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Abstract

This paper presents a new iterative algorithm for approximating the invariant points of Suzuki's generalized
nonexpansive maps. Some strong convergence theorems are developed in the context of CAT(0) space. We
also included examples to demonstrate the proposed algorithm's convergence nature. Lastly, the stability of
the said iterative algorithm is discussed to validate the results.
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1. Introduction

Fixed point theory has an explosive growth for nonexpansive maps over the past �ve decades. A self map
S de�ned on a nonempty subset of a CAT(0) space is nonexpansive if d(Sa, Sb) ≤ d(a, b) for all a, b ∈ C.
Once the existence of a invariant point for a mapping has been determined, an algorithm for calculating
value of invariant point is essential. Banach contraction principle tells us that the successive iterative method
(Picard iterative) can be used to �nd the invariant point for a contraction map and the sequence {an} is
formed from any arbitrary a1 ∈ C using the subsequent algorithm :

an+1 = San, n ≥ 1.
However, the Picard iteration in the convergence part has not been successfully employed in approximating
the �xed point of some mappings such as a nonexpansive self-mapping on a metric space. Next, we give
some example showing the claiming.

Email addresses: anjupanwar15@gmail.com (Anju Panwar), yadav.pinki2015@gmail.com (Pinki Lamba),
drsengar2002@gmail.com (Santosh Kumar)

Received :April 3, 2022; Accepted: June 15, 2022; Online: June 23, 2022



A. Panwar, P. Lamba, S. Kumar, Results in Nonlinear Anal. 5 (2022), 263�272. 264

Example 1.1. Consider a mapping S : [0, 1] → [0, 1] de�ned by Sa = 1 − a for all a ∈ [0, 1]. Then S is a
nonexpansive mapping with a usual metric and invariant point of S is 1

2 . If one chooses as a starting value
a = a0 such that a0 ̸= 1

2 , then Picard iteration of S yield that

a1 = Sa0 = 1− a0,

a2 = Sa1 = a0,

a3 = Sa2 = 1− a0,

...

This concludes that Picard iteration does not converge to a �xed point of S. Based on this problem, other
approximation techniques are needed to approximate it.

Throughout this paper, {αn}, {βn} are real sequences in (0, 1) . In the following years, a number of
iterative algorithms for approximating the invariant point for nonexpansive maps have been developed by
the researchers. To approximate the invariant point for nonexpansive maps, the Mann [13] iterative algorithm
has been widely used. The sequence {an} is formed from any arbitrary a1 ∈ C in the subsequent way in this
iterative algorithm :

an+1 = (1− αn)an + αnSbn.

Next, we give an example Ishikawa [10] proposed another iterative algorithm for approximating the invariant
point for a nonexpansive map, in which {an} is described iteratively from a1 ∈ C by

an+1 = (1− αn)an + αnSbn

bn = (1− βn)an + βnSan

for all n ≥ 1.
Ullah and Arshad [18] introduced the following M∗ iterative algorithm de�ned as:

a1 ∈ C, an+1 = Sbn

bn = S((1− αn)an + αnScn)

cn = (1− βn)an + βnSan

for all n ≥ 1.
Ullah and Arshad [19] proposed the following M iterative algorithm in 2018: for any arbitrary a1 ∈ C, the
sequence {an} is de�ned as

an+1 =Sbn

bn =Scn

cn =(1− βn)an + βnSan

for all n ≥ 1.
They established that the maps satisfying condition (C) has weak and strong convergence theorems. They
provided a numerical example of a map that satis�ed condition (C) and compared the proposed iterative
algorithm to the existing algorithms numerically.
The above development in iterations encourage us to introduce a new three step iterative algorithm de�ned
as:

a1 ∈ C, an+1 = Sbn

bn = S((1− αn)an + αnScn)

cn = S((1− βn)an + βnSan)
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for all n ≥ 1.
On the other hand in 2008, Suzuki [15] developed the de�nition of generalized nonexpansive maps, that is
the mapping satis�es a condition known as condition (C). A self map S de�ned on nonempty subset C of a
CAT(0) space E, is seen to satisfy condition (C) if

1

2
d(Sa, Sb) ≤ d(a, b) =⇒ d(Sa, Sb) ≤ d(a, b), ∀a, b ∈ C.

For such maps, Suzuki [15] found invariant point results and demonstrated that the map which satis�es con-
dition (C) is weaker than nonexpansive and more powerful than quasi-nonexpansive. A number of scholars
have recently looked into invariant point theorems for maps (see e.g.[1, 2, 7, 14, 16, 17, 23]).
Motivated by above work, our aim is to establish a new iterative algorithm and show that the map satisfying
condition (C) in CAT(0) space has strong convergence theorems. Also, we provide an example of maps that
meets condition (C) but is not nonexpansive maps and then prove analytically the stability of our algo-
rithm and compare the convergence of the suggested iterative algorithm against that of existing algorithms
numerically.

2. Preliminaries

Let (E, d) be a metric space and a, b ∈ E with d(a, b) = l. A geodesic path from a to b is a isometry
c : [0, l] → E such that c(0) = a and c(l) = b. The image of a geodesic path is called a geodesic segment.
A metric space E is a (uniquely) geodesic space, if every two points of E are joined by only one geodesic
segment. A geodesic triangle ∆(a1, a2, a3) in a geodesic space E consists of three points a1, a2, a3 of E
and three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic triangle
∆(a1, a2, a3) is the triangle ∆(a1, a2, a3) := ∆(a1, a2, a3) in the Euclidean space R2 such that

d(ai, aj) = dR2(ai, aj), ∀ i, j = 1,2,3.
A geodesic space E is a CAT(0) space, if for each geodesic triangle ∆(a1, a2, a3) in E and its comparison
triangle ∆ := ∆(a1, a2, a3) in R2, the CAT(0) inequality d(a, b) ≤ dR2(a, b) is satis�ed for all a, b ∈ ∆ and
a, b ∈ ∆. A thorough discussion of these spaces and their important role in various branches of mathematics
are given [3, 4, 6].
The famous mathematician Kirk [11, 12] developed a more broader outcome to investigate the invariant
point outcomes in the context of complete CAT(0) space which is one approach. Since then, a large number
of papers have been published on �xed point theory of di�erent maps and iterative algorithms in CAT(0)
space. Riemannian manifolds with nonpositive sectional curvature provide a motivating example of CAT(0)
space. �We compose (1 − s)a

⊕
sb for the unique point c in the geodesic segment joining from a to b such

that
d(c, a) = sd(a, b), d(c, b) = (1− s)d(a, b).

We also denote by [a, b] the geodesic segment joining from a to b, i.e., [a, b] = {(1 − s)a
⊕
sb : s ∈ [0, 1]}.

For the sake of simplicity, we recall a few de�nitions, exceptions and conclusions.

Example 2.1. [5] When endowed with the induced metric, a convex subset of Euclidean space En is CAT(0)
and any real inner product space (not necessarily complete) is a CAT(0) space.

Example 2.2. [3] Attach together three copies of the ray [0,∞) ⊂ R by gluing at the point 0. The resulting
space has nonpositive curvature.

Lemma 2.3. [5] Let E be a CAT(0) space. Then
d((1− s)a

⊕
sb, c) ≤ (1− s)d(a, c) + sd(b, c) for all a, b, c ∈ E and s ∈ [0, 1].

Proposition 2.4. [15] Let C be a nonempty subset of a CAT(0) space E and S : C → C be any mapping.
Then :
(i) If S is nonexpansive then S is a Suzuki generalized nonexpansive mapping.
(ii) If S is a Suzuki generalized nonexpansive mapping and has a �xed point, then S is a quasi-nonexpansive
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mapping.
(iii) If S is a Suzuki generalized nonexpansive mapping, then

d(a, Sb) ≤ 3d(a, Sa) + d(a, b) for all a, b ∈ C.

Lemma 2.5. [15] Let C be a weakly compact convex subset of a CAT(0) space E. Let S be a mapping on
C. Assume that S is a Suzuki generalized nonexpansive mapping. Then S has a �xed point.

A mapping S : C → C is called contraction if there exists θ ∈ (0, 1) such that d(Sa, Sb) ≤ θd(a, b), for all
a, b ∈ C. Many other stability outcomes for numerous invariant point iterative algorithms and for di�erent
groups of nonlinear maps were established based on the �ndings of Harder [8], Harder and Hicks [9], who
introduced and studied the de�nition of stable �xed point iterative algorithm.

De�nition 2.6. [9] Let {tn}∞n=0 be an arbitrary sequence in C. Then, an iterative procedure an+1 = f(S, an)
converging to �xed point p, is said to be S− stable or stable with respect to S, if for ϵn = d(tn, f(S, tn)), n =
0, 1, 2, ...., we have

limn→∞ ϵn = 0 if and only if limn→∞ tn = p .

Lemma 2.7. [20] Let {ψn}∞n=0 and {ϕn}∞n=0 be nonnegative real sequences satisfying the following inequality:
ψn+1 ≤ (1− ϕn)ψn + ϕn,

where ϕn ∈ (0, 1), for all n ∈ N,
∞∑
n=0

ϕn = ∞ and
ϕn
ψn

→ 0 as n→ ∞ then lim
n→∞

ψn = 0.

Lemma 2.8. [21] Let {pn} , {qn} and {rn} be sequences of nonnegative numbers satisfying the inequality
pn+1 ≤ (1 + qn)pn + rn for all n ≥ 1.

If
∞∑
n=1

qn <∞ and
∞∑
n=1

rn <∞, then lim
n→∞

pn exists.

3. Convergence theorems in CAT(0) space

In this section, we prove convergence theorems in the sense of CAT(0) space via an iterative algorithm
(3.1) for the maps which satis�es the condition (C). To approximate the invariant point of maps which meets
condition (C), we �rst transform the new iterative algorithm in the context of CAT(0) space.

cn = S((1− βn)an
⊕
βnSan)

bn = S((1− αn)an
⊕
αnScn)

an+1 = Sbn

(1)

for all n ≥ 1.
Now, we arrive at the subsequent conclusions :

Theorem 3.1. Consider a self map S de�ned on a nonempty closed convex subset C of a complete CAT(0)
space E with F (S) ̸= ϕ and also S meets the condition (C). For arbitrary a0 ∈ C. Let the sequence {an} be
de�ned as in (1). Then, lim

n→∞
d(an, p) exists for any p ∈ F (S).

Proof. Suppose p ∈ F (S) and c ∈ C. As S satis�es condition (C),
1

2
d(p, Sp) ≤ 0 ≤ d(p, c) ⇒ d(Sp, Sc) ≤ d(p, c).

Using Proposition 2.4, we get
d(cn, p) = d(S((1− βn)cn

⊕
βnSan), p)

≤ d((1− βn)an
⊕
βnSan, p)

≤ (1− βn)d(an, p) + βnd(San, p)
≤ (1− βn)d(an, p) + βnd(an, p)
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= d(an, p).
d(bn, p) = d(S((1− αn)an

⊕
αnScn), p)

≤ d((1− αn)an
⊕
αnScn, p)

≤ (1− αn)d(an, p) + αnd(Scn, p)
≤ (1− αn)d(an, p) + αnd(cn, p)
≤ (1− αn)d(an, p) + αnd(an, p)
= d(an, p).

Similarly, we have
d(an+1, p) = d(Sbn, p)

= d(Sbn, Sp)
≤ d(bn, p)
≤ d(an, p).

Hence, {d(an, p)} is a non-increasing sequence of real numbers that is bounded below by zero and so conver-
gent. Therefore, lim

n→∞
d(an, p) exists for all p ∈ F (S).

Theorem 3.2. Assume C, E, S and {an} are the same as in Theorem 3.1. If {an} is a sequence de�ned as
in (1), then limn→∞d(San, an) = 0.

Proof. By Theorem 3.1, it follows limn→∞d(an, p) exists, say limn→∞d(an, p) = x.
⇒ limn→∞supd(bn, p) ≤ x and limn→∞supd(cn, p) ≤ x.
Since S meets condition(C), we get
d(San, p) ≤ d(an, p), d(Sbn, p) ≤ d(bn, p) and d(Scn, p) ≤ d(cn, p). This suggests that

lim sup
n→∞

d(San, p) ≤ x

lim sup
n→∞

d(Sbn, p) ≤ x

lim sup
n→∞

d(Scn, p) ≤ x.

Now, x = lim
n→∞

d(an, p) = lim
n→∞

d(an+1, p) = lim
n→∞

d(Sbn, p),

x = lim
n→∞

d(Sbn, p) ≤ lim
n→∞

d(bn, p)

implying that lim
n→∞

d(bn, p) = x.

d(Sbn, p) ≤ d(Sbn, Scn) + d(Scn, p)
≤ d(Sbn, Scn) + d(cn, p).

Taking limit as n→ ∞ on both sides, we have
lim
n→∞

d(Sbn, Scn) = 0.

d(bn, p) ≤ (1− αn)d(an, p) + αnd(Scn, p)
= (1− αn)d(an, p) + αnd(Scn, San) + αnd(San, p)
= d(an, p) + αnd(Scn, San)

which gives lim
n→∞

infd(San, Scn) = 0

Now, d(San, an) = d(San, Sbn)
≤ d(San, Scn) + d(Scn, Sbn).

Therefore, lim
n→∞

d(San, an) = 0.

Theorem 3.3. Assume C, E, S and {an} are the same as in Theorem 3.1. Also C is compact. Then {an}
strongly converges to a invariant point of S.

Proof. By Theorem 3.2, we have lim
n→∞

d(San, an) = 0. Since C is compact, so there is a subsequence {anq}
of {an} such that {anq} converges strongly to p for some p ∈ C. By Proposition 2.4, we have

d(anq , Sp) ≤ 3d(anq , anq) + d(anq , p), for all n ≥ 1.
Letting k → ∞ we get p ∈ F (S). Since, by Theorem 3.1, lim

n→∞
d(an, p) exists for any p ∈ F (S), so {an}

strongly converge to p.
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4. New three step iterative algorithm and its convergence
analysis

We demonstrate that our iterative algorithm (1) is stable and has a fast convergence rate when compared
to other iterative algorithms in this section.

Theorem 4.1. Let S be a self contraction map de�ned on a nonempty closed convex subset of a complete
CAT(0) space E. Let {an} be an iterative sequence formed by (1) with real sequences {αn}∞n=0 and {βn}∞n=0

in [0,1] pleasing
∞∑
n=1

αnβn = ∞. Then the iterative algorithm (1) converges to the unique invariant point p

of S.

Proof. Following Xue [22], S has a unique a invariant point. Thus, we will prove that an → p for n → ∞.
Using (1) we get

d(cn, p) = d(S((1− βn)an
⊕
βnSan), p)

≤ θd((1− βn)an
⊕
βnSan, p)

≤ θ(1− βn)d(an, p) + βnd(San, p)
≤ θ(1− βn)d(an, p) + θβnd(an, p)
= θ[1− βn(1− θ)]d(an, p).

Similarly, d(bn, p) = d(S((1− αn)an
⊕
αnScn), p)

≤ θd((1− αn)an
⊕
αnScn, p)

≤ θ(1− αn)d(an, p) + αnd(Scn, p)
≤ θ(1− αn)d(an, p) + αnθd(cn, p)
≤ θ2 [(1− αn)d(an, p) + αnd(an, p)θ[1− βn(1− θ)]d(an, p)]
≤ θ2 [(1− αn) + αnθ(1− βn(1− θ))] d(an, p)
≤ θ2 [(1− αnβn(1− θ)] d(an, p).

Hence
d(an+1, p) = d(Sbn, p) ≤ θd(bn, p)

≤ θ3 [1− αnβn(1− θ)] d(an, p).
The following inequalities result from repeating the above algorithms

d(an+1, p) ≤ θ3(1− αnβn(1− θ))d(an, p)
d(an, p) ≤ θ3(1− αn−1βn−1(1− θ))d(an−1, p)
d(an−1, p) ≤ θ3(1− αn−2βn−2(1− θ))d(an−2, p)
...
d(a1, p) ≤ θ3(1− α0β0(1− θ))d(a0, p).

We can quickly deduce

d(an, p) ≤ d(a0, p)θ
3(n+1)

n∏
k=0

(1− αkβk(1− θ))

where 1− αnβn(1− θ) < 1 because θ ∈ (0, 1) and αnβn ∈ [0, 1] for all n ∈ N . As we know 1− a ≤ e−a for
all a ∈ [0, 1]. Therefore, we get

d(an+1, p) ≤
d(a0, p)θ

3(n+1)

e(1−θ)

n∑
k=0

αnβn

.

Taking the limit on both sides of above inequality produces lim
n→∞

d(an, p) = 0, i.e. an → p for n → ∞, as

necessary.

Theorem 4.2. Assume C, E, S and {an} be same as in Theorem 4.1. Then the iterative algorithm (1) is
S-stable.
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Proof. Let {tn} ⊂ E be any arbitrary sequence in C. Assume the sequence formed by (1) is an+1 = f(S, an)
converging to invariant point p and ϵn = d(tn+1, f(S, cn)). We will demonstrate that lim

n→∞
ϵn = 0 ⇐⇒

lim
n→∞

tn = p.

Consider limn→∞ ϵn = 0. Using Theorem 4.1, we have
d(tn+1, p) ≤ d(tn+1, f(S, tn)) + d(f(S, tn), p)

= ϵn + d(tn+1, p)
≤ ϵn + θ3(1− αnβn(1− θ))d(tn, p).

De�ne ψ = d(tn, p), ϕ = αnβn(1 − θ) ∈ (0, 1) and φn = ϵn, since θ ∈ (0, 1), αn, βn ∈ [0, 1], for all n ∈ N
and limn→∞ ϵn = 0 implies that Lemma 2.7 conditions have been met. Hence limn→∞ d(tn, p) = 0 =⇒
limn→∞ tn = p.
For the converse part, let us consider that limn→∞ tn = p, we get

ϵn = d(tn+1, f(S, tn))
≤ d(tn+1 + p) + d(f(S, tn), p)
≤ d(tn+1 + p) + θ3(1− αnβn(1− θ))d(tn, ).

It gives, limn→∞ ϵn = 0. So, the iterative algorithm (1) is S-stable.

Next, we �rst gave some examples of a Suzuki generalized nonexpansive mapping which is not nonex-
pansive.

Example 4.3. [16] Let E = R be a CAT(0) space and C = [0, 1] . We can see that C is a compact convex
subset of E. De�ne a mapping S : C → C by

Sa =

{
1− a : a ∈ [0, 0.2),
a+4
5 : a ∈ [0.2, 1].

Also, Thakur et al. [16] showed that S satis�es condition (C) but is not a nonexpansive mapping.
Here, using Example 4.4, we illustrate the e�ciency of our new iterative algorithm (1).

Example 4.4. Consider a map S : [0, 1] → [0, 1] de�ned as

Sa =

{
1− a : a ∈ [0, 13),
a+2
3 : a ∈ [13 , 1].

(2)

We must demonstrate that S satis�es the condition(C) but not nonexpansive. If a = 33
100 , b = 1

7 , we can
easily derive

d(Sa, Sb) = |Sa− Sb| = |1− 33
100 − 7

9 | =
97
900 >

1
300 = d(a, b).

Therefore, S is not a nonexpansive map. Consider the following cases to see that S is a Suzuki generalized
nonexpansive map:
Case a: Consider a ∈ [0, 13), so

1
2d(a, Sb) =

1−2a
2 ∈ (16 ,

1
2 ]. For

1
2d(a, Sa) ≤ d(a, b), we come to the fact that

1−2a
2 ≤ b− a, i.e., b ≥ 1

2 , so b ∈ [12 , 1]. We get

d(Sa, Sb) = | b+2
3 − (1− a)| = | b+2−3+3a

3 | = | b+3a−1
3 | < 1

3 .
Also d(a, b) = |a− b| > |13 − 1

2 | =
1
6

Therefore, 1
2d(a, Sb) ≤ d(a, b) =⇒ d(Sa, Sb) ≤ d(a, b).

Case b: Consider a ∈ [13 , 1), so
1
2d(a, Sb) = 1

2 |
a+2
3 − a| = 1

6(2 − 2a). So, for 1
2d(a, Sa) ≤ d(a, b), we get

2−2a
6 ≤ |a− b|, then there are two options:

(A) : b > a, then 2−2a
6 ≤ b−a =⇒ b ≥ 2+4a

6 =⇒ b ∈ [59 , 1] ⊂ [13 , 1]. So, d(Sa, Sb) = |a+2
3 − b+2

3 | = 1
3d(a, b) ≤

d(a, b).
Therefore, 1

2d(a, Sb) ≤ d(a, b) =⇒ d(Sa, Sb) ≤ d(a, b).
(B) : Consider a > b , then 2−2a

6 ≤ a − b =⇒ b ≤ 8a−2
6 =⇒ b ∈ [19 , 1]. So, here is the situation: a ∈ [13 , 1]

and b ∈ [19 , 1]. We can conclude a ∈ [13 , 1] and b ∈ [13 , 1] is already in (A). Hence consider a ∈ [13 , 1] and

b ∈ [19 ,
1
3 ] ⊂ [0, 13), then d(Sa, Sb) = |a+2

3 − (1− b)| = |a+3b−1
3 |. Then d(Sa, Sb) ≤ 1

3 and d(a, b) > 1
3 . Hence

d(Sa, Sb) ≤ d(a, b).
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Table 1: Iterative values of (1), M∗ and M algorithms

n new iteration (1) M∗ iteration M iteration

1 0.9 0.9 0.9

2 0.993574074086111 0.992944444480556 0.9922222223888890

3 0.999587074760719 0.999502191360573 0.999395061741358

4 0.999973465729994 0.999964876834885 0.999952949246550

5 0.999998294927465 0.999997521865572 0.999996340496954

6 0.999999890433302 0.999999825153849 0.999999715371985

7 0.999999992959325 0.999999987663633 0.999999977862266

8 0.999999999547572 0.999999999129601 0.999999998278176

9 0.999999999970927 0.999999999938589 0.999999999866080

10 0.999999999998132 0.999999999995667 0.999999999989584

11 0.999999999999880 0.999999999999694 0.999999999999190

12 0.999999999999992 0.999999999999978 0.999999999999937

13 1 0.999999999999999 0.999999999999995

14 1 1 1

Table 1 shows the iterative values generated by (1), M∗ and M algorithms. Graphic description is given
in the Figure 1, where sequence of each iterative algorithm is depicted by an. We can see right away that
our new iterative algorithm (1) is the �rst to converge than the other schemes.

Figure 1: Convergence of (1), M∗ and M iterative algorithms to the invariant point 1 of map S.

5. Conclusion

In this paper, new iterative algorithm to approximate invariant points of generalized nonexpansive maps
is introduced. This scheme has its own importance when the linear version of invariant point outcomes
is extended to nonlinear domains. We broaden a linear version of convergence outcomes at the invariant
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point for a map that meets the condition (C) for the newly implemented iterative algorithm to nonlinear
CAT(0) spaces in this article. Our new iterative algorithm is now accessible to computer scientists, engineers,
physicists and mathematicians to solve various problems more e�ciently.

6. Some open problems

1. It will be fascinating to achieve a generalization of the convergence and stability theorems to commu-
tative, amenable semigroups as in the case of general metric space.

2. It will be fascinating to achieve a generalization of convergence and stability results in the framework
of CAT(k) space(k > 0).
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