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Abstract:  Commercial lipase (triacylglycerol lipase (EC 3.1.1.3) of  Burkholderia cepacia (40 U/mg) in its crude form has
been used in the kinetic resolution of enzyme-catalyzed reaction of 1,2-O-isopropylidene-sn-glycerol and vinyl acetate as
acyl donor in the organic solvent n-hexane. It was observed that the enantioselectivity is in the range of 2.295 to 2.235 while
ΔΔGD,L -73.408 to  -75.682  kJ/mol  at  35  °C  and 55  °C,  respectively  .  This  shows that any  increase  in  the  reaction
temperature led to an increased final conversion, but it has no effect on the enantioselectivity of the reaction. Also, the
thermodynamic effect of temperature on the Gibbs free energy in the lipase-catalyzed kinetic resolution of the reaction
between racemic isopropylidene glycerol and vinyl acetate remains in the small range. By using this type of analysis, the
researchers may predict  if  they should increase or decrease the temperature to enhance the selectivity of  enzyme in
catalyzing a reaction.
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INTRODUCTION

One of the elusive hallmarks in formation of life within the
prebiotic era on the Earth is how Nature chose a specific
chirality (or handedness) or called biological homochirality.
Thereof the homochirality of amino acids (L-enantiomers),
sugars (D-enantiomers), proteins, and DNA became one of
the biochemical characteristic properties in the life on Earth
(1,2).  Although  Nature  prefers  almost  exclusively
stereochemical  imperative  chiral  molecules  in  living
organisms as  single  enantiomers,  yet  the  left-  and  right-
handed molecules of a compound will deterministically form
in equimolar composition (a racemic mixture) when they are
synthesized in the laboratory in the absence of some type
of directing template (3,4). 

However, about a century later it is drastically determined
that the phenomenon of chirality implements a key role in
pharmaceutical,  agricultural,  food,  and  other  chemical
industries as well as in the life of plants and animals (5–7).
Since  it  is  evident  that  the  chirality  is  a  fundamental
characteristic of life processes, the individual enantiomers
of chiral chemicals in a racemic mixture may divulge very
different bioactivities and/or biotoxicities  (8). It means that
one enantiomer may be active (eutomer)  while  the other
one (distomer) might be inactive, useless, harmful, or toxic

(poisonous),  sometimes  in  certain  cases  producing
undesired side effects (9–11).  

Over  the  last  two  decades,  stereochemistry  has  been
gaining  prime  importance  in  chemical  technologies
associated with the synthesis, separation, identification, and
analysis of target eutomers from undesired distomers in a
racemic  compound,  (12),  particularly  in  the  fields  of
contemporary  pharmaceutical,  agrochemical,  food,  smell,
material sciences, and many other rapidly expanding areas
of research (13–15).

Accordingly, it became necessary to search an appropriate
process  to  separate  racemic  compounds  into  their
enantiomers  to  produce  optically  active  compounds.
Therefore,  the  different  methods  to  differentiate  between
various  enantiomers  can  be  used  like  crystallization
(14,16,17),  separation  with  membranes  (18–21),  liquid-
liquid  extraction  (22),  capillary  electrophoresis  (23,24),
chromatography  (25),  and  kinetic  resolution  (KR)(26–33).
Among  these  methods,  the  resolutions  based  on  kinetic
effects in chemical reactions can be one of several major
types  but  are  typically  divided  between  enzyme  and
inorganic  catalyzed  systems.  The  enzyme-catalyzed
transformations  to  produce  enantiomerically  pure
compounds  have  been  progressively  considered  in  the
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manufacture of a wide range of single enantiomers in the
industry. Kinetic resolution is defined as a process where
the two enantiomers of a racemate are transferred to the
product  much  faster  than  the  other  (34).  Due  to  the
structural  diversity  of  chiral  compounds,  in  the  frame  of
substrate  specificity,  a  huge  amount  of  enzymes  were
recently  used  for  enantioseparation  to  determine  their
activity and selectivity in the kinetic (35).

Among these numerous amounts of  enzymes, the kinetic
resolution using lipases provide high enantiomeric excess
(ee)  and  can  be  cost  effective  compared  to  other
techniques.  However,  there  are  some  factors  that  affect
activity  and  selectivity  of  lipase-catalyzed  reactions,
including the nature of the acylating agent, temperature, pH
and solvent selection (26). This paper scrutinizes if there is
any temperature effect on the kinetic resolution of lipases in
the  transesterification  of  isopropylideneglycerin  with  vinyl
acetate as acyl donor.

Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are a
versatile  group  of  biocatalysts,  which  are  ubiquitous
enzymes catalyzing the hydrolysis of fats and oils (36). The
number  of  available  lipases  has  increased  considerably
since  the  1980s. Their  natural  physiologic  function  is  to
hydrolyze  triglycerides  into  diglycerides,  monoglycerides,
fatty acids,  and glycerol  during digestion  (37,38). Lipases
are  frequently  used  in  lipid  modification  and  in  organic
synthesis.  Enzymes in this class have been shown to be
1,3- regioselective for triglycerides, selective for fatty acid
chain length and degree of fatty acid saturation (36,39).

In addition to their natural function of hydrolyzing carboxylic
ester  bonds,  lipases  can  catalyze  esterification,  inter-
esterification,  and  transesterification  reactions  in  non-
aqueous  media.  The  broad  substrate  specificity  makes
lipases  usable in  a  wide range of  applications,  and thus
their  market  is  still  growing  (40).  This  versatility  makes
lipases the enzymes of choice for potential applications in
the dairy and food industries, in the production flavor and
aroma components,  in  oleo-chemical  industry,  in  medical
applications  (37,41–43),  in  the  detergent,  leather,  textile,
cosmetic,  and  paper  industries  (38,44),  and  in  the
production  of  optically  active  compounds  for  the
agrochemical  and  pharmaceutical  industries  (38,45,46).
Beyond all these applications, they are widely used in the
synthesis of organic compounds (47) to produce homochiral
compounds from racemates via enantiomeric discrimination
or  from  prochiral  or  meso  compounds  via  enantiotropic
differentiation. The  resolution  of  racemic  compounds  via
hydrolysis  in  aqueous  media  or  trans/esterification  in
organic  media  cannot  always  be  achieved  in  a  highly
enantioselective manner (48,49). Enantioselectivity can be
improved  by  several  methods,  e.g.,  the  screening  of
enzymes (50,51), the modification of substrates (17,18), or
the modulation of reaction conditions. 

Temperature, which  is an easily controllable parameter in
the experimental conditions, is a potential factor that may
affect  the  enantioselectivity  of  the  enzymatic  reactions
(49,52).  However, its  effect  on  the  stereoselectivity  of
enzymatic  transformations  has  not  been  investigated
sufficiently  (48,53–55).  There  have  been  remarkably  few
systematic studies on the effects of temperature variation
on the stereochemistry of enzymatic reactions  (56).  Some

examples  of  an  improvement  of  enantioselectivity  by
temperature-dependent  reversal  of  stereochemistry  were
observed (57–59). 

Eyring’s transition state theory  (60)  defines the relation of
temperature with the reaction rate constant as:

k=κ
k BT

h
K (Eq. 1)

where k= reaction rate constant, κ= transmission coefficient,
kb=  Boltzmann  constant,  T=  temperature,  K=  equilibrium
constant.

The equilibrium constant is related with Gibbs free energy
through Van’t Hoff equation.

ΔG=−RTlnK (Eq. 2)

Enzymatic  enantioselectivity  E  is  defined  as  the  ratio  of
specificity constants of the two competing enantiomers (61).
Aydemir  modified  this  concept  showing  that  the
enantioselectivity is especially the ratio of kinetic constants
of reactions for the competing racemates at the activated
enzyme site (62). The specificity constant of an enzyme for
its substrates is defined as the ratio kcat/K for the D and L
racemates (59,63).

E=
D
L

=(kcat /K )D/ (kcat /K )L (Eq. 3)

The kinetic constant, kcat/K, is related to the thermodynamic
term ΔG, as shown in  following equation  from transition-
state theory (64).

ΔΔG=−RTlnE (Eq. 4)

where ΔΔG* is  the difference in  free energy of  activation
between the D and L racemates (59).

The temperature dependence of the activation free energy
is given by Gibbs-Helmholtz equation:

ΔΔG*=ΔΔH *
−TΔΔS* (Eq. 5)

Substituting  Eq. (4) into  Eq. (5), the relationship between
enantioselectivity, enthalpy, and entropy is derived (56):

lnE=( ΔΔS
*

R )−( ΔΔH
*

RT ) (Eq. 6)

if no enantiomeric discrimination of the enzyme between the
D and L isomers occurs, then E = 1 and ΔΔG* = 0. In this
case, the enthalpy and entropy contributions are equal to 

Tr = ΔΔH*/ΔS* (Eq. 7)

The temperature is thus the "racemic temperature" (56,65).
This analysis predicts that temperature dependent inversion
of  stereochemical  configuration  occurs.  At  temperatures
below Tr., the ΔΔG* is dominated by ΔΔH*, and the E value
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of  product  will  decrease  as  T  increases,  until  it  reaches
unity at Tr. In contrast, at temperatures above Tr. the ΔΔG*

is  dominated by TΔΔS*,  and the E value increases as T
increases.  Therefore,  the  optimization  of  enantiomeric
enzyme catalyzed reactions may require either the raising
or lowering the reaction temperature (56,66).

The  influence  of  the  reaction  temperature  on  the
enantioselectivity appears to depend on the nature of the
reaction involved (67). Increasing the temperature normally
leads to  an increase of  the enzymatic  reaction rate,  and
obviously  resulted in  a  higher reaction rate and a higher
final  conversion  (57).  At  the  same  time,  the
enantioselectivity  often  decreases  and  a  loss  of  enzyme
stability can be observed (68). 

Identification of  ΔΔGD,L  as the free energy difference that
determines the enantiomeric ratio opens the possibility to
predict E (69). Studies on the temperature dependence of E
allow for a thermodynamic analysis for the enantioselectivity
of  enzymes,  which  is  caused  by  enthalpic  and  entropic
activation  energy  differences  of  the  enantiomers.  These
studies have also revealed the entropic contributions to be
nearly  as  big  as  the  enthalpic contribution,  whereas  the
entropic activation energy depends on the interactions with
solvent molecules and enantiomers in transition state at the
active site  (63,70).  Although this is a dichotomy between
enthalpy  and  entropy  which  results  in  the  observed
temperature  dependence  (65),  the  enthalpic  and  the
entropic  components  of  the  differential  activation  free
energy,  ΔΔGD,L were both important to the overall success
of the kinetic resolution of the enantiomers (70). 

Although increasing the temperature usually decreased the
enantioselectivity,  high enantioselectivity can be expected
even at high temperatures if the structure of the substrate is

ideal  from  the  mechanistic  point  of  view  (71).  The  acyl
donor  may  greatly  influence  the  enantioselectivity  and
reaction  rate of  acylation  (72).  A  slight  elongation  of  the
alkyl chain of the vinyl esters caused dramatic changes in
the  enantioselectivity  (73).  It  was  the  highest  when  vinyl
acetate was used as acyl donor and became lower with the
chain length of the fatty acid moiety (52). The position of the
double  bond  has  also  affected  the  reaction  rate  and
enantioselectivity (42).  The bulky  aromatic  group allowed
only one enantiomer to fit  in the active site,  whereas for
aliphatic compounds the enzyme could not distinguish well
between both forms (43). An addition of a suitable amount
of  water  can  alter  dramatically  the  behavior  of  their
enantioselectivities as a function of the temperature (55).

As well  as the effect  of  the structure of  substrate by the
medium engineering point of  view, the temperature effect
on the enantioselectivity discriminates itself quite differently
depending on the type of reaction. As given on the (Table
2), it is reported that E value may increase or decrease or is
unaffected  with  lowering  or  increasing  the  reaction
temperature. 

The  non-covalent  interactions  of  the  substrate  with  the
residues  at  the  active  site  determine  the  thermodynamic
and  kinetic  properties  of  the  complex  (74).  Above-
mentioned  Equation  4  gives  the  relationship  between
enantioselectivity  and  temperature  via  the  free  activation
energy ΔΔG. The equations 5 and 6 relate further the free
energy to enthalpic and entropy contributions. Ottosson (70)
has studied that the enthalpic and the entropic components
of  the  differential  activation  free energy,  ΔΔGD,L are  both
important to the overall success of the kinetic resolution of
the  enantiomers.  The  knowledge  of  how  this  enzyme
distinguishes  between  enantiomers  and  the  roles  of
enthalpy and entropy on a molecular level (75). 

Table 1: some research for the change of E with variation in temperature.

Temperature Enantioselectivity Ref.

high high (76,77)

high low (58,71,78–81)

low High (82,83)

low low (84)

high or low no change (67,85,86)

If the TΔΔS and ΔΔH terms for a desired reaction forming
enantiomeric  products  are  closely  balanced,  then  the
reaction  will  be  subject  to  stereochemical  modulation  by
changes in temperature.  If  the ΔΔG is  dominated by the
TΔΔS  term,  then  reactions  will  show  the  maximal
stereochemical  discrimination  at  the  highest  temperature
compatible  with  the  stability  of  the  enzyme –  cofactor  –
substrate system. If  the substituent has polar groups that
interact with the enzyme by ionic attraction or by hydrogen
bonding, the ΔΔH term will be quite large and will dominate
the free energy of activation, resulting in little or no effect of
temperature. If the major contributor to ΔΔG is ΔΔH, then
the  stereochemical  purity  of  the  reaction  product  will  be
maximal  at  the  lowest  temperature  at  which  the enzyme
exhibits useful reactivity (56).

In  this  work,  the  effect  of  temperature  on  the  reaction
conditions  on  the  transesterification  of
isopropylideneglycerin  (IPG),  catalyzed  by  Burkholderia
cepacia lipase (BCL), previously known as  Pseudomonas
cepacia,  has  been  investigated.  IPG,  [+]-Solketal  (1,2-O-
isopropylidene-sn-glycerol  (IPG);  [+]-2,2-dimethyl-1,3-
dioxolane-4-methanol)  (Figure  1),  is  an important  starting
compound for the preparation of many C3-synthons which
are  widely  applied  in  organic  synthesis  (87),  as  an
interesting chiral intermediate for pharmaceutical industries,
since  it  is  an  important  starting  chiral  synthon  in  the
synthesis  of  diglycerides,  glyceryl  phosphates,
tetraoxaspiroundecanes,  and  of  many  biologically  active
compounds,  such  as  phospholipids,  β-adrenoceptor
antagonists  propranolol,  and  platelet  aggregating  factors
(88–91). The esterification of isopropylidene-glycerin (IPG)
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with vinyl  acetate  as an  acyl  donor  (92–94) in  n-hexane
(95–97) has been examined, and the effect of temperature

on the enantioselectivity of  B.Cepacia lipase for D, L-IPG
was investigated.
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Figure 1: Reaction of Isopropylidenglycerin with vinyl acetate.

MATERIALS AND METHODS

Chemicals and Lipase
Lipase  from  Burkholderia  cepacia (40  U/mg,  Fluka)  was
used  in  its  crude  form.  The  organic  solvent  n-hexane
(Fluka),  1,2-O-isopropylidene-sn-glycerol  (Fluka),  vinyl
acetate as acyl donor (Merck) were used without any further
purification.

The analysis has been performed by gas chromatography
(CC-14A, Shimadzu) with a chiral column of FS-Hydrodex®

ß-3P,  (Heptakis  (2,6-di-O-methyl-3-O-pentyl)-ß-
cyclodextrin)  with a length of 25 m and an inside diameter
of 0.25 mm (Macherey-Nagel, Düren, Germany).

Reactions in organic solvents
Preliminary  experiments  of  related  reactions  in  organic
solvent  were  carried  out  in  a  20  mL volume  of  a  glass
vessel sealed with a rubber stopper. In the experiments, 10
mmol of racemate (IPG) and 30 mmol of excess component
vinyl acetate as an acylating agent were mixed to complete
the  total  reaction  medium  of  10  mL with  n-hexane.  By
adding 50 mg of  Burkholderia cepacia lipase, the reaction
started. The reaction mixture is incubated in water bath and
agitated with magnetic stirring. The magnetic stirrer speed

was 600 rpm. Samples withdrawn during the reaction were
centrifugated  and  diluted  with  acetone  before  gas
chromatographic (GC) analysis.

Determination of enantiomeric excess and conversion
Samples  from  the  reaction  mixture  were  diluted  with
acetone. Enantiomeric  purities were calculated from peak
areas  determined  by  gas  chromatography  using  a  chiral
stationary  phase  (FS-Hydrodex® ß-3P,  Macherey-Nagel,
Germany).  From  the  detected  data,  the  conversion  was
calculated as described by Chen et al. (68).

RESULTS 

Lipase-catalyzed trans-esterification between D, L-IPG and
vinyl  acetate  was  studied.  The  product  IPG-acetate  and
acetaldehyde as  a  by-product  were  produced during  this
reaction.  As  shown  in  Figure 1,  the  overall  reaction  is
irreversible  and  therefore  shifts  itself  towards  product
formation  (96,98).  Transesterification  in  n-hexane  was
performed at different temperatures viz. 35 °C, 40 °C, 45
°C, 50 °C and 55 °C, respectively. The conversion and the
enantioselectivity  of  BCL was calculated as described by
Chen (99) and Aydemir’s enantioselectivity definition (62).
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Figure 2. Conversion vs. time profile of IPG at different temperatures. 
(10 mmol IPG, 30 mmol vinyl acetate, 50 mg Lipase BC. 10 mL solution)

The  rate  of  a  chemical  reaction  increases  with  rising
temperature according to Van't Hoff equation. In this work, it
is  determined  that  the  reaction  rate  and  the  conversion
were risen at the same time with increasing temperature till
50 °C,  then decreases above this temperature (Figure 2).
The detected optimum temperature 50 °C is convenient with

the  lipase  properties  on  the  prospect  of  the  enzyme
supplying  company  (Fluka).  Above  this  temperature,  the
activity of the lipase descends resulting in decrease of the
conversion. That might possibly result in the fact that the
enzyme  structure  starts  to  be  destroyed along  with  the
rising temperature above 50 °C. 

Table 2: Temperature vs. E values.
Temp
.(°C)

Max. 
conversion

E value ΔΔGD,L (kj)

35 61 2.295 -73.408
40 65 2.267 -73.497
45 69 2.254 -74.147
50 93 2.242 -74.818
55 79 2.235 -75.682

The enantiomeric ratio was determined according to Rakels et.al. with the following equation (100).

E=

ln [
1−eeS

1+( eeSeeP ) ]
ln [

1+eeS

1+( eeSeeP ) ]
(Eq. 8)

The  results  of  the  experiments  to  determine  the
temperature  dependency  of  enantioselectivity  in  the
esterification of IPG were given in Figure 3. The conversion
reached from 61% at 35 °C to the maximum conversion of
93% at 50 °C, after 4 hours of reaction time. As a result, it

became  evident  that  the  enantioselectivity  (E)  remained
almost unchanged with the temperature in the mean value
of 2.26, tending to convert more L-form than D- form of the
IPG (Table 2). 
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Figure 3: Enantioselectivity vs. time at different temperatures.

CONCLUSION

The  enhancement  of  enantioselectivity  to  produce  the
desired  racemic  product  is  recently  studied  by  many
laboratories.  In  order  to  achieve  the  enhancement,  the
physical  conditions  of  the  reaction  medium  has  been
altered.  The acyl  donor,  solvent type,  the effect  of  water
content on the enzyme flexibility, and the temperature are
the  commonly  studied  parameters.  Among  these
parameters, it is examined that the enantioselectivity alters
irregularly  with  temperature.  Thus,  it  could  be  concluded
that  the  molecular  structure  of  the  substrate  indirectly
determines  the  dependency  of  enantioselectivity  on
temperature,  by  defining  the  contribution  of  enthalpic  or
entropic effect of the activation energy. The enthalpic and
entropic  values  are  equal  to  each  other  at  a  certain
temperature. Consequently, the enantiomeric ratio (E) value
becomes 1. This temprature is called racemic tempreature,
at which a racemate is formed. Above or below the racemic
temperature, a decrease in temperature will cause either a
decrease or increase in enantioselectivity.  As a result it is
thus suggested to  consider the effects of  temperature on
the  selectivity  of  enzymatic  reactions  (101) in  the  future
works. 

In the present work, the effect of temperature on the lipase
catalyzed  reaction  between  isopropylidene  glycerol  and
vinyl  acetate  was  analyzed  thermodynamically,  since  the
activation  energy  ΔGD,L  of  each  enantiomer  is  related  to
temperature and entropy (TΔS), the value of ΔGD,L has been
calculated to analyze how it changes with enantioselectivity
at temperatures between 35 – 55 °C. It is observed that the
enantiomeric  excess  value  is  2.295  and  ΔGD,L=  -73.408
kJ/mol  at  35  °C,  while  EE=  2.235  and  ΔGD,L=  -75.682
kJ/mol.  It  shows that  the  higher  enantioselectivty  can  be
obtained at low temperatures (35  °C)   having low entropy
value. Since there is no huge amount of difference in EE or
ΔG values calculated in this work, it can be interpreted that
the  reaction  between  vinyl  acetate  and  isopropylidene
glycerol is not strongly dependent on the temperature, and

increase in temperature causes decrease in ΔG, because
TΔS becomes greater than ΔH (ΔΔH* < TΔΔS*). Finally, this
work  adds  that  low  temperatures  are  suggested  for  the
selectivity of one enatiomer to other in the reaction studied.
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