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1. Introduction
The inequality

1 − 2x

π
≤ cos x ≤ 1 − x2

π
; x ∈

[
0,

π

2

]
(1.1)

was first established by H. Kober [3, p. 22] in 1944, and the inequality

sin x ≥ 2
π

x; x ∈
[
0,

π

2

]
was first established by C. Jordan in 1869 [2]. Another inequality of interest is the Janous
inequality

sin x

x
≥ 2

π

(
1 + π2

24

)
− x2

3π
; x ∈

(
0,

π

2

]
. (1.2)

The functions sin x/x and cos x have been considered many times by researchers, and ob-
taining sharp boundaries of them has always piqued interest. Concerning the already es-
tablished results about the polynomial, rational and irrational bounds of functions sin x/x
and cos x, we would like to recommend reading the survey article [10] by F. Qi, D.-W. Niu
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and B.-N. Guo (see also Example 3.4, where we will use some particular results quoted
in this article). On the other hand, the double-sided Taylor’s approximations play impor-
tant role in the theory of analytic inequalities; see, e.g., [5, 6, 8, 13] and references cited
therein for further information in this direction. As mentioned in the abstract, the main
aim of this paper is to establish some general results about the double-sided Taylor’s ap-
proximations of functions. We essentially use the convexity here and obtain some general
results about the double-sided Taylor’s approximations of functions which can give better
estimates compared to the estimates obtained by applying the well-known result of S. Wu
and L. Debnath (see [14, Theorem 2] and Theorem 2.1 and Corollary 2.2 below). The first
main result of paper is Theorem 3.2, whose proof is based on a quite simple argument
appearing in the proofs of Jordan inequality and Janous inequality. In Theorem 3.5 and
Theorem 3.6, our second and third main result, we follow a slightly different method which
is probably more efficient from the application point of view. In addition to the above, we
propose many illustrative examples, open problems and applications.

The organization of paper can be briefly described as follows. In Section 2, we give some
preliminaries necessary for our further work. The main results of paper are presented
in Section 3; Section 4 ends the findings with some applications. Section 5 gives some
conclusions.

2. Preliminaries
Let −∞ < a < b < +∞. For a real function f : (a, b) → R, for which there exist finite

limits f (k)(a+) = limx→a+ f (k)(x), for k = 0, 1, . . . , n, where n ∈ N0, we define the first
Taylor’s approximation in the right neighborhood of a as follows:

T f, a+
n (x) :=

n∑
k=0

f (k)(a+)
k!

(x − a)k.

Similarly, the first Taylor’s approximation in the left neighborhood of b is defined by

T f, b−
n (x) :=

n∑
k=0

f (k)(b−)
k!

(x − b)k,

where f (k)(b−) = limx→b− f (k)(x), for k = 0, 1, . . . , n, n∈N0.
Polynomials

T
f ; a+, b−
n (x) :=


T f, a+

n−1 (x) + 1
(b − a)n

(
f(b−) − T f, a+

n−1 (b−)
)

(x − a)n : n ≥ 1

f(b−) : n = 0,

and

T
f ; b−, a+
n (x) :=


T f, b−

n−1 (x) + 1
(a − b)n

(
f(a+) − T f, b−

n−1 (a+)
)

(x − b)n : n ≥ 1

f(a+) : n = 0,

are called the second Taylor’s approximation in the right neighborhood of a, and the
second Taylor’s approximation in the left neighborhood of b, respectively [8].

Theorem 2 in [14], by S. Wu and L. Debnath, illustrates the importance of the above-
mentioned Taylor’s approximations. We report it below:

Theorem 2.1. Suppose that f(x) is a real function defined on (a, b), and n is a positive
integer such that f (k)(a+), f (k)(b−), for k ∈{0, 1, 2, . . . , n}, exist.

(i) Supposing that (−1)(n)f (n)(x) is strictly increasing on (a, b), then for all x ∈ (a, b) the
following inequality holds :

T
f ; b−, a+
n (x) < f(x) < T f, b−

n (x). (2.1)
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Furthermore, if (−1)nf (n)(x) is strictly decreasing on (a, b), then the reversed inequality
of (2.1) holds.

(ii) Supposing that f (n)(x) is strictly increasing on (a, b), then for all x∈(a, b) the following
inequality also holds :

T
f ; a+, b−
n (x) > f(x) > T f, a+

n (x). (2.2)

Furthermore, if f (n)(x) is strictly decreasing on (a, b), then the reversed inequality of (2.2)
holds.

In the papers [4, 7, 9, 11, 12], Theorem 2.1 was specified as Theorem WD. Let us call
it now the Theorem on double-sided Taylor’s approximations. Note that the proof of
Theorem 2.1 is based on the L’Hospital’s rule for monotonicity. The same method has
been employed in the proofs of some theorems already published in [13,15,16].

For a continuous function f : [a, b] → R, let the continuous functions g1,2 : [a, b] → R
and h1,2 : [a, b] → R represent the lower and upper bounds of function f , respectively,
such that the following holds:

g1(x) ≤ f(x) ≤ h1(x)

and
g2(x) ≤ f(x) ≤ h2(x)

for all x ∈ [a, b]. Then, the following double-sided inequality holds:

max (g1(x), g2(x)) ≤ f(x) ≤ min (h1(x), h2(x))

for all x ∈ [a, b]. Let us name the above double-sided inequality the quad of bounds of the
function f . Based on Theorem 1, the following assertion holds:

Corollary 2.2. For n ∈ N and a real function f : (a, b) → R, let there exist f (k)(a+) and
f (k)(b−) for k ∈ {0, 1, 2, . . . , n}. Then the following holds:

(i) If n = 2ℓ is an even number and f (n)(x) is a strictly increasing function on (a, b),
then for every x ∈ (a, b):

max
(
T f, a+

n (x),Tf ; b−, a+
n (x)

)
< f(x) < min

(
T f, b−

n (x),Tf ; a+, b−
n (x)

)
.

(ii) If n = 2ℓ + 1 is an odd number and f (n)(x) is a strictly increasing function on
(a, b), then for every x ∈ (a, b):

max
(
T f, a+

n (x), T f, b−
n (x)

)
< f(x) < min

(
T

f ; a+, b−
n (x),Tf ; b−, a+

n (x)
)

.

(iii) If n = 2ℓ is an even number and f (n)(x) is a strictly decreasing function on (a, b),
then for every x ∈ (a, b):

max
(
T f, b−

n (x),Tf ; a+, b−
n (x)

)
< f(x) < min

(
T f, a+

n (x),Tf ; b−, a+
n (x)

)
.

(iv) If n = 2ℓ+1 is an odd number and f (n)(x) is a strictly decreasing function on
(a, b), then for every x ∈ (a, b):

max
(
T

f ; a+, b−
n (x),Tf ; b−, a+

n (x)
)

< f(x) < min
(
T f, a+

n (x), T f, b−
n (x)

)
.

It is worth noting that Theorem 2.1 and Corollary 2.2 can be reformulated for the
increasing (decreasing) functions; we only need to replace any strict inequality with “less
than” or “greater than”.
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3. Main results
1. Let ϕ : [a, b] → R be a continuous convex function (in connection with this assumption,
let us recall that a convex function defined on the open interval (a, b) is always Lipschitz
continuous on any subinterval [c, d] ⊆ (a, b)). Then

(∗)ϕ ϕ(x) ≤ P1(x) := ϕ(b) − ϕ(a)
b − a

(x − a) + ϕ(a) ,

for x ∈ (a, b]. For a continuous function φ : [a, b] → R and m ∈ N, let us define the m-th
antiderivative of function φ as follows:

φ(x)(−m) :=
∫ x

a

∫ x1

a
. . .

∫ xm−1

a
φ(xm) dxmdxm−1 . . . dx1.

Based on Cauchy’s formula [1], we have:

φ(x)(−m) = 1
(m − 1)!

∫ x

a
(x − s)m−1φ(s) ds

(
x ∈ [a, b]

)
.

Particularly, for m = 2, we have:

φ(x)(−2) =
∫ x

a
(x − s)φ(s) ds

(
x ∈ [a, b]

)
.

Further on, note that the function
F1(x) := P1(x)(−2) − ϕ(x)(−2)

is convex on [a, b] , because
F1(x)′′ = P1(x) − ϕ(x) ≥ 0 ,

for x ∈ [a, b]. From (∗)ϕ for ϕ = F1, we have:

F1(x) ≤ F1(b) − F1(a)
b − a

(x − a) + F1(a) ,

i.e.

P1(x)(−2)− ϕ(x)(−2) ≤
(
P1(x)(−2)− ϕ(x)(−2))|x=b −

(
P1(x)(−2)− ϕ(x)(−2))|x=a

b − a
(x − a)

+
(
P1(x)(−2)− ϕ(x)(−2)

)
|x=a .

Remark 3.1. It is worth noting that we obtain the same inequality if we replace the
functions P1(x)(−2) and ϕ(x)(−2) with the functions P1(x)(−2) + Ax + B and ϕ(x)(−2) +
Cx+D, where A, B, C, D ∈ R. This can be done in any next step of the following procedure
but leads to the same results.

Further on, we have
ϕ(x)(−2) ≥ P3(x) := P1(x)(−2)

−

(
P1(x)(−2) − ϕ(x)(−2)

)
|x=b −

(
P1(x)(−2) − ϕ(x)(−2)

)
|x=a

b − a
(x − a)

−
(
P1(x)(−2) − ϕ(x)(−2)

)
|x=a

= P1(x)(−2) +

(
ϕ(b)(−2) − P1(b)(−2)

)
−
(
ϕ(a)(−2) − P1(a)(−2)

)
b − a

(x − a)

+ϕ(a)(−2) − P1(a)(−2) .

Also,
F2(x) := ϕ(x)(−4) − P3(x)(−2)
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is a convex function on [a, b], because

F2(x)′′ = ϕ(x)(−2) − P3(x) ≥ 0 ,

for x ∈ [a, b].
Let us define the following sequence of functions

Fk(x) := (−1)k
(
ϕ(x)(−2k) − P2k−1(x)(−2)

)
,

for x ∈ [a, b] and k ∈ N. Suppose that the induction hypothesis holds:
Fk(x) is a convex function on [a, b].

From (∗)ϕ for ϕ = Fk, we have:

Fk(x) ≤ Fk(b) − Fk(a)
b − a

(x − a) + Fk(a) ,

i.e.
(−1)k

(
ϕ(x)(−2k) − P2k−1(x)(−2)

)

≤
(−1)k

(
ϕ(x)(−2k) − P2k−1(x)(−2)

)
|x=b − (−1)k

(
ϕ(x)(−2k) − P2k−1(x)(−2)

)
|x=a

b − a
(x − a)

+ (−1)k
(
ϕ(x)(−2k) − P2k−1(x)(−2)

)
|x=a .

Then
(−1)k+1ϕ(x)(−2k)

≥ (−1)k+1P2k+1(x)

:= (−1)k+1P2k−1(x)(−2)

+ (−1)k+1

(
ϕ(b)(−2k) − P2k−1(b)(−2)

)
−
(
ϕ(a)(−2k) − P2k−1(a)(−2)

)
b − a

(x − a)

+ (−1)k+1
(
ϕ(a)(−2k) − P2k−1(a)(−2)

)
.

Also,
Fk+1(x) := (−1)k+1

(
ϕ(x)(−(2k+2)) − P2k+1(x)(−2)

)
is a convex function on [a, b], because

Fk+1(x)′′ = (−1)k+1
(
ϕ(x)(−2k) − P2k+1(x)

)
≥ 0 ,

for x ∈ [a, b]. Now, by the principle of mathematical induction, Fk(x) is a convex function
on [a, b], for all k ∈ N. Thus, the following theorem is proved.

Theorem 3.2. For a continuous convex function ϕ : [a, b] → R and a sequence of real
polynomials P1(x), P3(x), . . . , P2k−1(x), . . . , where

P1(x) := ϕ(b) − ϕ(a)
b − a

(x − a) + ϕ(a) , (3.1)

and

P2k+1(x) := P2k−1(x)(−2) +

(
ϕ(t)(−2k) − P2k−1(t)(−2)

)
|
b

t=a

b − a
(x − a)

+
(
ϕ(t)(−2k) − P2k−1(t)(−2)

)
|t=a,

(3.2)

the following holds:
(−1)k+1ϕ(x)(−2k) ≥ (−1)k+1P2k+1(x) ,
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for all x ∈ [a, b] .

Remark 3.3. It is clear that dg(P2k+1) = 2k+1 for all k ∈ N∪{0}. Further on, assume that
ϕ is continuously differentiable on [a, b]. Then the mapping ϕ′ is monotonically increasing
and we can apply Corollary 2.2(ii) in order to see that (f = ϕ(−2k))

max
(
T f ;a+

2k+1(x), T f ;b−
2k+1(x)

)
≤ f(x) ≤ min

(
T f ;a+,b−

2k+1 (x), T f ;b−,a+
2k+1 (x)

)
, (3.3)

for x ∈ [a, b]. If k = 0, then the right inequality in (3.3) is equivalent with the estimate
obtained in Theorem 3.2. It is reasonable to ask can the estimate obtained by the use of
Theorem 3.2 be better than the corresponding estimate in (3.3)? The answer is affirmative
and to explain this, suppose first that a = 0 and ϕ(0) = 0. Then we have

P3(x) ≡ ϕ(b)
6b

x3 +
(

f(b)
b

− b2 ϕ(b)
6

)
x

and

max
(
T f ;0+

3 (x), T f ;b−
3 (x)

)
≡ max

(
ϕ′(0)

6
x3, f(b)+f ′(b)(x−b)+ϕ(b)(x − b)2

2
+ϕ′(b)(x − b)3

6

)
.

The situation in which P3(x) > max(T f ;0+
3 (x), T f ;b−

3 (x)) for x = b/2 occurs in the case
that ϕ(x) := xm/m!, x ∈ [0, b], where m > 1,

0 < b < 1/4 and 1 − m + 2
2

+ (m + 1)(m + 2)
8

− m(m + 1)(m + 2)
48

< 0. (3.4)

In actual fact, due to (3.4), we have

P3(b/2) = bm+2

(m + 2)!

[
(m + 1)(m + 2)

48
+ 1

2
− b

(m + 1)(m + 2)
12

]
>

1
2

bm+2

(m + 2)!

and

max
(
T f ;0+

3 (x), T f ;b−
3 (x)

)
= bm+2

(m + 2)!
max

(
0, 1 − m + 2

2
+ (m + 1)(m + 2)

8
− m(m + 1)(m + 2)

48

)
= 0.

Example 3.4. Define ϕ : (0, π/2] → R by

ϕ(x) = 2x

π
− sin x.

According to Theorem 3.2, we have P1(x) = 0,

P3(x) = 2
π

(
π2

24
+ 1

)
x,

and

P5(x) = 2
5

(
1 + π2

24

)
x2

6
− 2

π

[
1 + 2

π

(
1 + π2

24

)
π3

48
− π4

1920

]
.

Thus ϕ(x)(−2) ≥ P3(x) implies the Janous inequality (1.2) and ϕ(x)(−4) ≤ P5(x) implies
the following:

sin x

x
≥ 2

π

[
1 + 2

π

(
1 + π2

24

)
π3

48
− π4

1920

]
− 2

5

(
1 + π2

24

)
x2

6
+ x4

60π
. (3.5)

The inequality (3.5) refines the Janous inequality (1.2) on the interval (0, ξ), where ξ ∼
0.38.
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It is also worth noting that the Abel-Caccia inequality
sin x

x
≥ 2

π
+ π2 − 4x2

π3 , x ∈
(

0,
π

2

]
(3.6)

generalizes Li-Li’s inequality [10, (1.6)] on the interval (0, ξ), where ξ ∼ 1.218, as well as
that the Janous inequality, which has not been quoted in [10], generalizes Li-Li’s inequality
on the interval (η, π/2], where η ∼ 1.469. On the other hand, the Qi-Guo inequality

sin x

x
≥ 1 − 2(π − 2)

π2 x, x ∈
(

0,
π

2

]
(3.7)

is not comparable to the Abel-Caccia inequality and provides a better result than the Abel-
Caccia inequality on the interval (0, ζ), where ζ ∼ 0.222. In order to partially improve the
Abel-Caccia inequality and the Qi-Guo inequality using the methods established in this
paper, we will consider the function

f(x) := − sin x −
(

x3

6
− 2(π − 2)

π2
x4

12

)
, x ∈

(
0,

π

2

]
.

This function is convex since its second derivative is given by

f ′′(x) := sin x −
(

x − 2(π − 2)
π2 x2

)
, x ∈

(
0,

π

2

]
;

see (3.7). Arguing as in the proof of Theorem 3.2, we get that

sin x

x
≥ 2 (π − 2)

π2
x3

12
− x2

6
+ 2

π

(
1 + π3

48
− (π − 2) π2

96

)
, x ∈

(
0,

π

2

]
.

The last estimate generalizes (3.7) on the interval (η, π/2], where η ∼ 0.128, and the
estimate (3.6) on the interval (0, ζ), where ζ ∼ 0.99.

2. The computation of coefficients of real polynomials P2k+1(x) defined recursively by
(3.1)-(3.2) is rather non-trivial. In this part, we follow a slightly different approach which
will enable us to precisely formulate some inequalities for the power series representations
of functions.

Let a continuous convex function ϕ : [a, b] → R and an integer m ∈ N be given in
advance. Define

Gϕ,m(x) := −ϕ(x)(−m) +
(

ϕ(a) xm

m!
+ ϕ(b) − ϕ(a)

b − a

(
xm+1

(m + 1)!
− xm

m!
a

))
.

Then from the convexity of function ϕ, it holds:(
Gϕ,m(x)

)(m)
= −ϕ(x) +

(
ϕ(a) + ϕ(b) − ϕ(a)

b − a
(x − a)

)
≥ 0 ,

for x∈ [a, b]. Thus, we conclude that(
Gϕ,m(x)

)(m−1)

is an increasing function on [a, b].
Now, let us focus on the function (−1)(m−1)(Gϕ,m(x))(m−1). For an even number m = 2k

the function
(−1)(m−1)

(
Gϕ,m(x)

)(m−1)

is a decreasing function on [a, b], while for an odd number m = 2k + 1 the function

(−1)(m−1)
(
Gϕ,m(x)

)(m−1)
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is an increasing function on [a, b].
Keeping in mind Corollary 2.2 and the above consideration, we obtain the first part of

the following results (in the second parts, we replace convexity by monotonicity):

Theorem 3.5.

(i) For a given even number m = 2k ∈ N, and a continuous convex function ϕ :
[a, b] → R, the following is true:

min
(
T

Gϕ,m; a+, b−
m−1 (x),TGϕ,m; b−, a+

m−1 (x)
)

≥ Gϕ,m(x) ≥ max
(
T

Gϕ,m, a+
m−1 (x), T

Gϕ,m, b−
m−1 (x)

)
for x ∈ [a, b]; i.e.(

ϕ(a)xm

m!
+ ϕ(b) − ϕ(a)

b − a

(
xm+1

(m + 1)!
− xm

m!
a

))
− max

(
T

Gϕ,m, a+
m−1 (x), T

Gϕ,m, b−
m−1 (x)

)
≥
(
ϕ(x)

)(−m)≥(
ϕ(a)xm

m!
+ ϕ(b) − ϕ(a)

b − a

(
xm+1

(m + 1)!
− xm

m!
a

))
− min

(
T

Gϕ,m; a+, b−
m−1 (x),TGϕ,m; b−, a+

m−1 (x)
)

for x ∈ [a, b] .
(ii) (a) If m = 2k is an even number and ϕ : [a, b] → R is a continuous increasing

function, then for every x ∈ [a, b]:

max
(
T ϕ(−m), a+

m (x),Tϕ(−m); b−, a+
m (x)

)
≤ ϕ(x)(−m) ≤ min

(
T ϕ(−m), b−

m (x),Tϕ(−m); a+, b−
m (x)

)
.

(b) If m = 2k is an even number and ϕ : [a, b] → R is a continuous decreasing
function, then for every x ∈ [a, b]:

max
(
T ϕ(−m), b−

m (x),Tϕ(−m); a+, b−
m (x)

)
≤ ϕ(x)(−m) ≤ min

(
T ϕ(−m), a+

m (x),Tϕ(−m); b−, a+
m (x)

)
.

Theorem 3.6.

(i) For a given odd number m = 2k + 1 ∈ N, and a continuous convex function
ϕ : [a, b] → R, the following is true:

min
(
T

Gϕ,m; a+, b−
m−1 (x), T

Gϕ,m, b−
m−1 (x)

)
≥ Gϕ,m(x) ≥ max

(
T

Gϕ,m, a+
m−1 (x),TGϕ,m; b−, a+

m−1 (x)
)

for x ∈ [a, b]; i.e.(
ϕ(a)xm

m!
+ ϕ(b) − ϕ(a)

b − a

(
xm+1

(m + 1)!
− xm

m!
a

))
− max

(
T

Gϕ,m, a+
m−1 (x),TGϕ,m; b−, a+

m−1 (x)
)

≥
(
ϕ(x)

)(−m)≥(
ϕ(a)xm

m!
+ ϕ(b) − ϕ(a)

b − a

(
xm+1

(m + 1)!
− xm

m!
a

))
− min

(
T

Gϕ,m; a+, b−
m−1 (x), T

Gϕ,m, b−
m−1 (x)

)
for x ∈ [a, b] .

(ii) (a) If m = 2k +1 ∈ N and ϕ : [a, b] → R is a continuous increasing function, then
for every x ∈ [a, b]:

max
(
T ϕ(−m), a+

m (x), T ϕ(−m), b−
m (x)

)
≤ ϕ(x)(−m) ≤ min

(
T

ϕ(−m); a+, b−
m (x),Tϕ(−m); b−, a+

m (x)
)

.

(b) If m = 2k +1 ∈ N and ϕ : [a, b] → R is a continuous decreasing function, then
for every x ∈ [a, b]:

max
(
T

ϕ(−m); a+, b−
m (x),Tϕ(−m); b−, a+

m (x)
)

≤ ϕ(x)(−m) ≤ min
(
T ϕ(−m), a+

m (x), T ϕ(−m), b−
m (x)

)
.
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Regarding Theorem 3.5 and Theorem 3.6, we would like to raise some new issues:

Remark 3.7. It is worth noting that Theorem 3.5 and Theorem 3.6 continue to hold if
we replace the function ϕ(x)(−m) in the definition of function Gϕ,m and their formulations
by any function whose m-th derivative is a function ϕ, i.e., by a function of the form

ϕ(x)(−m) +
m−1∑
j=0

ajxj ,

where aj ∈ R for 0 ≤ j ≤ m − 1. As a very simple argumentation shows, we obtain the
same result by applying Theorem 3.5 (Theorem 3.6) separately to the function ϕ(x)(−m)

and to the function ϕ(x)(−m) +
∑m−1

j=0 ajxj . Further on, it is clear that the second part
of Theorem 3.5 (Theorem 3.6) is a simple reformulation of Corollary 2.2, only. It seems
very plausible that, in some concrete situations, Theorem 3.5(i) (Theorem 3.6(i)) can give
better estimates than Theorem 3.5(ii) (Theorem 3.6(ii)).

We continue by providing the following illustrative example in support of Corollary 2.2:

Example 3.8. Applying Theorem 3.6(i) with ϕ(x) := ex, x ∈ [0, 1], m = 3 and k = 1,
we obtain the approximation of function y = ex − 1 − x by the polynomial of fourth order
P4(x). If we apply Corollary 2.2 here, and approximate the function y = ex − 1 − x by the
polynomial Q4(x) of fourth order, with the meaning clear, then we obtain an extremely
similar but a slightly better result. It is also worth noting that we can extend the validity
of our result to the interval [−1, 0]; on the other hand, the reverse inequality Q4(x) ≥
ex − 1 − x, x ∈ [−1, 0] holds true. See https://www.desmos.com/calculator/msygc6b8c6
for more details, and [14, Proposition 1].

As a certain drawback of Corollary 2.2, we would like to note that, if n is an odd
natural number and f (n)(x) is a decreasing function on (a, b), then the majorization of
f(x) is possible only if we use the usually considered Taylor’s polynomials of function f
at the points a+ and b−; see the right-hand side of the inequality in Corollary 2.2/(iv).
But, applying Theorem 3.5(i) [Theorem 3.6(i)] we can majorize the function f by the
polynomial whose order is odd [even] and whose coefficients really depend on the both
parameters, a and b; cf. also Remark 3.3.

The classical situation is f(x) = ln x, x ∈ [a, b], where [a, b] ⊆ (0, ∞). Then f (m)(x) =
(−1)m−1(m − 1)!x−m for all x ∈ [a, b] and m ∈ N, so that the mapping f (m) is strictly
increasing (decreasing) if m is an even (odd) integer; see also [14, Proposition 2] which
has been stated a little bit incorrect since we must write ln a in the sums appearing in the
equation [14, (13)], if k = 0.

We close this section by applying our results to Kober’s inequality:

Example 3.9. Define ϕ : [0, π/2] → R by ϕ(x) := 1 − cos x, x ∈ [0, π/2]. Since ϕ′′(x) =
cos x ≥ 0 for all x ∈ [0, π/2], we can apply Theorem 3.2 to get several inequalities. In
particular, for k = 0, we have ϕ(x) ≤ P1(x) where P1(x) = (2/π)x, i.e., 1−(2/π)x ≤ cos x,
x ∈ [0, π/2], which is the left side of Kober’s inequality (1.1); for k = 1, we get a refined
inequality

1 + 2
π

(
π2

12
− 1

)
x − x2

2
+ x3

3π
≤ cos x, x ∈

(
0,

π

2

]
. (3.8)

The inequality (3.8) can be also obtained using Theorem 3.5. Putting a = 0, b = π/2 and
k = 1, i.e., m = 2 in Theorem 3.5, we get

x3

3π
− min

(
T

Gϕ,m; a+, b−
m−1 (x),TGϕ,m; b−, a+

m−1 (x)
)

= −1 − 2
π

(
π2

12
− 1

)
x ≤ x2

2
+ cos x,
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for x ∈
(
0, π

2
]

and

cos x ≤ −x2

2
+ x3

3π
− max

(
T

Gϕ,m, a−
m−1 (x), T

Gϕ,m, b+
m−1 (x)

)
= 1 − x2

2
+ x3

3π
, (3.9)

for x ∈
(
0, π

2
]
. The inequality (3.9) refines the right inequality of (1.1). Concerning the

obtained results, we feel it is our duty to note that the use of Corollary 2.2 provides here
better results compared with (3.8)-(3.9); see also [10, (1.12)-(1.13)].

4. Applications in the theory of analytical inequalities
The functions ex, ln x, sin x, cos x, sinh x and cosh x have been considered in [14, Propo-

sition 1 - Proposition 5], respectively. We first observe that these results can be further
generalized by using Corollary 2.2.

We finish by providing some application of our main results, Theorem 3.2-Theorem 3.6.
Suppose that ϕ : [a, b] → R is a real analytic function and can be represented by a

power series ϕ(x) =
∑∞

n=0 anxn/n!, x ∈ [a, b] ⊆ R. Put, formally, xj/j! ≡ 0 if j ∈ −N. Let

Gϕ,m(x) := −
∞∑

n=0
an

xn+m

(n + m)!
+
( ∞∑

n=0
an

an

n!
+
∑∞

n=0 an
(bn−an)

n!
b − a

( xm+1

(m + 1)!
− xm

m!
a
))

,

for x ∈ [a, b]. Then, for every j ∈ N and x ∈ [a, b], we have

G
(j)
ϕ,m(x) = −

∞∑
n=0

an
xn+m−j

(n + m − j)!
+
(∑∞

n=0 an
(bn−an)

n!
b − a

( xm+1−j

(m + 1 − j)!
− xm−j

(m − j)!
a
))

.

If ϕ is convex, then we can apply Theorem 3.5(i) to get that, for every even natural number
m and for every real number x ∈ [a, b], we have:

min

(
m−2∑
j=0

(
−

∞∑
n=0

an
an+m−1−j

(n + m − 1 − j)!
− (m − 1)

(∑∞
n=0 an

(bn−an)
n!

b − a

am−j

(m − j)!

))
(x − a)j

j!

+ 1
(b − a)m−1

(
Gϕ,m(b) +

m−2∑
j=0

( ∞∑
n=0

an
an+m−1−j

(n + m − 1 − j)!

+ (m − 1)

(∑∞
n=0 an

(bn−an)
n!

b − a

am−j

(m − j)!

))
(b − a)j

j!

)
(x − a)m−1,

m−2∑
j=0

(
−

∞∑
n=0

an
bn+m−1−j

(n + m − 1 − j)!
+

(∑∞
n=0 an

(bn−an)
n!

b − a

( bm−j

(m − j)!
− bm−1−j

(m − 1 − j)!
a
))) (x − b)j

j!

+ 1
(a − b)m−1

(
Gϕ,m(a) +

m−2∑
j=0

( ∞∑
n=0

an
bn+m−1−j

(n + m − 1 − j)!

+

(∑∞
n=0 an

(bn−an)
n!

b − a

( bm−j

(m − j)!
− bm−1−j

(m − 1 − j)!
a
))) (a − b)j

j!

)
(x − b)m−1

)
≥ Gϕ,m(x)

≥ max

(
m−1∑
j=0

(
−

∞∑
n=0

an
an+m−j

(n + m − j)!
− m

(∑∞
n=0 an

(bn−an)
n!

b − a

am+1−j

(m + 1 − j)!

))
(x − a)j

j!
,

m−1∑
j=0

(
−

∞∑
n=0

an
bn+m−j

(n + m − j)!
+

(∑∞
n=0 an

(bn−an)
n!

b − a

( bm+1−j

(m + 1 − j)!
− bm−j

(m − j)!
a
))) (x − b)j

j!

)
.

We can similarly apply Theorem 3.5(ii) or Theorem 3.6 here; it is clear that the obtained
inequality is very complicated and almost unusable in general case.
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5. Conclusion
In this paper, double-sided Taylor’s approximations and convexity of some functions were
discussed. Through a series of assertions and theorems, examples of quad of bounds of
appropriate functions were shown. Also, some new results in the theory of analytical
inequalities were obtained.
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