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Abstract: Examination of infant brain development is extremely important in terms 
of early diagnosis of possible brain dysfunctions. Brain MRI structures are usually 
studied by segmentation into white matter (WM), gray matter (GM) and 
cerebrospinal fluid (CSF) tissues. Low-density contrast between tissues in infant 
brains complicates the segmentation process. It is seen that the segmentation 
process is done very well with the Deep Learning architectures that have been 
developed recently. In this study, an architecture called Deep Learning-based iSeg-
WNet is proposed for segmentation of infant brain MRI images. Appropriate 
hyperparameters were determined by different studies and the performances of 
different architectures were compared. Performance comparison was made 
according to Dice metric. In experimental studies, it has been observed that the use 
of MRI images in T1w and T2w images together increases the segmentation 
performance. At the same time, high performance was obtained by using Dice Loss 
as a cost function and MinMax normalization as a data normalization process. When 
the segmentation performances of different architectures are examined, it is seen 
that the proposed architecture segments CSF (%91.8), GM (%89) and WM (%86) 
tissues with the highest success. The proposed architecture is available at 
https://github.com/GaffariCelik/iSeg-WNet. 
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Öz: Bebek beyin gelişiminin incelenmesi, doğabilecek beyin fonksiyon bozuklarının 
erken teşhisi açısından son derece önemlidir. Beyin MRI yapıları genellikle beyaz 
madde (WM), gri madde (GM) ve beyin omurilik sıvısı (CSF) dokularına 
bölütlenmesi ile işlemi ile incelenmektedir.  Bebek beyinlerinde dokular arasındaki 
düşük yoğunluklu kontrast bölütleme işlemini zorlaştırmaktadır. Son dönemlerde 
geliştirilen Derin Öğrenme mimarileri ile bölütleme işleminin son derece çok iyi 
yapıldığı görülmektedir. Bu çalışmada bebek beyin MRI görüntülerinin 
bölütlenmesi için Derin Öğrenme tabanlı iSeg-WNet adıyla bir mimari önerilmiştir. 
Farklı çalışmalar ile uygun hiperparametreler belirlenmiş ve farklı mimarilerin 
performansları karşılaştırılmıştır. Performans karşılaştırılması Dice metriğine göre 
yapılmıştır. Yapılan deneysel çalışmalarda, T1w ve T2w çekimlerdeki MRI 
görüntülerinin beraber kullanılması bölütleme performansının artırdığı 
gözlemlenmiştir. Aynı zamanda maliyet fonksiyonu olarak Dice Loss ve veri 
normalizasyon işlemi olarak da MinMax normalizasyonun kullanılması ile yüksek 
başarım elde edilmiştir. Farklı mimarilerin bölütleme performansları 
incelendiğinde, önerilen mimari ile CSF(%91.8), GM (%89) ve WM (%86)  
dokularını en yüksek başarı ile bölütlediği görülmüştür. Önerilen mimariye 
https://github.com/GaffariCelik/iSeg-WNet adresinden erişilebilir. 

Erciyes University 
Journal of Institue Of Science and 

Technology Volume 38, Issue 3, 2022 

Erciyes Üniversitesi 
Fen Bilimleri Enstitüsü Dergisi 
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1. Introduction

The advancement of brain imaging techniques has played an important role in the study of brain anatomy and 
functions. Magnetic Resonance Imaging (MRI) technique is widely used to characterize disorders in brain structure 
and to extract structural information from various contrast images. Brain MRI segmentation plays an important 
role in analyzing changes in brain structures that occur over time. Brain MRI segmentation is very important in 
the pre-diagnosis of Alzheimer's, Parkinson's, Schizophrenia Multiple Sclerosis and other brain diseases, and the 
detection of diseased tissues in the post-diagnostic stages [1]. However, brain MRI segmentation is a difficult task 
due to the presence of noise, density irregularity, movement, and partial volume effects during image acquisition 
[2]. 

Thanks to the advances in MRI imaging of the infant brain anatomy, it was ensured that a healthy image was 
obtained with the obtained high-resolution images. MRI images can be viewed in different scans such as T1-
weighted (T1w), T2-weighted (T2w), resting state functional MRI (rsfMRI), and diffusion-weighted MRI (dMRI). 
MRI images taken in different modalities offer important opportunities in the study of brain anatomy and analysis 
of early postnatal brain development. There are significant differences in MRI images according to age groups. This 
difference is clearly understood in Figure 1. Baby brain images are more difficult to process and analyze than adult 
brains. There are great differences in a baby's brain structure, brain size, density changes, intra-tissue 
inhomogeneity, tissue contrast and regionally different tissue images depending on age [3-6]. However, in infants' 
brain MRIs, increased noise, low contrast between tissues, and continued white matter myelination lead to 
misclassification of brain tissues [7].  

In examining both normal and abnormal early brain development of infants, it is important to examine brain MRIs 
by segmenting white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) tissues [8]. Early examination 
of brain growth patterns and morphological changes in neurologically developmental disorders, accurate 
segmentation of MRI images into WM, GM and CSF tissues is crucial [9]. With segmentation, it is aimed to segment 
brain tissues. This process is performed manually by clinical experts. However, this process, which is an extremely 
sensitive issue, is time consuming, subject to intra- or inter-observational variables and requires specialist 
physicians. Consistent results have been obtained with automatic segmentation methods developed using deep 
learning methods recently. This is considered as alternative methods for manual partitioning problems [7,10].   

Deep learning has a deep network architecture consisting of many layers, unlike neural networks that can have a 
single layer. Having such a deep network architecture enables a detailed feature map to be extracted from the 
input data by self-learning, as opposed to manual feature extraction from input data in machine learning 
algorithms. Deep learning performs impressively on large amounts of data. In addition, this success has been 
greatly contributed by the rapid development of graphics processing units (GPUs). Due to rapid advances in the 
computing power of GPUs, it has enabled the rapid development of complex deep learning models [6]. Deep 
learning, image resolution [11], brain MRI segmentation [10, 12, 13], image registration [14], generating images 
from EEG signal [15], mammographic lesions detection [16], lung segmentation [17, 18], classification of white 
blood cells [19], brain disease classification [20], detection of arrhythmia [21-23] and detecting pneumonia from 
chest X-ray images [24], determination of basic physical movements of people [25], Classification of Breast Cancer 
[26] and breast lymph node segmentation [27].

Our main contributions in this study can be summarized as follows: 

• Development of a new deep learning-based architecture that segments 3D Brain MRIs

• Segmentation of pediatric brain MRIs using different datasets

• Segmentation of MRI images in different modalities (T1w,T2w) and examination of their success

• Performance evaluation of the proposed architecture in different Hyperparameters

• Evaluation of 3D MRI segmentation performances of different architectures
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Figure 1. Baby brain MRI sample images taken between 0-24 months at T1w weight [6]. 

2. Material and Method

In this study, two datasets, iseg-2017 [9] and iseg-2019 [28], were used for segmentation of child brain MRI 
images. A CNN-based architecture is proposed for segmentation of MRI images. 

2.1. Material 

iseg-2017 [9] and iseg-2019 [28] datasets were published by the MICCAI (Medical Image Computing and 
Computer-Aided Intervention) community to conduct research on brain tissue segmentation, which includes MRI 
images of the 6-month-old infant brain. The characteristics of the datasets are presented in Table 1. The datasets 
consist of 10 MRIs taken in the T1w and T2w modalities. Each data sample has dimensions of 144 × 192 × 256 and 
a resolution of 1.0 ×1.0 ×1.0 mm3. In addition, each MRI is supplied with masks (groundTrue, GT) labeled to three 
brain tissues, GM, WM, and CSF, to guide the learning of algorithms during the training phase. In the iseg-2017 
dataset, the background (BGR) is labeled 0, the CSF region 10, the GM region 150, and the WM region 250. In the 
iseg-2019 dataset, it is labeled as BGR 0, CSF region 1, GM region 2, and WM region 3. 

Table 1. Properties of data sets 

Data Sets 
MRI 

dimension 
Voxel size 

(mm3 ) 
Modalities 

Number 
of MRI 

Labelling 

iseg-2017 144x192x256 1.0x1.0x1.0 T1w, T2w 10 
BGR:0, CSF:10, 

GM:150, WM:250 

iseg-2019 144x192x256 1.0x1.0x1.0 T1w, T2w 10 
BGR:0, CSF:1, 
GM:2, WM:3 

Table 1. shows that the labeling of brain regions (GT) of the data sets is different. GTs are relabeled according to 
Eq. 1. 

𝐺𝑇𝑖𝑠𝑒𝑔−2017
𝑛𝑒𝑤 (𝑥) =

1 𝑖𝑓 𝐺𝑇𝑖𝑠𝑒𝑔−2017(𝑥) == 10

2 𝑒𝑙𝑠𝑒 𝑖𝑓 𝐺𝑇𝑖𝑠𝑒𝑔−2017(𝑥) == 150

3 𝑒𝑙𝑠𝑒 𝑖𝑓 𝐺𝑇𝑖𝑠𝑒𝑔−2017(𝑥) == 250

0 𝑒𝑙𝑠𝑒 

 (1) 

Figure 2 shows the modalities of an image taken from an exemplary MRI and the segmented GT. In GT, red indicates 
CSF tissue, blue indicates WM tissue, and green indicates GM tissue. Datasets are available at 
https://iseg2017.web.unc.edu/ and https://iseg2019.web.unc.edu/. 
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T1w T2w GT 
Figure 2. T1w, T2w modalities and mask(GT) of an MRI image. Red indicates CSF tissue, blue indicates WM tissue, and green 

GM tissue. 

2.2 Method 

Although Machine learning has shown high success in various fields, its performance is largely dependent on the 
features extracted from the training datasets, which is seen as a significant disadvantage. It has received a lot of 
attention recently that deep learning architectures automatically extract the best features from the raw input data 
with the help of convolutional neural network (CNN) without any preprocessing. CNNs form the basic building 
block of Deep learning algorithms [29, 30]. CNNs architectures are considered feedforward networks consisting 
of convolution layers, pool layers, and fully connected layers, as shown in Figure 3. These networks provide 
information flow from the input layer to the output layer. While the convolution and pooling layers feature 
mapping from the input data, the last fully connected layer is fed in a coordinated manner by the previous fully 
connected layers, giving the information of each class [31]. 

Figure 3. Basic lines of CNN architecture 

In this study, a CNN-based architecture is proposed that enables segmentation of infant brain MRI images. This 
architecture, called iSeg-WNet, is shown in Figure 4. The architecture consists of input, encoder, bottleneck, 
decoder and output stages. In the entry phase, MRIs in T1w and T2w modalities are given as input. After the input 
data is passed through the encoder, bottleneck and decoder processes, respectively, the same processes are 
repeated and given to the output unit.  

In the encoder part, convolution, normalization, activation and refutation processes were applied gradually. 
Except for the last stage, decay was used after the activation process in all the other stages. In the first and second 
stages, the 3D Convolution process with stride 2 and kernel size 3 was used. After the convolution process, instance 
normalization [32], Leaky ReLU activation function and dropout with a ratio of 0.2 were used, respectively. At each 
stage, provided that the previous operations and parameters are kept constant, only the stride value is renewed 
in the 3D convolution process by giving 1 to it. In the last stage, the kernel ratio value of 5 is given in the 3D 
convolution process. The other processes were repeated and connected to the Bottlenek section. In the encoder 
section, the initial filter number was given 64 and increased 2 times at each stage. The feature map was expanded 
with the progressively increasing number of filters. In addition, with the stride parameter, the data size is reduced 
and unnecessary features are eliminated. 

In the bottleneck section that combines the encoder and decoder, the number of filters is 256 and the kernel size 
is 5, and 3D convolution process is applied. After the convolution process, the result obtained by applying the 
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normalization and activation process is combined with the result of the initial convolution process. The same 
operations were repeated four times and connected to the decoder section. 

With the Conv3DTranspose operation in the decoder section, both the convolution operation and the data size are 
gradually enlarged. After the Conv3DTranspose process, the results obtained by applying normalization and 
activation processes are combined with the result at the same stage in the Encoder section. In this way, it is ensured 
that the features are reused. After the assembly stage, the dropout process was carried out. At the same stage, 
provided that the number of filters remains the same, 3D convolution, normalization, activation and decay 
processes are applied. These processes were repeated by gradually reducing the number of filters by two times. 
Encoder, bottleneck and decoder sections were repeated for the second time and connected to the output section. 
After the Conv3DTranspose process in the output section, the segmentation of the brain tissue sections was 
performed with the softmax activation function. Dice Loss cost function was used for the training of the 
architecture [33]. 

𝐿𝐷𝑖𝑐𝑒 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
(2) 

Here, 𝑋 and 𝑌 represent 𝐺𝑇 and segmentation result information. 

Figure 4. iSeg-WNet architecture 

OneNet architecture has an architecture similar to UNet architecture. The OneNet architecture is the first part of 
the iSeg-WNet architecture, as shown in Figure 4. Only in the last layer, the number of filters is 4 and the softmax 
optimization function is used. Softmax activation function is expressed mathematically as in Eq. 3 [34]: 

𝑍𝑘 =
𝑒𝑥

𝑘

∑ 𝑒𝑥
𝑛𝑛

𝑖=1

 (3)
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Here, 𝑥 and 𝑛 represent the input vector and the number of classes, respectively. Up to 𝑘=1… . 𝑛 and 𝑍 represents 
the output vector. The sum of the values of 𝑍 is 1. 

3. Results

In this section, different studies have been carried out using the iSeg-WNet architecture for segmentation of child 
brain MRIs. First of all, a study was conducted according to the different modalities in the datasets. The goal here 
is to find the appropriate modality for appropriate tissue segmentation. In the second study, a study was carried 
out according to the loss functions in order to increase the segmentation performance. Thirdly, performance 
evaluation was made according to different normalization processes. Finally, after the appropriate parameters 
were determined, the successes of different architectures were evaluated. 

The most widely used Dice metric in the literature was used to evaluate the performances of the studies. The Dice 
metric is given in Equation 2. In the studies, 80% of the data set is reserved for training and 20% for testing. An 
out-of-memory error occurs when training architectures without any changes in MRI dimensions during the 
training phase. To solve this problem, MRIs are cropped in 128x144x128 size and given as an input to 
architectures, provided that they remain within the brain region. The Adam (Learning_rate=0.0001) optimization 
function is used as the optimization function in the architectures. In each work, Architectures 180 min. has been 
trained. Weights were recorded every 60 minutes and their performance was observed. 

In the first application, it was made on how MRIs taken in different modalities affect segmentation performance. 
As an introduction to the iSeg-WNet architecture, T1w, then T2w, and finally both modalities were given to the 
architecture network together and trained separately. In this application, categorical crossentropy is used as a cost 
function. The results of the first application to select the best modality as data input are given in Table 2. When the 
results are examined, it is seen that the highest performance is achieved when T1w and T2w modalities are given 
together as an introduction to architecture. We can say that a high performance has been achieved with the T1w 
weight. A lower performance was obtained with the T2w modality. Categorical crossentropy can be expressed as 
[35]: 

𝐿𝐶𝐸 = ∑𝑦𝑡𝑟𝑢𝑒 𝑙𝑜𝑔(𝑦𝑝𝑟𝑒)

𝐶

𝑖=1

 (4) 

Here 𝑦𝑝𝑟𝑒𝑑 ∈ (0, 1), 𝑖. for example the forecast distribution and 𝑦𝑡𝑟𝑢𝑒 ∈ (0, 1), 𝑖. represents the true distribution of 

the sample. 

Table 2. Performance evaluation according to modalities in different modalities using the categorical crossentropy cost function 

T1w T2w T1w+T2w 
Train(min.) Mri CSF GM WM Avg CSF GM WM Avg CSF GM WM Mean 

60 

1 0,894 0,868 0,854 0,872 0,89 0,824 0,752 0,822 0,889 0,876 0,868 0,878 
2 0,894 0,868 0,854 0,872 0,83 0,79 0,776 0,799 0,914 0,879 0,825 0,873 
3 0,911 0,87 0,813 0,865 0,89 0,824 0,752 0,822 0,914 0,879 0,825 0,873 
4 0,912 0,87 0,813 0,865 0,83 0,79 0,776 0,799 0,889 0,876 0,868 0,878 

Mean 0,903 0,869 0,834 0,87 0,86 0,807 0,764 0,81 0,902 0,878 0,847 0,876 

120 

1 0,909 0,877 0,867 0,884 0,895 0,883 0,763 0,847 0,926 0,883 0,83 0,88 
2 0,923 0,874 0,816 0,871 0,938 0,796 0,786 0,84 0,926 0,883 0,83 0,88 
3 0,909 0,877 0,867 0,884 0,895 0,833 0,763 0,83 0,895 0,877 0,875 0,882 
4 0,923 0,874 0,816 0,871 0,838 0,796 0,786 0,807 0,895 0,877 0,875 0,882 

Mean 0,916 0,876 0,842 0,878 0,892 0,827 0,775 0,831 0,911 0,88 0,853 0,881 

180 

1 0,923 0,879 0,82 0,874 0,851 0,806 0,79 0,816 0,907 0,885 0,879 0,89 
2 0,923 0,879 0,82 0,874 0,899 0,84 0,766 0,835 0,931 0,886 0,833 0,883 
3 0,916 0,884 0,869 0,89 0,899 0,84 0,766 0,835 0,931 0,886 0,833 0,883 
4 0,916 0,884 0,869 0,89 0,851 0,806 0,79 0,816 0,907 0,885 0,879 0,89 

Mean 0,92 0,882 0,845 0,882 0,875 0,823 0,778 0,825 0,919 0,886 0,856 0,887 

After determining the data in the appropriate modality in the first application, T1w and T2w modalities are given 
together as data input for the training of architectures and testing in other studies. 

In the second application, the performance of the iSeg-WNet architecture was examined according to different cost 
functions and the results are presented in Table 3. Although the results are close to each other, it is seen that the 
highest performance is obtained with Dice Loss as a cost function. 
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Table 3. Performance evaluation according to loss functions 

Categorical_Loss Dice_Loss_class_weight [33] Dice_Loss 
Train(min.) Mri CSF GM WM Mean CSF GM WM Mean CSF GM WM Mean 

60 

1 0,889 0,876 0,868 0,878 0,882 0,865 0,86 0,869 0,897 0,872 0,868 0,879 
2 0,914 0,879 0,825 0,873 0,904 0,866 0,816 0,862 0,915 0,874 0,823 0,871 
3 0,914 0,879 0,825 0,873 0,904 0,866 0,816 0,862 0,915 0,874 0,823 0,871 
4 0,889 0,876 0,868 0,878 0,882 0,865 0,86 0,869 0,89 0,872 0,868 0,877 

Mean 0,902 0,878 0,847 0,876 0,893 0,866 0,838 0,866 0,904 0,873 0,846 0,874 

120 

1 0,926 0,883 0,83 0,88 0,889 0,875 0,872 0,879 0,897 0,883 0,878 0,886 
2 0,926 0,883 0,83 0,88 0,889 0,875 0,872 0,879 0,897 0,883 0,878 0,886 
3 0,895 0,877 0,875 0,882 0,918 0,878 0,827 0,874 0,926 0,885 0,831 0,881 
4 0,895 0,877 0,875 0,882 0,918 0,878 0,827 0,874 0,926 0,885 0,831 0,881 

Mean 0,911 0,88 0,853 0,881 0,904 0,877 0,85 0,877 0,912 0,884 0,855 0,884 

180 

1 0,907 0,885 0,879 0,89 0,893 0,881 0,878 0,884 0,906 0,887 0,88 0,891 
2 0,931 0,886 0,833 0,883 0,919 0,883 0,831 0,878 0,906 0,887 0,88 0,891 
3 0,931 0,886 0,833 0,883 0,919 0,883 0,831 0,878 0,931 0,889 0,835 0,885 
4 0,907 0,885 0,879 0,89 0,893 0,881 0,878 0,884 0,931 0,889 0,835 0,885 

Mean 0,919 0,886 0,856 0,887 0,906 0,882 0,855 0,881 0,919 0,888 0,858 0,888 

In the third application, performance evaluation was made according to the normalization processes in the data 
preprocessing stage. The proposed architecture is trained with different normalization processes and the results 
are given in Table 4. When the results are examined, it is seen that the highest MinMax normalization is achieved 
with a performance of 88.9%. Minmax normalization is given in Eq. 5, z-score normalization is given in Eq. 6 [36]. 

𝑣′ =
𝑣 −𝑚𝑖𝑛𝐴

𝑚𝑎𝑛𝐴 − 𝑚𝑖𝑛𝐴
(5) 

𝑧 =
𝑣 − 𝜇𝐴
𝜎𝐴

(6) 

Here, 𝑣′ and 𝑧 represent the normalized feature, and 𝑣 represents the original feature. Expression 𝐴 properties, 
𝑚𝑖𝑛𝐴 is the smallest value of property 𝐴, 𝑚𝑎𝑥𝐴 is the largest value of property 𝐴; 𝜇𝐴indicates the mean and 𝜎𝐴 the 
standard deviation. 

Table 4. Segmentation results according to different normalization processes in the data preprocessing stage 

Notnormalization MinMaxNorm. Zscore_Norm. 

Train(min.) Mri CSF GM WM Mean CSF GM WM Mean CSF GM WM Mean 

60 

1 0,897 0,872 0,868 0,879 0,891 0,877 0,868 0,879 0,902 0,873 0,822 0,866 

2 0,915 0,874 0,823 0,871 0,891 0,877 0,868 0,879 0,89 0,882 0,875 0,882 

3 0,915 0,874 0,823 0,871 0,916 0,881 0,83 0,876 0,902 0,873 0,822 0,866 

4 0,89 0,872 0,868 0,877 0,916 0,881 0,83 0,876 0,89 0,882 0,875 0,882 

Mean 0,904 0,873 0,846 0,874 0,904 0,879 0,849 0,877 0,896 0,878 0,849 0,874 

120 

1 0,897 0,883 0,878 0,886 0,901 0,884 0,878 0,888 0,902 0,89 0,882 0,891 

2 0,897 0,883 0,878 0,886 0,901 0,884 0,878 0,888 0,917 0,883 0,829 0,876 

3 0,926 0,885 0,831 0,881 0,927 0,888 0,836 0,884 0,917 0,883 0,829 0,876 

4 0,926 0,885 0,831 0,881 0,927 0,888 0,836 0,884 0,902 0,89 0,882 0,891 

Mean 0,912 0,884 0,855 0,884 0,914 0,886 0,857 0,886 0,91 0,887 0,856 0,884 

180 

1 0,906 0,887 0,88 0,891 0,931 0,892 0,839 0,887 0,912 0,882 0,829 0,874 

2 0,906 0,887 0,88 0,891 0,904 0,888 0,881 0,891 0,912 0,882 0,829 0,874 

3 0,931 0,889 0,835 0,885 0,931 0,892 0,839 0,887 0,899 0,891 0,883 0,891 

4 0,931 0,889 0,835 0,885 0,904 0,888 0,881 0,891 0,899 0,891 0,883 0,891 

Mean 0,919 0,888 0,858 0,888 0,918 0,89 0,86 0,889 0,906 0,887 0,856 0,883 

After obtaining the best hyperparameters that increase the success of the iSeg-WNet architecture, a new 
application has been carried out to compare the performances of different architectures. In this application, the 
performances of iSeg-WNet, OneNet and 3D-UNet [37] architectures were compared by keeping the 
hyperparameters the same, and the results are shown in Table 5. U-Net architecture consists of encoder, 

514
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bottleneck and decoder parts. The encoder section consists of 3 stages, and at each stage, convolution, RELU 
activation and subsampling (maxpooling) processes are applied. The bottleneck section acts as a transition that 
connects the Encoder and Decoder sections to each other. This is the section where the relu activation operations 
are applied after the convolution and each convolution operation. Another part, Decoder, has a 3-stage structure. 
At each stage, the oversampling, convolution and relu operation is applied after each convolution operation. At the 
same time, the feature outputs of the encoder section at each stage are transferred to the decoder section and 
reused. 

When the results in Table 5 are examined, it is seen that the proposed architecture has a higher success rate of 
88.9% compared to other architectures.  

Table 5. Segmentation results of different architectures 

3D U-Net [37] OneNET Our(iSeg-WNet)  
Train(min.) Mri CSF GM WM Mean CSF GM WM Mean CSF GM WM Mean 

60 

1 0,922 0,883 0,776 0,86 0,88 0,868 0,864 0,871 0,891 0,877 0,868 0,879 
2 0,897 0,862 0,826 0,862 0,908 0,874 0,822 0,868 0,891 0,877 0,868 0,879 
3 0,922 0,883 0,776 0,86 0,88 0,868 0,864 0,871 0,916 0,881 0,83 0,876 
4 0,922 0,883 0,776 0,86 0,908 0,874 0,822 0,868 0,916 0,881 0,83 0,876 

Mean 0,916 0,878 0,789 0,861 0,894 0,871 0,843 0,869 0,904 0,879 0,849 0,877 

120 

1 0,924 0,884 0,786 0,865 0,924 0,877 0,819 0,873 0,901 0,884 0,878 0,888 
2 0,894 0,86 0,832 0,862 0,898 0,869 0,858 0,875 0,901 0,884 0,878 0,888 
3 0,894 0,86 0,832 0,862 0,924 0,877 0,819 0,873 0,927 0,888 0,836 0,884 
4 0,924 0,884 0,786 0,865 0,898 0,869 0,858 0,875 0,927 0,888 0,836 0,884 

Mean 0,909 0,872 0,809 0,863 0,911 0,873 0,839 0,874 0,914 0,886 0,857 0,886 

180 

1 0,923 0,884 0,793 0,867 0,917 0,87 0,808 0,865 0,931 0,892 0,839 0,887 
2 0,923 0,884 0,793 0,867 0,897 0,86 0,844 0,867 0,904 0,888 0,881 0,891 
3 0,894 0,861 0,836 0,864 0,897 0,86 0,844 0,867 0,931 0,892 0,839 0,887 
4 0,894 0,861 0,836 0,864 0,917 0,87 0,808 0,865 0,904 0,888 0,881 0,891 

Mean 0,909 0,873 0,815 0,866 0,907 0,865 0,826 0,866 0,918 0,89 0,86 0,889 

Example images obtained as a result of segmentation of an MRI by the architectures are given in Figure 5. The first 

line shows the whole brain, the second, third and fourth lines show the axial, coronal and sagittal images, 

respectively. 
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OneNet 3D U-Net GT iSeg-WNet 

Figure 5. Sample images obtained as a result of segmentation of a sample MRI from the test dataset by architectures 

4. Discussion and Conclusion

In the study of the development of infant brains, prevention of brain growth patterns and morphological changes 
in neurological developmental disorders is very important. In this respect, it is important to examine and correctly 
segment the brain tissues of the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) brain regions. 
In this study, a deep learning-based architecture called iSeg-WNet is proposed, which provides segmentation of 
brain tissues using the iseg-2017 and iseg-2019 datasets containing 6-month 3D brain MRI images. The iseg-WNet 
architecture is formed by repeating these structures based on Encoder, Bottlenech and Decoder structures twice.  

Different experimental studies have been carried out with the proposed architecture and appropriate 
hyperparameters have been found. In addition, the appropriate modality that will increase the segmentation 
performance has been determined for MRI images with different modalities (T1w, T2w) in the datasets. Finally, 
the performances of different architectures are compared. 

With the first experimental study, the appropriate modality was determined. Accordingly, when the images in T1w 
and T2w modalities were given together as an input to the architecture, it was seen that it showed the highest 
success with an average success rate of 88.7%. In the second application, the performance evaluation of the 
proposed architecture was made according to different cost functions. The highest success rate of 88.8% was 
achieved with the Dice_Loss cost function. In the third application made according to different normalization 
processes, the highest performance was obtained by using MinMax normalization with a success rate of 88.9%. 
In the last experimental study to examine the performances of different architectures, it was seen that the iSeg-
WNet architecture exhibited the highest segmentation performance with 91.8% CSF tissue, 89% GM tissue, 86% 
WM tissue and 88.9% on average. 



 iSeg-WNet: Volumetric Segmentation of Infant Brain MRI Images 

517

References 

[1] Ghosal ,P. Chowdhury, Kumar, T. A. Bhadra, A. K. Chakraborty, J. Nandi, D. 2021. MhURI:A Supervised
Segmentation Approach to Leverage Salient Brain Tissues in Magnetic Resonance Images.  Comput. Methods
Programs Biomed., 200, 105841, doi: 10.1016/j.cmpb.2020.105841.

[2] Balafar, M. A. Ramli,A. R. Saripan, M. I. Mashohor, S. 2010. Review of brain MRI image segmentation methods.
Artif. Intell. Rev., 33(3),  261–274, 2010, doi: 10.1007/s10462-010-9155-0.

[3] Jenkinson, M. Beckmann, C. F. Behrens, T. E. J. Woolrich, M. W.  Smith, S. M. 2012. FSL, NeuroImage, 62, 782–
790, doi: 10.1016/j.neuroimage.2011.09.015.

[4] Dai,Y. Shi, F. Wang,L. Wu, G. Shen, D. 2013. IBEAT: A toolbox for infant brain magnetic resonance image
processing. Neuroinformatics, 11(2), 211–225, doi: 10.1007/s12021-012-9164-z.

[5] Fischl, B. 2012. FreeSurfer. Neuroimage, 62(2), 774–781, doi: 10.1016/j.neuroimage.2012.01.021.

[6] Mostapha, M. Styner, M. 2019. Role of deep learning in infant brain MRI analysis.  Magn. Reson. Imaging,
64(June), 171–189, doi: 10.1016/j.mri.2019.06.009.

[7] Wang, L. et al. 2014. Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage,
84, 141–158, doi: 10.1016/j.neuroimage.2013.08.008.

[8] Dolz, J. Desrosiers, C.  Wang, L. Yuan, J. Shen, D. Ayed, I. B. 2020. Deep CNN ensembles and suggestive
annotations for infant brain MRI segmentation. Comput. Med. Imaging Graph., 79, 101660, doi:
10.1016/j.compmedimag.2019.101660.

[9] Wang, L. et al. 2019. “Benchmark on automatic six-month-old infant brain segmentation algorithms: The iSeg-
2017 challenge. IEEE Trans. Med. Imaging, 38(9), 2219–2230, doi: 10.1109/TMI.2019.2901712.

[10] Bui, T. D. Shin, J. Moon, T. 2019. Skip-connected 3D DenseNet for volumetric infant brain MRI segmentation.
Biomed. Signal Process. Control, 54, 101613, 2019, doi: 10.1016/j.bspc.2019.101613.

[11] Çelik, G. Talu, M. F. 2020. Resizing and cleaning of histopathological images using generative adversarial
networks. Phys. A Stat. Mech. its Appl., 554, 122652, doi: 10.1016/j.physa.2019.122652.

[12] Çelik, G. Talu, M. F. 2022. A new 3D MRI segmentation method based on Generative Adversarial Network and
Atrous Convolution. Biomed. Signal Process. Control, 71(PA), 103155, doi: 10.1016/j.bspc.2021.103155.

[13] Akkus, Z. Galimzianova, A. Hoogi, A. Rubin, D. L. Erickson, B. J. 2017. Deep Learning for Brain MRI
Segmentation: State of the Art and Future Directions. J. Digit. Imaging, 30(4), 449–459, doi: 10.1007/s10278-
017-9983-4.

[14] Yang, X. Kwitt, R. Styner, M. Niethammer, M. 2017. Quicksilver: Fast predictive image registration – A deep
learning approach. Neuroimage, 158(July), 378–396, doi: 10.1016/j.neuroimage.2017.07.008.

[15] Çelik, G. Talu, M. F. 2021. Generating the image viewed from EEG signals. Pamukkale Univ. J. Eng. Sci., 27(2),
129–138, doi: 10.5505/pajes.2020.76399.

[16] Kooi, T. et al. 2017. Large scale deep learning for computer aided detection of mammographic lesions. Med.
Image Anal., 35, 303–312, doi: 10.1016/j.media.2016.07.007.

[17] Souza, J. C. Bandeira Diniz, J. O. Ferreira, J. L. França da Silva, G. L. Corrêa Silva, A. de Paiva, A. C. 2019. An
automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.
Comput. Methods Programs Biomed., 177, 285–296, 2019, doi: 10.1016/j.cmpb.2019.06.005.

[18] Gaál, G. Maga, B. Lukács, A. 2020. Attention U-net based adversarial architectures for chest X-ray lung
segmentation. CEUR Workshop Proc., 2692, 1–7.

[19] Başaran, E. 2022. Classification of white blood cells with SVM by selecting SqueezeNet and LIME properties
by mRMR method. Signal, Image Video Process.,  doi: 10.1007/s11760-022-02141-2.

[20] Talo, M. Yildirim, O. Baloglu, U. B. Aydin, G. Acharya, U. R. 2019. Convolutional neural networks for multi-class
brain disease detection using MRI images. Comput. Med. Imaging Graph., 78, 101673, doi:
10.1016/j.compmedimag.2019.101673.

[21] Yıldırım, Ö. Pławiak, P. Tan, R. S. Acharya, U. R. 2018. Arrhythmia detection using deep convolutional neural
network with long duration ECG signals. Comput. Biol. Med., 102(September), 411–420, doi:
10.1016/j.compbiomed.2018.09.009.

[22] Hannun A. Y. et al. 2019. Cardiologist-level arrhythmia detection and classification in ambulatory



 iSeg-WNet: Volumetric Segmentation of Infant Brain MRI Images 

518

electrocardiograms using a deep neural network. Nat. Med., 25(1), 65–69, 2019, doi: 10.1038/s41591-018-
0268-3. 

[23] Acharya, U. R. et al., 2017. A deep convolutional neural network model to classify heartbeats. Comput. Biol.
Med., 89(August), 389–396, doi: 10.1016/j.compbiomed.2017.08.022.

[24] Rajpurkar , P. et al. 2017. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
Learning. arxiv, 3–9, http://arxiv.org/abs/1711.05225.

[25] ÇALIŞAN , M. TALU, M. F. 2020. Comparison of Methods for Determining Activity from Physical Movements.
J. Polytech., 0900(1), 17–23,  doi: 10.2339/politeknik.632070.

[26] Özcan, T. 2020. Yığınlanmış Özdevinimli Kodlayıcılar ile Göğüs Kanserinin Sınıflandırılması ve Klasik Makine
Öğrenme Metotları ile Performans Karşılaştırması. Erciyes Univ. J. Institue Sci. Technol., 36(2), 2020,
https://dergipark.org.tr/tr/pub/erciyesfen/726739.

[27] Bozdag, Z. Talu,F. M. 2021. Pyramidal nonlocal network for histopathological image of breast lymph node
segmentation. Int. J. Comput. Intell. Syst., 14(1), 122–131, doi: 10.2991/ijcis.d.201030.001.

[28] Sun , Y. et al. 2021. Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Trans.
Med. Imaging, 40(5), 1363–1376, 2021, doi: 10.1109/TMI.2021.3055428.

[29] Subramanian, N. Elharrouss, O. Al-Maadeed, S. Chowdhury, M. 2022. A review of deep learning-based
detection methods for COVID-19. Comput. Biol. Med., 143, 105233,doi: 10.1016/j.compbiomed.2022.105233.

[30] Valizadeh , M. Wolff, S. J. 2022. Convolutional Neural Network applications in additive manufacturing : A
review.  Adv. Ind. Manuf. Eng., 4, 100072, doi: 10.1016/j.aime.2022.100072.

[31] Lecun, Y. Bengio, Y. Hinton, G. 2015. Deep learning. Nature, 521(7553), 436–444, doi: 10.1038/nature14539.

[32] Ulyanov, D. Vedaldi, A. Lempitsky, V. 2016. Instance Normalization: The Missing Ingredient for Fast
Stylization. arxiv,  http://arxiv.org/abs/1607.08022.

[33] Cirillo, M. D. Abramian, D. Eklund, A. 2020. Vox2Vox: 3D-GAN for Brain Tumour Segmentation.  arXiv, 1–10.

[34] Gao, B. Pavel, L. 2017. On the Properties of the Softmax Function with Application in Game Theory and
Reinforcement Learning,. arxiv, 1–10, http://arxiv.org/abs/1704.00805.

[35] Han, S. Shao , H. Huo, Z. Yang,X. and Cheng, J,  2022.  End-to-end chiller fault diagnosis using fused attention
mechanism and dynamic cross-entropy under imbalanced datasets. Build. Environ., 212, 108821, doi:
10.1016/j.buildenv.2022.108821.

[36] Jain, S. Shukla,S. and Wadhvani, R, 2018. Dynamic selection of normalization techniques using data complexity
measures. Expert Syst. Appl., 106(252–262), doi: 10.1016/j.eswa.2018.04.008.

[37] Çiçek, Ö. Abdulkadir, A. Lienkamp, S. S. Brox, T. Ronneberger, O. 2016. 3D U-Net: Learning Dense Volumetric
Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention, 424–
432.




