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Abstract:  The  present  work  describes  the  successful  preparation  of  iron  oxide  nanoparticles  (NSB1)
stabilized  with  4-((2-hydroxybenzylidene)amino)benzoic  acid.  The  characterization  has  been  achieved
through ultraviolet visible (UV-Vis),  fourier transform infra-red (FTIR) spectroscopy and scanning electron
microscopy (SEM) with electron dispersive X-ray elemental analysis (EDX). These magnetic nanoparticles
have exhibited significant chemosensing properties in the aqueous media to screen Cr3+, Cd2+, Li+, Co2+, Al3+,
Pb2+, Ni2+ and Sr2+ ions. However, lead (Pb2+) ions have shown the highest selectivity as compared to other
metal ions without any interference in the competitive ion study. The detection limit of Pb 2+ ions was found
to be 1.7 µM by this nanosensor. The binding ratio and stoichiometry was found to be 1:1 as measured by
Job’s plot. The binding strength was also computed through Benesei-Hildebrand equation. 
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1. INTRODUCTION

Lead  ions  (Pb2+)  are  responsible  for  the
contamination of water, food and soil  due to their
nonbiodegradable  nature  and  accumulation  in  the
environment (1-3). However, trace amount of lead is
potent  as  toxicant  (4)  and pigment  (5).  It  acts  as
enzyme inhibitor when it coheres with SH group in
proteineous enzyme. Tetramethyl lead , an organic
compound  of  lead,  is  also  exceptionally  toxic
because it is prone to absorb by the body through
mucus  membrane  and  skin  (4).  Prolong
accumulation  of  Pb2+  is  lethal  for  peripheral  and
central  nervous system as it  causes numerous life
threatening  diseases  including  memory  loss,
nervous  muscles  paralysis,  hypertension,  kidney
failure,  abnormality  in  reproductive  system,  lungs
and liver damages (1-4, 6, 7). Lead pollution is also
inevitable due to excessive use of  lead containing
products in our daily life such as coal combustion,
gasoline, usage of paint in water supply system and

lead  acid  batteries.  Thereby,  development  of
sensitive and reliable methods for lead detection is
of great interest across the world.

Normally,  lead  analysis  has  been  done  through
various spectrophotometric methods such as liquid
phase  micro-extraction  with  atomic  absorption
spectroscopy (8), inductively coupled plasma mass
spectrometry  (ICP-MS)  (9,  10),  dynamic  light
scattering  technique  (11,  12),  functional  nucleic
acids (e.g.  DNA enzymes, aptamers)-based sensors
(13),  electrochemical  (14-16),  and optical  methods
including  fluorimetric  (17-22),  UV-Vis
spectrophotometry  (23),  chemiluminescence  (24),
visual detection (25), and photonic crystal  optrode
(26). In  present  studies,  we  report  the a  rapid
synthesis  of  magnetic  nanoparticles  under  mild
reaction conditions. These particles are utilized for
selective  detection  of  lead  ion  in  the presence  of
other metal ions resulted in the development of a
new chemosensor. 
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2. EXPERIMENTAL SECTION

2.1. Material
Para  aminobenzoic  acid  (PABA),  lead  acetate,
ferrous  sulfate,  ferric  chloride,  and  ammonium
hydroxide were purchased from Sigma Aldrich. 

2.2. Instrumentation
UV-Visible spectra were recorded on Shimadzu UV-
240 spectrophotometer in the range of 200-800 nm
with 1 cm path length in quartz cell whereas pH was
measured  by  PHS-3B  microprocessor  pH  meter.
Infrared spectra have been monitored through FTIR
spectrophotometer (Shimadzu IR-Prestige-21) using
KBr pellet. EIMS (Mass spectrometry, JEOL JMS600H-
1) was performed to confirm the molecular mass of
NSB  (iminobase).   SEM  (Scanning  electron
microscopy,  JEOL  from  Japan,  JSM-6380A;  Sample

coater  model#JFC-1500) was used to examine the
size  and  morphological  characterization  of
nanoparticle.  Moreover,  the elemental  composition
was obtained by the help of EDX (Energy-dispersive
X-ray spectroscopy,  Model  No:  EX-54175IMU,  JEOL
Japan,  the sample was  coated  up to  300  µA with
gold).

2.3. Synthesis of Schiff base
The  formation  of  4-((2-hydroxybenzyli-
dene)amino)benzoic  acid  (NSB)  was  done  by  the
addition  of  salicylaldehyde  (10.0  mmol,  1.06  mL)
into a methanolic solution of PABA (10.0 mmol, 1.37
g) in  a 100mL round bottom flask for  30 minutes
stirring  using  a  magnetic  stirrer  (Scheme  1).  The
obtained  yellow  precipitates  of  NSB  were  filtered
and washed with methanol (27). 

NH2

COOH CHO

N

+

OH

CH3OH

30 min, stir, rt
HOOC

HO

Scheme 1: Synthesis of 4-((2-hydroxybenzylidene)amino)benzoic acid (NSB).

4-((2-hydroxybenzylidene)amino)benzoic  acid:
Color yellow, Yield: 1.68 g (70%); m.p: 268 °C; FT-IR
(ῡmax,  cm-1):  (Stretch,  OH) 3426,  (sp2 C–H stretch)
2985,  (COO,  asymmetric)  1651,  (C=C,  aromatic)
1593, 1435, (HC=N) 1583, (COO, symmetric) 1377,
(C–N) 1288; UV (λmax, nm)  387 π-π* and 321 n-π*
transition (azomethine linkage), 245 π-π* transition
(aromatic ring); 1H NMR (DMSO-d6) δ : 11.14 (s, 1H,
COOH), 8.26 (d, 2H, J = 8.2 Hz, Ar), 8.18 (d, 2H, J =
8.2 Hz, Ar), 8.16 (s, 1H, HC=N), 7.68 (d, 2H, J = 8.1
Hz, Ar), 7.10 (t, 1H, J = 8.0 Hz, Ar), 6.84 (t, 1H, J =
8.0 Hz, Ar); EIMS (70 eV): m/z 241.

2.4.  Preparation  of  iron  oxide  nanoparticles
(NSB1)
NSB (0.62 g, 4.5 mmol) was dissolved in deionized
water (75 mL) at 80 ℃ in a conical flask. An aqueous
solution of FeCl3.6H2O (1.17 g in 5 mL, 4.3 mmol)
was dropwise added into the flask with stirring time
of 30 minutes. The aqueous solution of FeSO4·7H2O
(0.94 g in 2 mL, 3.3 mmol) was also added followed
by continuous stirring for 30 minutes. Then, NH4OH
(10  mL)  was  poured  and  continued  to  stir  for  60
minutes  until  the  brown suspension  of  NSB1  was
obtained (Scheme 2). Washing of nanoparticles was
done with deionized water and methanol.

278



Hasan et al. JOTCSA. 2023; 10(2): 277-286. RESEARCH ARTICLE

NSB1

FeSO4.7H2OFeCl3.6H20

NSB
Stabilizing agent

NH4OH
Reducing agent

 
Scheme 2: Synthesis of Iron nanoparticles (NSB1).

3. RESULTS AND DISCUSSION 

3.1. NSB and NSB1 comparative FTIR and UV
spectra
The  FTIR  spectrum  of  NSB  and  NSB1  were
comparatively studied. The absorption band at 3426
cm-1 attributes to -OH group whereas the stretching
frequencies  at  1593  and  1435  cm-1 confirms  the
presence  of  aromatic  C=C  functionality.  The
absorption  frequency  peak  at  about  1583  cm-1

accredites  to  HC=N  (imine)  functional  group.  The
shifting,  broadening,  and disappearance  of  certain
functional  groups  show  their  interaction  with
nanoparticles  for  stabilization.  The  absence  of
carboxylate  stretching  frequencies,  broadening  of
aromatic hydrogen peaks (1651 and 1377 cm-1) and

weakening  of  imine  group  intensity  shows  the
participation  of  these  functionalities  (Figure  1).
Hence  it  is  anticipated  that  imine  and  carbonyl
groups work for stabilization of iron nanoparticles.

Ultraviolet  visible  spectra  showed  maximum
absorbance at 387 and 321 nm  due to π-π* and n-π*
electronic  transition  (28)  for  imine  group.  On  the
other hand the absorption maxima at 244 nm was
assigned to aromatic acid (Figure 2).  The absorption
maxima  at  260  nm  is  also  in  accordance  to  the
reported value of   O2-/Fe3+ ligand to metal  charge
transfer transitions to confirm the formation of iron
oxide nanoparticles (29). The shifting of absorption
maxima also confirmed the involvement of certain
functional groups as capping and stabilizing agents. 
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Figure 1:  FTIR Spectra of NSB and NSB1.
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Figure 2: UV-visible spectra of NSB and NSB1.

3.2. SEM and EDX analysis of NSB1
The  morphology  of  iron  oxide  nanoparticles  was
analyzed  by  SEM  technique.  The  obtained  results

clearly showed the spherically shaped nanoparticles
(NSB1) with average size of 87-97 nm (Figure 3).

280



Hasan et al. JOTCSA. 2023; 10(2): 277-286. RESEARCH ARTICLE

Figure 3: SEM images of NSB1.

EDX  analysis  also  indicates  the  presence  of
elements  with  their  mass  percentage.  However
there is slight difference in calculated values due to
the presence of other elements. In addition to iron
and oxygen, carbon was also appeared due to the

interactions  of  nanoparticles  with  organic
compounds whereas minor quantity of chloride was
also  observed  from  other  source  (Figure  4).
Elemental  analysis  %  calculated  (observed):  Fe
69.94 (74.72), O 30.06 (21.26)
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Figure 4: EDX spectrum of chemical elements on iron oxide nanparticles.

3.3. Screening of metal ions
Various metals Cr3+, Cd2+, Li+, Co2+, Al3+, Pb2+, Ni2+

and  Sr2+ were  investigated  through  UV-Vis
spectrophotometric  method  as  shown in  Figure 5.
NSB1  showed  highest  absorbance  at  260  nm.

Presently  synthesized  magnetic  nanoparticles  are
found highly selective for lead because a prominent
enhancement  was  observed  with  Pb2+   whereas
other ions were remaıned unaffected.
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Figure 4: Screening of metals by using mixture of NSB1 and metalsalts solution (1:1).
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Figure 5a: Limit of detection was measured by the gradual decreasing in concentration of Pb2+ salt
solution.
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Figure 5b: Regression curve was plotted to determine uniform absorbance reduction with gradual
decreasing of concentration of metal ion.
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Figure 6: Competitive study of NSB1 to determine its selectivity in prevalence of other metal ions.

The binding detection limit for Pb2+ ions with NSB1 is
shown in Figure 6a. The absorbance was recorded
by  successive  decrease  in  concentration  of  lead
while keeping the concentration of NSB1 constant.
The  highest  selectivity  for  lead  and  NSB1  is
observed in the presence of multiple metal ions (100
µM) in the recognition study as shown in Figure 7.
The iron nanoparticles showed great affinity towards
lead ions and this association remained undisturbed
in the presence of other metal ions.

Behaviour  of  NSB1  towards  lead  ions  has  been
evaluated at various pH (2, 4, 6, 8, 10, and 12) as
presented  in  Figure  8.  The  Aqueous  solutions  of
NaOH and HCl were used to adjust the pH values.
The absorbance was decreased by addition of acid
due  to  protonation  of  imine  group  which  may
destabilize  nanoparticle.  However  the  absorbance
was found nearly unchanged , on increasing the pH.
It may be due to the presence of free imine group
which eventually stabilizes the NSB1.
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Figure 7: Binding of NSB1 with Pb2+ ion at different pH.

The binding ratio of complexation was measured by
Job’s plot in which absorbance was plotted against
mole  fraction  of  lead  ions  at  gradual  variation  of
mole fractions as shown in Figure 9. The favorable
binding stoichiometry between NSB1 and lead ions
was observed to be 1:1.

The  binding  constant  (Ka)  for  NSB1  and  metal
complex  was  determined  by  using  absorbance
titration data (Figure 10). This value was computed

through  Benesie-Hildebrand  equation  (Eq.  1)  and
found to be  16.66x103 M-1 (30).

1
A−A0

= 1
A1−A0

+ 1

A1−A0Ka [Pb
2+ ]

 (Eq.1)

Where  A0 is  the  absorbance  of  NSB1,  A  is  the
absorbance  in  the  presence  of  Pb2+,  A1  is  the
absorbance upon saturation with lead ion and Ka is
the binding constant of the complex. 

Figure 8: Job’s plot of the complexation of NSB1 along with lead.
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Figure 9: Stability constant of complexation measure by applying Benesi Hildebrand equation.

4. CONCLUSION 

A selective magnetic nanosensor stabilized by Schiff
base was prepared for rapid detection of lead ions
through  UV-Visible  spectrophotometer.  The
detection  of  lead  ions  has  been  carried  out  by
considering  its  toxic  effects  on  environment  and
human.  This  nanosensor  is  cost  effective  very
compitable to human body due to the presence of
iron. The obtained nanoparticle revealed the limit of
detection  upto  1.7  µM  for  lead  ions  and  its
selectivity in the presence of other metal ions. The
binding ratio and stoichiometry was found to be 1:1
as measured by Job’s plot. The binding strength was
also  computed  through  Benesei-Hildebrand
equation. 
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