,πY )ξ−ω(Y )π(X ) (4.15)

In this case it is shown that (M ,φπ,π,ωπ, g ,ξ) is a sliced Sasakian manifold.

Theorem 4.12. If (M ,φ,η,ξ,ϵ) is an (ϵ)−contact metric manifold, then N 2 and N 4 are identically equal to

zero, where ϵ=∓1.

5. A Curve Theory in Sliced Almost Contact Metric Manifolds

In this section we constructed the frame vector fields of a curve in the 3-dimensional subdistribution H 3

of T M where (M 2n+1,φπ,ωπ,ξ, g ) is a sliced almost contact metric manifold. Also, we define π−Leg endr e

curve by using the classical definition of Leg endr e curve.

Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and H 3 is a 3-dimensional distribution

in T M . At the same time, we define a projection morphism π on T M as π : T M → H 3, X → π(X ) where

∀X ∈ T M . Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and H 3 is a 3-dimensional

distribution in T M . If a γ curve which is not parameterized by arclength, defined as γ : I → M , t → γ(t ) for

all t ∈ I , then it is clear that
·
γ(t ) ∈ Tγ(t )M and π(

·
γ(t )) ∈ H 3 are true.

Definition 5.1. Let γ be a curve defined by the same arguments in the Definition 5.2. If the curve γ satisfies

g (π(
·
γ(t )),π(

·
γ(t ))) ̸= 0 for all t ∈ I , then the γ curve is called as π-regular curve. As a consequence we define

the velocity vπ as

vπ(t ) =
∥∥∥π(

·
γ(t ))

∥∥∥ (5.1)

If vπ(t ) = ∥∥π(γ′(t ))
∥∥ = 1, then the parameter t is called as the arclength parameter in the distribution H 3
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and denoted by sπ.

Definition 5.2. Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and H 3 is a 3-dimensional

distribution in T M . In this case we define a new cross product ∧π on the distribution H 3 as following

X ∧π Y =π (X )∧ππ (Y ) =−g (X ,φπY )ξ−ω(Y )φπX +ω(X )φπY (5.2)

for all X ,Y ∈ T M .

Theorem 5.3. Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and ∧π a cross product on

the distribution H 3. In this situation the cross product ∧π, ∀X ,Y , Z ∈ T M satisfies the following properties:

i. ∧π is bilinear and antisymmetric i .e.X ∧π Y =−Y ∧π X .

ii. Vector field X ∧π Y is perpendicular to both X and Y vector fields.

iii.

Y ∧πφπX = g (πX ,Y )ξ−ω(Y )π(X )

φπX = ξ∧π X

iv. If we define the triple cross product by (X ,Y , Z ) = g (X ∧πY ,πZ ), then the following equations are valid.

(X ,Y , Z ) = −(g (X ,φπY )ω(Z )+ g (Y ,φπZ )ω(X )+ g (Z ,φπX )ω(Y ))

(X ,Y , Z ) = (Y , Z , X ) = (Z , X ,Y )

v.
g (X ,φπY )πZ + g (Y ,φπZ )πX + g (Z ,φπX )πY =−det(πX ,Y , Z )ξ

(X ∧π Y )∧π Z = g (πX , Z )πY − g (πY , Z )πX

g (X ∧π Y , Z ∧πW ) = g (πX , Z )g (πY ,W )− g (πY , Z )g (πX ,W )

∥X ∧π Y ∥2 = g (πX ,πX )g (πY ,πY )− g (πX ,Y )2

(X ∧π Y )∧π Z + (Y ∧π Z )∧π X + (Z ∧π X )∧π Y = 0

Proof.

The properties can be proved by similar to the proof of the Theorem 2.1 in [19].

Theorem 5.4. Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold. In this manifold∀X ,Y , Z ∈
T M we have the following equation where ∇ is a Levi-Civita connection on M 2n+1

∇Z (X ∧π Y ) = (∇Z X )∧π Y +X ∧π (∇Z Y ) (5.3)

Proof.

The proof is similar to the Theorem 2.2 in [19].

Now, let γ be a π−r eg ul ar curve in (M 2n+1,φπ,ωπ,ξ, g ) sliced almost contact metric manifold. If we define

h(t ) = sπ = ∫ t
0

∥∥πγ(u)
∥∥du, then the curve β(sπ) is going to be β(sπ) = πγ(h−1(sπ)). Here, sπ is the arclength
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parameter of the curve γ. In order to construct the Serret-Frenet frame fields of the curve γ, we define the

frame fields Tπ, Nπ and Bπ by

Tπ = πβ
′
(s) (5.4)

Nπ = πβ′′(s)∥∥πβ′′(s)
∥∥

Bπ = Tπ∧π Nπ

the above equalities. When we define the fields Tπ, Nπ and Bπ above, then we can say that κπ and τπ can be

defined as following.

κπ = ∥∥πβ′′(s)
∥∥ (5.5)

τπ = g (N ′
π,Bπ)

From these equations we can get the following results.

T ′
π = κπNπ (5.6)

N ′
π = −τπTπ+κπBπ

B ′
π = −τπNπ

In the classical theory of contact structures Leg endr e cur ves play an important role. Because contact dis-

tribution carry the Leg endr e cur ves to Leg endr e cur ves. With the new definition of sliced Sasaki mani-

folds we will define new type of curves.

Definition 5.5. Let (M 2n+1,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and H 3 is a 3-dimensional

distribution in T M . Assume that γ curve is π− r eg ul ar. If ωπ(π(
·
γ(t ))) = 0 is true ∀t ∈ I , then the curve γ is

called π−Leg endr e cur ve.

If we consider the definition of π−Leg endr e cur ve and (5.9) we get

ωπ(Tπ)Tπ+ωπ(Nπ)Nπ+ωπ(Bπ)Bπ = ξ
ωπ(Tπ)2 +ωπ(Nπ)2 +ωπ(Bπ)2 = 1

Tπ∧π Nπ = Bπ, Nπ∧π Bπ = Tπ,Bπ∧π Tπ = Nπ

Proposition 5.6. Let (M 3,φπ,ωπ,ξ, g ) be a 3-dimensional sliced almost contact metric manifold and γ a

π-regular curve in M 3 parameterized by arclength. Then, the following equations are valid.

φπTπ =ωπ(Bπ)Nπ−ωπ(Nπ)Bπ

φπNπ =ωπ(Tπ)Bπ−ωπ(Bπ)Tπ

φπBπ =ωπ(Nπ)Tπ−ωπ(Tπ)Nπ
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Proof.

The proof is similar to the Proposition 3.1 in [19].

Proposition 5.7. If (M 3,φπ,ωπ,ξ, g ) is a 3-dimensional sliced contact metric manifold and γ is a π-regular

curve in M 3 parametrized by arclength, then the following equations hold.

σ′
tπ = κπσnπ

− g (tπ,φπhtπ)

σ′
nπ

=−κπσtπ + (τπ−1)σbπ − g (nπ,φπhtπ)

σ′
bπ

=−(τπ−1)σnπ
− g (bπ,φπhtπ),

where σtπ(s) =ωπ(tπ) = g (tπ,ξ), σnπ
(s) =ωπ(nπ) = g (nπ,ξ), and σbπ(s) =ωπ(bπ) = g (bπ,ξ).

Proof.

The proof is similar to the Proposition 3.2 in [19].

Theorem 5.8. Let γ be a π-regular curve in a 3-dimensional sliced Sasaki manifold M 3 and parameterized

by arclength. Then, the following equations hold.

σ′
tπ = κπσnπ

σ′
nπ

=−κπσtπ + (τπ−1)σbπ

σ′
bπ

=−(τπ−1)σnπ

Proof.

The proof is similar to the Theorem 4.1 in [19].

Proposition 5.9. If γ is a π-Legendre curve. in a 3-dimensional sliced Sasakian manifold, then the torsion

of γ is equal to 1.

Proof.

The proof is similar to the Remark 4.1 in [19].

Theorem 5.10. Let γ be a π-regular curve in a 3-dimensional sliced Sasakian manifold and σ = ωπ(
·
γ). If

τ= 1 and σ= ·
σ= 0 for at least one point, then γ is a π-Legendre curve.

Proof.

The proof is similar to the A new proof of Theorem 1.1 in [19].

Theorem 5.11. If the torsion of a π-Legendre curve. is equal to 1 on a 3-dimensional sliced contact metric

manifold, then the manifold is sliced Sasakian.

Proof.

The proof is similar to the A new proof of Theorem 1.2 in [19].

Example 5.12. Let (M 5,φπ,ωπ,ξ, g ) be a sliced almost contact metric manifold and x1, x2.y1, y2, z coor-

dinate functions. On this manifold we define the projection morphism π (π : T M → H 3, X → π(X ) =
(X1,0, X3,0, X5)) where X = (X1, X2, X3, X4, X5) ∈ T M and H 3 = Sp

{
∂x1,∂y1,∂z

}
. While we defined π, we

can define the tensor fields φπ and ωπ as (φπ : T M → H 3, X →φπ(X ) = ξ∧ππX ) and (ωπ : H 3 →C∞(H 3,R),

X →ωπ(X ) = 1
2 (d z − y1d x1)) for all X = (X1,0, X3,0, X5) ∈ H 3 we can take the metric by

d s2 = 1

4

2∑
i=1

(d x2
i +d y2

i )+ 1

4
(d z −

2∑
i=1

yi d xi )⊗ (d z −
2∑

i=1
yi d xi )
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Here, we choose the characteristic vector field ξ = (0,0,0,0,2). So, it is clear that ωπ(ξ) = 1. Under these

assumptions and definitions the contact distribution Dπ is defined by

Dπ = {X ∈ H 3|ωπ(X ) = 0}

Now we define the curve γ : I → M 5 as

γ(t ) = (2cos(t +3)+5, t 3,2sin(t +3)−5,2t 2, sin2(t +3)−10cos(t +3)−2t +4)

So, when we apply the projection morphism to the curve γ, then it will be

γ= (2cos(t +3)+5,0,2sin(t +3)−5,0,sin2(t +3)−10cos(t +3)−2t +4)

When we differentiate the γ we get the following:

π(
·
γ(s)) = ( −2sin(t +3),0,2cos(t +3),0,2cos2(t +3)+10sin(t +3)−2)

If we calculate ωπ(π(
·
γ(t ))), then we get ωπ(π(

·
γ(t ))) = 0 which means that γ is a π−Leg endr e cur ve. Here,

the π-curvature of γ is equal to 1.

6. Conclusion

The authors showed that sliced almost contact manifolds include the almost contact manifolds. Hence

sliced almost contact manifolds is a wider class of almost contact manifolds. In this paper they gived the

fundamental properties of sliced almost contact manifolds and as an application of the theory they applied

the sliced almost contact manifolds to the curve theory. For this aim they choosed Legendre curves as an ex-

ample because the Legendre curves are important for contact manifolds. The authors defined π−r eg ul ar ,

π−cur vatur e and π−Leg endr e curves and gave some properties on π−Leg endr e curves which are Leg-

endre curve in special case. This idea can be applied to different curves or the theory of submanifolds.
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