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ABSTRACT
Random developmental variation, or developmental noise, contributes to total 
phenotypic variation in the human species. Despite exhortations to examine it, 
especially with respect to human behavior and intelligence, there has been little 
research specifically devoted to doing so. Random developmental variation can be 
estimated in studies of fluctuating asymmetry and comparisons of monozygotic 
and dizygotic twins. Estimation of random developmental variation requires that 
both genotype and environment be held constant. In a small sample of bilaterally 
symmetrical traits (dermatoglyphic ridge counts, digit lengths, ear lengths and 
widths), I show how the random developmental component can be estimated. In 
these traits, the percentage of total phenotypic variation attributable to developmental 
noise ranges from 3 percent to more than 25 percent. Moreover, for dermatoglyphic 
ridge counts, fluctuating asymmetry and twin comparisons give essentially the same 
estimates.
Keywords: Bilateral symmetry, dermatoglyphics, fluctuating asymmetry, IQ, 
morphometric traits, phenotypic variation
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Introduction

Random phenotypic variation, or developmental noise, is an often-unrecognized 
component of phenotypic variation in humans, as it is in all eukaryotes (Gärtner, 1990; Lajus, 
Graham, and Kozhara, 2003; Graham, 2020, 2021). Population geneticists, for example, focus 
on genetic and environmental sources of variation, either ignoring the random developmental 
sources or inappropriately pooling them with the environmental sources (Falconer and 
Mackay, 1996). But random (stochastic) developmental sources can account for a significant 
proportion of the variation in natural populations (Wright, 1920; Lajus, Graham, and Kozhara, 
2003; Pinker, 2003). By not taking the random developmental component into account, one 
risks overestimating the true environmental component. For traits such as IQ, policy decisions 
may hinge on knowing the true environmental component. Moreover, random sources are 
easily estimated for many traits, especially bilaterally symmetrical ones.

Population geneticists have traditionally decomposed total phenotypic variation σ2
total 

into three main components: (1) genetic σ2
g, (2) environmental σ2

e, and (3) the interaction of 
environmental and genetic sources of variation σ2

ge (Falconer and Mackay, 1996). This can 
be represented as σ2

total = σ2
g + σ2

e + σ2
ge. These components of total phenotypic variation are 

generally estimated in twin and family studies. More recent approaches involving genome-
wide association studies (GWAS) involving single nucleotide polymorphisms (SNPs) take 
a similar approach (Lee et al., 2018), but often result in significantly lower estimates of 
heritability (Shen and Feldman, 2020; Friedman, Banich, and Keller, 2021). Few of these 
studies attempt to estimate the contribution of random developmental variation. In contrast, 
Alexander Kozhara (1989, 1994) has proposed decomposing total phenotypic variation into 
factorial σ2

factorial and stochastic σ2
stochastic components. The factorial component is the variation 

among individuals and represents the combined genetic and true environmental components. 
The stochastic component is the within-genotype (or within individual) variation, representing 
random developmental variation (plus measurement error if that is not considered).

The stochastic component can be estimated from twin studies—monozygotic and dizygotic 
twins raised in a common environment (compared with monozygotic and dizygotic twins 
raised separately). In most twin studies, additive genetic effects, shared environmental effects, 
and unique (unshared) environmental effects can be estimated. The unique environmental 
component includes random developmental variation and minor environmental differences 
that the twins experience. This has been done, for example, for human IQ to estimate genetic, 
environmental, and residual sources of variation (Rao, Morton, Lalouel, and Lew, 1982). 
The residual component corresponds to the stochastic component of Kozhara’s approach. 
For bilaterally symmetrical traits, the approach is simpler. If Ri is the trait value on the right 
side of individual i, and Li is the trait value on the left side of the same individual, then 
½ Var(Ri + Li) is the total phenotypic variation σ2

total and ½ Var(Ri – Li) is the stochastic 
component σ2

stochastic. The factorial component can be estimated as σ2
factorial = ½ Var(Ri + 

Li) – ½ Var(Ri – Li). If replicate measurements of R and L are made, then the contribution 
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of measurement error can be eliminated from the stochastic component by using a mixed-
model ANOVA followed by the estimation of variance components for among individual 
variation σ2

i, directional asymmetry σ2
s, fluctuating asymmetry σ2

s x i, and measurement error σ2
m 

(Leamy, 1984; Palmer and Strobeck, 1986; Graham, Raz, Hel-Or, and Nevo, 2010). The key 
assumption of both twin and asymmetry approaches is that both genotype and environment 
are held constant in monozygotic twins and right and left sides of the same individual.

Stephen Pinker (2003, 2004) has made a strong case for evaluating random developmental 
variation in humans. He argues that the personality differences among monozygotic twins 
cannot be explained by peer-group and other environmental differences. He throws a spotlight 
on a variety of random events inherent in development of the nervous system. This random 
developmental variation has been rarely quantified in humans. Studies that have examined 
random developmental variation in other species show how important it can be, on par with 
genetic and environmental components (Gärtner, 1990; Lajus, Graham, and Kozhara, 2003). 
Consequently, it makes sense to rephrase the sources of phenotypic variation not as nature 
and nurture, but as nature, nurture, and noise.

The Origins of Random Developmental Noise

Random processes involve chance, with negligible determinism (Tashman and Lamborn, 
1979; Williams, 1997). Stochastic variation exists at all scales in the hierarchical organization 
of life: molecules, organelles, cells, tissues, organs, and organ systems. At the molecular level, 
the classic example of a stochastic process is Brownian motion, the thermal buffeting of small 
particles and macromolecules by much smaller water molecules moving at high velocity. 

But random variation exists throughout the hierarchy of life. There is, for example, 
considerable within-cell variation among organelles, membrane-bound compartments in 
eukaryotic cells. These include mitochondria, chloroplasts, and leucoplasts. Mitochondria, 
in particular, are dynamic, growing and dividing continuously. The number of mitochondria 
per cell can vary widely. Most cells, for example, contain from 10 to several hundred 
mitochondria, although some types, such as liver cells, may have thousands (Wolfe, 1993). 
Even within a particular cell type and size, different cells contain different numbers of 
mitochondria (Tzagoloff, 2012; Robin and Wong, 1988). Finally, gene expression patterns 
often vary among neighboring cells of the same type (Elowitz, Levine, Siggia, and Swain, 
2002; Raser and O’Shea, 2005). Much of this variation is random.

Cells of a particular tissue type, such as neutrophils, vary in size, shape, numbers of 
organelles, and numbers of metabolites and signaling molecules. Moreover, there is 
considerable variation among tissues within an organ. Some of this variation is due to 
differentiation, which is entirely deterministic, but some is also stochastic. When animals 
age, for example, muscle tissue begins degenerating unequally (Finch and Kirkwood, 2000). 
And there is also random variation among organs. This is especially noticeable when there is 
more than one organ per individual. Mammals, for example, have a pair of kidneys and a pair 
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of lungs. Annelids have excretory organs in every body segment. Flowering plants may have 
several flowers. Finally, organ systems vary as well. To see such variation, one must usually 
examine isogenic lines raised in a common environment. This is because most animals have 
only one organ system per individual. 

Noise

 Noise consists of unpredictable changes of any quantity varying in time. According to 
Schroeder (1990), there are at least five kinds of noise: white, pink, brown, black, and anti-
persistent noise. Other authors may define these differently, but these colors of noise differ 
in their power spectra. Random events in a time series are white noise. The power spectrum 
of white noise is independent of frequency f ; it has a power spectrum proportional to 1/ f 0. 
Brown noise has a power spectrum proportional to 1/ f 2. Pink noise (1/ f ) lies between white 
and brown noise, and black noise (1/ f 3 ) lies beyond brown noise. White noise is said to be 
the least persistent (i.e., there is no memory); black noise is the most persistent. Beyond white 
noise in the opposite direction, however, is anti-persistent noise, which has a power spectrum 
proportional to 1/ f -n ; a fluctuation in one direction is likely to be followed by a fluctuation 
in the opposite direction. Pink, brown, and black noise are all commonly found in nature 
(Schroeder 1990).

Estimating the Stochastic Component of Human Phenotypic Variation

 I will first demonstrate how to estimate the stochastic component of human phenotypic 
variation with a data set of dermatoglyphic counts published by Holt (1952). If we assume 
that measurement error is zero, or negligible, which is reasonable for meristic data if two or 
more repeated counts are in agreement, we can estimate the total phenotypic variance σ2

total as 
½ Var(Ri + Li), where i = 1 to n. Following Kozhara (1989, 1994), the stochastic component 
σ2

stochastic is ½ Var(Ri – Li). The factorial variance σ2
factorial is then the difference between 

the total phenotypic variance and the stochastic variance. The variances are multiplied by 
½ to be consistent with the approach involving the mixed-model ANOVA of Leamy (1984). 
Holt (1952) studied 50 males and 50 females (parents from 50 families). In this instance, 
dermatoglyphic counts, the percentage contribution of random developmental noise is only 
3.2% of the total phenotypic variation (Table 1). There is virtually no difference between the 
estimates for males and females.

Table 1. Stochastic and factorial components of total phenotypic variance from Holt’s (1952) 
right and left dermatoglyphic counts (fingerprint ridges) of parents from 50 families (Holt’s 
Table 1). Sample size for both males and females is n = 50.

Sex Var(R + L) Var(R – L) σ2
total σ2

factorial σ2
stochastic

Percent 
Factorial

Percent 
Stochastic

Males 3130.24 100.39 1565.12 1514.92 50.197 96.79 3.207
Females 2877.45 92.95 1438.72 1392.25 46.473 96.77 3.230
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Holt (1952) also studied a small data set of monozygotic twins, some classified as 
psychotic or neurotic (n = 12 pairs) and others as normal (n = 6 pairs). The monozygotic twins 
offer an opportunity to distinguish stochastic and factorial components across monozygotic 
twins rather than across right and left sides. We take a parallel approach to what was done for 
right and left sides in Table 1. For each sibling (i = 1 to 2) in a pair, we have the total ridge 
count (Rij + Lij), where j = 1 to n, the pairs of twins. Total phenotypic variance σ2

total is then ¼ 
Var(R1j + L1j + R2j + L2j ) and the stochastic variance σ2

stochastic is ¼ Var[(R1j + L1j) – (R2j + 
L2j)] . As before, the factorial variance is σ2

factorial = σ2
total - σ2

stochastic. I use ¼ of the variance 
because each pair of twins represent 4 measurements. Because the stochastic component 
of males and females was nearly identical in the previous analysis, they are pooled for this 
one. As can be seen in Table 2, the stochastic component across normal twins in very close 
to the estimate across sides. The estimate for psychotic or neurotic twins is only slightly 
lower. Thus, we can safely assume, as Danforth (1919) had done (see Graham, 2021), that 
the comparisons across monozygotic twins and those between right and left sides of the same 
individuals are measuring the same phenomenon, developmental noise.

Table 2. Stochastic and factorial components of total phenotypic variance from Holt’s (1952) 
right and left dermatoglyphic counts (fingerprint ridges) of monozygotic twins [psychotic or 
neurotic, and normal (Holt’s Table 3)]. Males and females are pooled within each group.

Category
Var
(R1 + L1 + 
R2 + L2)

Var
((R1 + L1) – 
(R2 + L2))

σ2
total σ2

factorial σ2
stochastic

Percent 
Factorial

Percent 
Stochastic

Psychotic or 
Neurotic

7786.08 133.48 1946.52 1913.15 33.369 98.290 1.714

Normal 5093.9 174.80 1273.47 1229.77 43.700 96.57 3.4317

 The approach for bilaterally symmetrical traits that are continuous variables, with 
measurement error, is a little more complicated. It involves the estimation of variance 
components in a mixed-model ANOVA, first proposed by Leamy (1984) and then promoted 
by Palmer and Strobeck (1986). This ANOVA contains terms for sides (s), individuals (i), 
a sides x individuals interaction (s x i), and measurement error (m). Sides is a fixed effect, 
while individuals and measurement error are random. The sides x individuals interaction is 
a mixed effect. Most studies of fluctuating asymmetry test for a significant interaction effect 
because the interaction represents non-directional asymmetry (fluctuating asymmetry and 
antisymmetry). Graham, Raz, Hel-Or, and Nevo (2010), however, have argued that the only 
effect in the model worth testing is the sides effect (H0: μr = μl). The other three effects are 
either random (i, m) or mixed (s x i). It makes no sense to test the null hypothesis that H0: 
σ2

s x i = 0. The researcher knows beforehand that random variation between sides is always 
present. Unless one is considering highly canalized meristic traits, it is impossible that every 
individual is perfectly symmetrical. The most important aspect of the mixed-model ANOVA 
is the estimation of the estimable variance components for i, s x i, and m. These should be 
reported in all studies of fluctuating asymmetry, but rarely are.
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Table 3. Mixed-model ANOVA for the estimation of the estimable variance components in a 
study of fluctuating asymmetry. Table from Graham, Raz, Hel-Or, and Nevo (2010).
Source df MS Expected Mean Squares Interpretation
Sides 1 MSS σ2

m + R (σ2
s x l + N�σ2

s�) Directional asymmetry

Individuals N – 1 MSI σ2
m + R (σ2

s x l + 2σ2
l) Size/Shape variation

Sides x Individuals N – 1 MSS x I σ2
m + R σ2

s x l Fluctuating asymmetry and antisymmetry
Replicates (S x I) N(R – 1) MSerror σ2

m Measurement error

 To demonstrate the mixed-model ANOVA, I use data from Ozener and Graham (2014). 
There were four bilateral variables, digit 2 length, digit 4 length, ear length, and ear width. 
These were measured on right and left sides, with replicate measurements made for all. 
Although the original data set contains equal numbers of inbred and outbred children, I pool 
them here because the goal is to demonstrate how this is done. The variance components 
analysis was done in R, with the VCA and lme4 packages.

 The stochastic component of total phenotypic variance was less than 5% for the lengths of 
digits 2 and 4 (Table 4). In contrast, the stochastic component for ear width was 26%, and the 
stochastic component for ear length was 18.5%. These values are to be expected; digit length 
is undoubtedly under greater selection pressure than ear length and width. I should mention, 
however, that digit length ratios are sexually dimorphic (Zheng and Cohn, 2011) and are not 
the best traits for estimating the contribution of developmental noise if sex or gender are not 
taken into account.

Table 4. Variance components for human digit length, ear length and width, and measurement 
error. Data is from Ozener and Graham (2014).

Variable σ2
total σ2

factorial σ2
stochastic σ2

m
Percent 
Factorial

Percent 
Stochastic

Digit 2 Length 7.3433 6.9515 0.3187 0.000603 94.6633 4.3404
Digit 4 Length 7.6139 7.3410 0.2181 0.01810 96.4155 2.8639
Ear Length 11.6565 9.3838 2.1592 0.00077 80.5027 18.5241
Ear Width 6.9247 5.1141 1.8098 0.00078 73.8534 26.1354

Developmental Noise in Eukaryotes

 Sewall Wright (1920) was probably the first scientist to fully appreciate the importance of 
random developmental variation. In a population of guinea pigs that had undergone brother-
sister matings for 20 generations, he was amazed that “a guinea-pig with 20% of white in 
the coat may have a litter mate with as much as 90% of white” (Wright, 1920, p. 321). 
He employed path analysis to estimate the genetic, tangible environmental, and random 
developmental components of variance in the percentage of white in the coat. (This was 
one of the first uses of path analysis, a technique invented by Wright.) In an outbred control 
group, the genetic and tangible environmental components of total phenotypic variance were 
42.1% and 0.31% respectfully. The stochastic component was 57.5%. The inbred group, 
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in contrast, had almost no genetic variation (2.7%) after 20 generations of inbreeding. The 
environmental component accounted for only 5.5% percent of the total variance, while the 
stochastic component accounted for a startling 91.8% percent. As one might expect, the 
inbred guinea pigs were less variable overall (σ2

total = 0.364 compared to σ2
total = 0.643 for the 

outbred ones). The missing variation was largely the genetic component.

 Lajus, Graham, and Kozhara (2003) reviewed the literature on random developmental 
variation for several different species of eukaryotic plants and animals, including humans. 
For continuously distributed morphometric traits, the stochastic component accounted for 1 to 
40% of the total phenotypic variation, while for meristic traits (counts), the range of variation 
was more like 50 to 70%. These figures, however, are over-estimates because most of these 
studies did not include estimates of measurement error. Moreover, traits studied for estimates 
of fluctuating asymmetry may be specifically chosen because they are more variable than 
other traits.

Developmental Noise in Human Populations

 Very few studies involving humans include enough information to infer the stochastic 
component of phenotypic variation (Graham and Özener, 2016). Jolicouer (1963) studied 
symmetry of the humerus, femur, and tibia in humans and mink (Martes americana). 
Measurement error was not accounted for. The error component (developmental variation 
plus measurement error) was small (about 1% of the total variance) in both humans and mink. 
This might be expected for traits for which right-left symmetry is important.

IQ and Educational Attainment

The heritability of human intelligence, as measured by the Intelligence Quotient (IQ) has 
been controversial for more than a century. Most approaches partition phenotypic variation 
into just genetic and environmental components, rarely reporting the residual variation 
(Plomin and Loehlin, 1989). Recent papers have relied on genome-wide association studies 
(GWAS), identifying more than 100 single nucleotide polymorphisms (SNPs) that influence 
educational attainment (Lee et al., 2018; Bird, 2021), but these do not mention the residual 
variance either.

In contrast to most papers in the recent literature, Rao, Morton, Lalouel, and Lew (1982) 
report the residual variance in their estimates of various components of phenotypic variance 
in monozygotic twins raised together and apart. For one model, phenotypic homogamy, 
they estimated the additive genetic component at 31% of the total variance, and the cultural 
component at 42%. The covariance of these two components was 7.3%. The residual variance, 
which includes random developmental variation and measurement error, was estimated to be 
19.3% of the total variance in IQ. Under other models, the residual variance ranged from 
8.0% to 40.8% of the total variance. To the best of my knowledge, none of these studies have 
attempted to distinguish random developmental variation from measurement error.
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Conclusion

 Although there have been hundreds of studies of human fluctuating asymmetry in the 
literature, very few have presented the asymmetry variance of any trait as a proportion of the 
total phenotypic variation, after taking measurement error into account. Moreover, most studies 
fail to carry out replicate measurements. And as simple as this is to do, most studies that use 
the mixed-model ANOVA to estimate directional asymmetry and non-directional (fluctuating 
asymmetry and anti-symmetry) fail to estimate the variance components associated with these 
sources of variation. Those variance components (σ2

i  and σ2
s x i) correspond to the factorial 

(genetic and environmental) and stochastic (developmental noise) components described by 
Kozhara (1994). Moreover, without singling out any papers, most studies carry out useless 
hypothesis tests of dubious value (Graham, Raz, Hel-Or, and Nevo, 2010), when the goal 
should be estimating the variance components. Until this is done as a routine part of reporting 
results, we will not have a handle on how much random developmental variation contributes 
to human phenotypic variation across a range of traits.

 As simple as Kozhara’s approach is in practice, it is restricted to bilaterally symmetrical 
traits. Traits that exhibit directional asymmetry or antisymmetry are best avoided, or treated 
separately. Most corrections for directional asymmetry, for example, over-estimate the 
contribution of fluctuating asymmetry to the observed directional asymmetry (Graham, 
Emlen, Freeman, Leamy, and Kieser, 1998). There are also instances in which transitions 
occur between fluctuating asymmetry and both directional asymmetry and anti-symmetry 
(Graham, Emlen, and Freeman, 1993, 2003). 

 For humans, twins raised in a common environment is the only complementary approach 
not restricted to symmetrical traits. Twin studies, however, have their own difficulties, mostly 
with the assumption of identical environments. Once twins are born, they are subject to 
different perturbations and accidents of development. Nevertheless, these two approaches 
are the only ways of holding both genotype and environment constant. If measurement error 
can be estimated and accounted for, any differences between right and left sides and between 
monozygotic twins can be attributed to developmental noise.

Informed Consent: Written consent was obtained from the participants.
Peer Review: Externally peer-reviewed. 
Conflict of Interest: Author declared no conflict of interest. 
Grant Support: The author declared that this study has received no financial support.
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