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ÖZET 

 
Bu bölümde KdVB denkleminin sayısal çözümleri şekil fonksiyonları kübik, ağırlık fonksiyonları kuadratik 

B-spline fonksiyonları alınarak Petrov-Galerkin yöntemi ile elde edildi. Yöntemin doğruluğu ve etkinliği için 

üç tane test problemi ele alındı. Elde edilen denklem sistemleri Thomas algoritması ile çözüldü. Ayrıca elde 

edilen sayısal sonuçlar literatürdeki sonuçlar ile karşılaştırıldı. 
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ABSTRACT 

 
In this study, a Petrov-Galerkin finite element method, in which the element shape functions are cubic and 

weight functions are quadratic B-splines, is implemented to find the numerical solution of the Korteweg-de 

Vries-Burgers'(KdVB) equation. Accuracy of the presented method is demonstrated by three test problems. 

The obtained numerical results are compared with results given in the literature and shown graphically. 
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1. Giriş  In this article, a numerical algorithm for solving to model both KdV 

and Burgers' equations and KdVB equation with a variant of initial 

and boundary conditions has been set up based on Petrov-Galerkin 
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The KdVB equation which we discuss in this paper  is based 

upon both the KdV equation  

 𝑈𝑡 + 𝜀. 𝑈. 𝑈𝑥 + 𝜇𝑈𝑥𝑥𝑥 = 0,                                                  (1)  

                                                                   

which plays a major  role in the study of non-linear dispersive 

waves [1] and the Burgers' equation (BE) 

𝑈𝑡 + 𝜀. 𝑈. 𝑈𝑥 − 𝑣. 𝑈𝑥𝑥 = 0,                                        (2) 

 

that its turbulence model is very important in fluid dynamics 

model [2], has the form 

𝑈𝑡 + 𝜀. 𝑈. 𝑈𝑥 − 𝑣. 𝑈𝑥𝑥 + 𝜇𝑈𝑥𝑥𝑥 = 0,                         (3) 

where  𝜀, 𝑣  and 𝜇  are positive parameters. The equation was first 

formulated by Su and Gardner. Since it involves both damping 

and dispersion, it has been a model equation for a wide class of 

nonlinear systems in the weak nonlinearity and long wavelength 

approximations [3]. The steady state solutions of the equation 

have been shown to model weak plasma shocks propagating 

perpendicularly to a magnetic field [4]. When diffusion 

dominates dispersion the steady state solutions of the KdVB 

equation are monotonic shocks, and when dispersion dominates, 

the shocks are oscillatory [5]. The equation has some other 

physical applications for instance study of wave propagation 

through liquid- filled elastic tubes [6] and for a description of 

shallow water waves on a viscous fluid [7]. Especially the 

travelling wave solution to the equation has been studied 

extensively. A travelling wave solution to the KdVB equation is 

presented by Demiray [8] by using the hyperbolic tangent method 

and an exponential rational function approach. Demiray [9], 

Antar and Demiray [10] derived KdVB equation as the governing 

evolution equation for wave propagation in fluid-filled elastic or 

viscoelastic tubes in which the effects of dispersion, dissipation 

and nonlinearity were present. Bona and Schonbek [11] studied 

the existence and uniqueness of bounded traveling wave solution 

to Eq.(3), which tends to constant states at plus and minus 

infinity. KdVB equation is composition of the KdV equation 

(𝑣 = 0) and Burgers' equation( 𝜇 = 0). This equation has been 

solved analytically for a limited set of boundary and initial 

conditions. So, for the numerical treatment of the equation, some 

methods have been introduced with various boundary and initial 

conditions.Canosa and Gazdag [12], who discussed the evolution 

of non-analytic initial data into a monotonic shock, have used the 

accurate space derivative method to give the brief details of a 

numerical solution of the KdVB equation. A finite element 

solution of the KdVB equation based on Bubnov- Galerkin's 

method using cubic B-splines as element shape and weight 

functions, is set up by Zaki [5]. Zaki [13] also applied the 

collocation method with quintic B-spline finite element to obtain 

the numerical solution of the KdV, Burgers' and KdVB 

equations. KdVB equation solved numerically with the 

Galerkin's method using quadratic B-spline interpolation 

functions over the finite elements by Ali et al.[14] and using the 

quartic B-splines as both shape and weight functions over the 

finite intervals by Saka et al. [15]. S. Haq et al. [16] have used 

three radial basis functions (RBFs) collocation method to solve 

the KdVB equation. Karakoc et al. [17] have obtain the numerical 

solution of the KdVB by a new differential quadrature method 

based on quintic B-spline functions. Talat and El-Danaf [18] 

proposed a numerical solution for the KdVB equation by using 

the collocation method using the septic splines. Kaya [19] 

presented ADM to find the explicit and numerical solutions of 

the KdV, Burgers' and KdVB equation for the initial conditions.  

finite element method, in which the element shape functions are 

cubic and weight functions are quadratic B-splines. Rest of the 

paper is organized as follow. In Section 2, the numerical method is 

presented. Numerical results of KdVB equation with its special 

cases are presented in Section 3. In Section 4, the results are 

summarized.  

 

2. Petrov-Galerkin sonlu eleman yönteminin çözüm 

uygulaması 

 
In this study, we will consider the KdVB Eq. (3) with the 

following boundary conditions 

 

𝑈(𝑎, 𝑡) = 0,                           𝑈(𝑏, 𝑡) = 0,                           (4) 

𝑈𝑥(𝑎, 𝑡) = 0,                         𝑈𝑥(𝑏, 𝑡) = 0, 

𝑈𝑥𝑥(𝑎, 𝑡) = 0                        𝑈𝑥𝑥(𝑏, 𝑡) = 0  𝑡 > 0, 

and the initial condition 

𝑈(𝑥, 0) = 𝑓(𝑥)                   𝑎 ≤ 𝑥 ≤ 𝑏. 

 

To implement the numerical methods, the space interval 𝑎 ≤ 𝑥 ≤
𝑏 is discretized by uniform (𝑁 + 1) grid points 𝑥𝑗  =  𝑎 +  𝑗ℎ  

where 𝑗 =  0, 1, 2, … . . , 𝑁 and the grid spacing is given by  ℎ =
 (𝑏 − 𝑎)/𝑁.  Cubic B-splines 𝜙𝑚(𝑥), (𝑚 =  −1(1)𝑁 +  1) at the 

knots 𝑥𝑚 are defined over the interval [𝑎, 𝑏]  
 

𝜙𝑚(𝑥) =
1

ℎ3

{
 
 

 
 
(𝑥 − 𝑥𝑚−2)

3                                                                                      , [𝑥𝑚−2, 𝑥𝑚−1]  

ℎ3 + 3ℎ2(𝑥 − 𝑥𝑚−1) + 3ℎ(𝑥 − 𝑥𝑚−1)
2 − 3(𝑥 − 𝑥𝑚−1)

3     , [𝑥𝑚−1, 𝑥𝑚]      

ℎ3 + 3ℎ2(𝑥𝑚+1 − 𝑥) + 3ℎ(𝑥𝑚+1 − 𝑥)
2 − 3(𝑥𝑚+1 − 𝑥)

3     , [𝑥𝑚 , 𝑥𝑚+1]      

(𝑥𝑚+2 − 𝑥)
3                                                                                     , [𝑥𝑚+1, 𝑥𝑚+2]  

0                                                                                                         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

                 (5) 

 

which vanish outside of the interval [𝑥𝑚−2 , 𝑥𝑚+2 ] [20]. The 

approximate solution 𝑈𝑁(𝑥, 𝑡) to the exact solution 𝑈(𝑥, 𝑡) is 

given by 

𝑈𝑁(𝑥, 𝑡) = ∑ 𝛿𝑗(𝑡) 𝜙𝑗(𝑥)
𝑁+1
𝑗=−1                                                (6) 

 

where  𝛿𝑗(𝑡) are time dependent parameters to be determined 

from the boundary and weighted residual conditions. The set of 

cubic B-spline functions  {𝜙−1(𝑥), ……… . , 𝜙𝑁+1(𝑥)} create a 

basis for functions defined over [𝑎, 𝑏]. In each element, using the 

following local coordinate transformation 

ℎ𝜉 = 𝑥 − 𝑥𝑚  ,                     0 ≤ 𝜉 ≤ 1                                  (7)  

  cubic B-spline shape functions in terms of  𝜉 over the domain 
[𝑥𝑚−1, 𝑥𝑚+2] can be defined as 

 
𝜙𝑚−1 = (1 −  𝜉)3, 

𝜙𝑚 = 1 + 3(1 − 𝜉) + 3(1 − 𝜉)2 − 3(1 − 𝜉)3,     

𝜙𝑚+1 = 1 + 3𝜉 + 3𝜉2 − 3𝜉3, 

𝜙𝑚+2 = 𝜉3.                 (8) 

Variation of the function 𝑈(𝑥, 𝑡) over the element [𝑥𝑚, 𝑥𝑚+1] is 
approximated by 

𝑈𝑁(𝜉, 𝑡) = ∑ 𝛿𝑗(𝑡) 𝜙𝑗(𝜉)
𝑚+2
𝑗=𝑚−1                                      (9) 

where 𝛿𝑚−1, 𝛿𝑚, 𝛿𝑚+1, 𝛿𝑚+2 act as element parameters and B-

splines 𝜙𝑚−1, 𝜙𝑚, 𝜙𝑚+1, 𝜙𝑚+2  as element shape functions. Using 

expansion (6) and cubic B-splines (5), the nodal values (𝑈𝑁)𝑚 and 

their first and second derivatives (𝑈𝑁)𝑥 , (𝑈𝑁)𝑥𝑥  can be calculated 

at the nodal points 𝑥𝑚  in terms of nodal parameters following,   
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(𝑈𝑁)𝑚 = 𝑈𝑁(𝑥𝑚) = 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1, 
ℎ (𝑈𝑁𝑥)𝑚 = 𝑈𝑁𝑥(𝑥𝑚) = 3(−𝛿𝑚−1 + 𝛿𝑚+1), 

ℎ2 (𝑈𝑁𝑥𝑥)𝑚 = 𝑈𝑁𝑥𝑥(𝑥𝑚) = 6 (𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1).       (10) 

We have taken the weight function 𝑊(𝑥) as a quadratic B-  

spline  𝜓𝑚(𝑥).  𝜓𝑚(𝑥), at the knots 𝑥𝑚 are defined over the 

interval [𝑎, 𝑏]  
 

 

𝜙𝑚(𝑥) =
1

ℎ2

{
 

 
(𝑥𝑚+2 − 𝑥)

2 − 3(𝑥𝑚+1 − 𝑥)
2 + 3(𝑥𝑚 − 𝑥)

2     , [𝑥𝑚−1, 𝑥𝑚]  

(𝑥𝑚+2 − 𝑥)
2 − 3(𝑥𝑚+1 − 𝑥)

2                                , [𝑥𝑚, 𝑥𝑚+1]  

(𝑥𝑚+2 − 𝑥)
2                                                             , [𝑥𝑚+1, 𝑥𝑚+2] 

0                                                                                   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

     

                                                                                                           (11) 

 

If we also use the local coordinate transformation (5) over the 

typical finite element [𝑥𝑚 , 𝑥𝑚+1], quadratic B-spline shape 

functions can be obtained as 

 

𝜓𝑚−1 = (1 −  𝜂)
2, 

𝜓𝑚 = 1 + 2𝜂 − 2𝜂2, 

𝜓𝑚+1 = 𝜂
2                              (12) 

 

Applying the Petrov-Galerkin technique to Eq.(3) with weight 

function 𝑊(𝑥), we get the weak form of Eq. (3) 

∫ 𝑊 (𝑈𝑡 + 𝜀 𝑈 𝑈𝑥 − 𝑣 𝑈𝑥𝑥 + 𝜇 𝑈𝑥𝑥𝑥) 𝑑𝑥
𝑏

𝑎
= 0         (13) 

 

When we take the approximation functions as cubic B- splines, 

weight functions with quadratic B- spline shape functions and 

substitute approximation (6) into integral Eq. (13), we obtain the 

following element contributions of the form  

∑ (∫𝜙𝑖𝜙𝑗𝑑𝜉

1

0

)𝛿𝑗
�̇�

𝑚+2

𝑗=𝑚−1

+ 𝜀𝑍𝑚  ∑ [(∫𝜙𝑖𝜙𝑗
′𝑑𝜉

1

0

)𝛿𝑗
𝑒]

𝑚+2

𝑗=𝑚−1

+  𝑣 ∑ [((∫𝜙𝑖
′𝜙𝑗

′𝑑𝜉

1

0

) − 𝜙𝑖𝜙𝑗
′ |
1

0
) 𝛿𝑗

𝑒]

𝑚+2

𝑗=𝑚−1

−  𝜇 ∑ [((∫𝜙𝑖
′𝜙𝑗

′′𝑑𝜉

1

0

) − 𝜙𝑖𝜙𝑗
′′ |
1

0
)𝛿𝑗

𝑒

𝑚+2

𝑗=𝑚−1

 ] 

 

 

𝑖 = 1, 2, 3 ve 𝑗 = 𝑚 − 2,𝑚 − 1,… ,𝑚 + 2                            (14) 

which can also be written in a matrix form as follows: 

 

𝐴𝑒�̇�𝑒 + [𝜀 𝑍𝑚𝐵
𝑒 + 𝑣(𝐶𝑒 − 𝐸𝑒) − 𝜇(𝐷𝑒 − 𝐹𝑒)𝛿𝑒]                (15) 

 

where 𝛿𝑒 = (𝛿𝑚−2, 𝛿𝑚−1, 𝛿𝑚, 𝛿𝑚+1, 𝛿𝑚+2)
𝑇 are the element 

matrices and dot denotes differentiation with respect to 𝑡. The 

element matrices 𝐴𝑒 , 𝐵𝑒 , 𝐶𝑒 , 𝐷𝑒 , 𝐸𝑒 , 𝐹𝑒 are rectangular 3 x 4 

given by the following integrals: 

 

𝐴𝑖𝑗
𝑒 = ∫ 𝜙𝑖𝜙𝑗𝑑𝜉

1

0
=

1

60
[
10 71 38    
19 221 221     
1 38 71

1
19
10
], 

𝐵𝑖𝑗
𝑒 = ∫ 𝜙𝑖𝜙𝑗

′𝑑𝜉
1

0
=

1

10
[
−6 −7 12    
−13 −41 41     
−1 −12 7

1
13
6
], 

𝐶𝑖𝑗
𝑒 = ∫ 𝜙𝑖

′𝜙𝑗
′𝑑𝜉

1

0
=

1

2ℎ
[
  3  5 −7    
−2  2     2     
−1 −7 5

−1
−2
  3
], 

𝐷𝑖𝑗
𝑒 = ∫ 𝜙𝑖

′𝜙𝑗
′′𝑑𝜉

1

0
=

1

ℎ2
[
−4   6      0    
   2 −6       6    
   2    0 −6

 −2
 −2
   4

], 

𝐸𝑖𝑗
𝑒 = 𝜙𝑖𝜙𝑗

′|1
0
=

3

ℎ
[
1 0 −1    
1 −1   −1     
0 −1 0

  0
  1
  1
]   and  

𝐹𝑖𝑗
𝑒 = 𝜙𝑖𝜙𝑗

′′ |
1

0
=
6

ℎ2
[
0  0    0    
0 1   −2     
0 1 −2

  0
  1
  1
] 

Assembling contributions from all elements produce the first-

order matrix equation system 

𝐴𝑒�̇�𝑒 + [𝜀 𝑍𝑚𝐵
𝑒 + 𝑣(𝐶𝑒 − 𝐸𝑒) − 𝜇(𝐷𝑒 − 𝐹𝑒)𝛿𝑒] = 0,    (16) 

 

where 𝛿 = (𝛿−1, 𝛿0, … , 𝛿𝑁, 𝛿𝑁+1)
𝑇 are global element 

parameter and 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are derived from the element 

matrices 𝐴𝑒 , 𝐵𝑒 , 𝐶𝑒, 𝐷𝑒  and 𝐹𝑒,  respectively.  

Substituting the time derivative of the parameter �̇� by usual 

finite difierence approximation  δ̇ = (
δn+1− δn

∆t
) and parameter 

𝛿 by the Crank- Nicholson formulation 𝛿 =
𝛿𝑛+𝛿𝑛+1

2
  we obtain 

the (𝑁x2)  x (𝑁 x 2) matrix system 

 

[2𝐴 + 𝜀𝑍𝑚𝐵∆𝑡 + 𝑣∆𝑡(𝐶 − 𝐸) − 𝜇∆𝑡(𝐷 − 𝐹)] 𝛿
𝑛+1 

= [2𝐴 − 𝜀𝑍𝑚𝐵∆𝑡 − 𝑣∆𝑡(𝐶 − 𝐸) + 𝜇∆𝑡(𝐷 − 𝐹)] 𝛿
𝑛         (17) 

 

where ∆𝑡 is the time step. Applying the boundary conditions (4) 

to the system (17) the above matrix system is being square. The 

resulting matrices are asymmetrically banded but may be taken 

depleted septa-diagonal so are eficiently solved with a variant 

of the Thomas algorithm applying two or three inner iterations 

to   δn∗ = δn +
(δn−δn−1)

2
  at each time in order to improve the 

accuracy. A typical member of the matrix system(17) may be 

rewritten in terms of the nodal parameters 𝛿𝑚
𝑛  as 

 

𝜆1𝛿𝑚−2
𝑛+1 + 𝜆2𝛿𝑚−1

𝑛+1 + 𝜆3𝛿𝑚
𝑛+1 + 𝜆4 𝛿𝑚+1

𝑛+1 + 𝜆5𝛿𝑚+2
𝑛+1 + 𝜆6𝛿𝑚+3

𝑛+1  

= 𝜆7𝛿𝑚−2
𝑛 + 𝜆8𝛿𝑚−1

𝑛 + 𝜆9𝛿𝑚
𝑛 + 𝜆10𝛿𝑚+1

𝑛 + 𝜆11𝛿𝑚+2
𝑛 +

𝜆12𝛿𝑚+3
𝑛  .         (18) 

 

The initial vector 𝛿0 = (𝛿−1
0 , 𝛿0

0, … . . , 𝛿𝑁+1
0 ) is determined to 

iterate the system (17). So we rewrite the approximation over 

 

the interval [𝑎, 𝑏] at time 𝑡 =  0 as follows: 

𝑈𝑁(𝑥, 0) = ∑ 𝜙𝑚(𝑥)𝛿𝑚
0𝑁+1

𝑚=−1 . 

 

For this determination, the following two conditions are 

required: 

 

𝑈𝑁(𝑥𝑚, 0) = 𝑈(𝑥𝑚 , 0),                 𝑚 = 0, 1, … . , 𝑁 , 

𝑈𝑁𝑥(𝑥0, 0) = 𝑈𝑥(𝑥𝑁 , 0) = 0 . 

 

Thus, the above conditions lead to a tridiagonal matrix system 

of the form 

 

which can be solved using a variant of the Thomas algorithm.  
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Table 1: Invariants and error norms for single solitary wave with 𝐶 = 0.3, ℎ = 0.001, ∆𝑡 = 0.005, 0 ≤ 𝑥 ≤ 2. 

 

𝑡 𝐼1 𝐼2 𝐼3 𝐿2 𝑥 10
3 𝐿∞ 𝑥 10

3 

0 0.14459 0.08676 0.04685 0.00000 0.00000 

1 0.14460 0.08676 0.04685 0.07839 0.20894 

2 0.14460 0.08676 0.04685 0.13744 0.38602 

3 0.14460 0.08676 0.04685 0.15426 0.42837 

𝑡 = 3[13] 0.14460 0.08676 0.04685 0.02984 0.07525 

𝑡 = 3[15] 0.14459 0.08675 0.04685 0.2516 0.6603 

𝑡 = 3[24] - - - 0.28 - 

 

[
 
 
 
 
 
 
 
 
−3 0 3
1 4 1 ⋯

⋮ ⋱ ⋮

⋯
1
−3

4
0

1
3 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛿−1
0

𝛿0
0

⋮
⋮
⋮
⋮
⋮
𝛿𝑁
0

𝛿𝑁+1
0 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0

𝑈(𝑥0)
⋮
⋮
⋮
⋮
⋮

𝑈(𝑥0)

0 ]
 
 
 
 
 
 
 
 

 

 
3. Sayısal sonuçlar 

In this section, we have studied test problems concerning the 

KdV equation (𝑣 =  0), Burgers' equation (𝜇 =  0) and KdVB 

equation. 𝐿2 error norms 

 

L2 = ‖U
exact − UN‖2 ≃ √h∑ |Uj

exact − (UN)j|
2N

j=1    , 

 

and 𝐿∞ error norms 

L∞ = ‖U
exact − UN‖∞ ≃ maxj|Uj

exact − (UN)j|,   

j = 1, 2, … , N − 1, 

 

are used to measure the accuracy of the present algorithm and 

difference between analytical and numerical solutions at some 

specified times. We examine our results by calculating the 

following three conservative laws[13]: 

 

𝐼1 = ∫ 𝑈 𝑑𝑥 ≃ ℎ ∑ 𝑈𝑗
𝑛𝑁

𝐽=1
𝑏

𝑎
,  

𝐼2 = ∫ 𝑈 2𝑑𝑥 ≃ ℎ ∑ (𝑈𝑗
𝑛)

2𝑁
𝐽=1

𝑏

𝑎
,  

𝐼3 = ∫ (𝑈3 −
3𝜇

𝜀
𝑈𝑥
2)  𝑑𝑥 ≃ ℎ ∑ [(𝑈𝑗

𝑛)
3
−

3𝜇

𝜀
(𝑈𝑥)𝑗

2]𝑁
𝐽=1

𝑏

𝑎
,     

   

which correspond to conversation of mass, momentum and 

energy, respectively. In the simulation of solitary wave motion, 

the invariants 𝐼1, 𝐼2 and 𝐼3 are monitored to check the 

conversation of the numerical algorithm. 

 
3.1 KdV tipi çözümler 

If we take the parameters 𝑣 = 0, 𝜇 = −1 and 𝜀 = −6  in Eq.  

(3), the equation returns to KdV equation. As a first test 

problem, we will consider the KdV equation with the 

boundary conditions 𝑈(0, 𝑡)  =  𝑈(2, 𝑡)  =  0 and the initial 

condition 

 
𝑈(𝑥, 0) = 3𝐶 sec ℎ2[𝐴𝑥 + 𝐷]  
𝑈𝑁(𝑥𝑚, 0) = 𝑈(𝑥𝑚 , 0),                 𝑚 = 0, 1, … . , 𝑁 , 

where 𝐴 =
1

2
(𝜀𝐶 𝜇⁄ )

1
2⁄
   , 𝐶 = 0.3, 𝐷 =  − 6.  

 

An analytic solution of the KdV equation is given by 

𝑈(𝑥, 𝑡) = 3𝐶 sec ℎ2[𝐴𝑥 − 𝐵𝑡 + 𝐷] 
 

where 𝐵 = 𝜀𝐶𝐴. This solution corresponds to a single soliton 

with amplitude 3𝐶, locates initially at 𝑥0 and moves to the 

right at speed 𝜀𝐶 in the positive 𝑥-direction. As it is known, 

the KdV equation describes the theory of water waves in 

shallow channels and exhibits special solutions, known as 

solitons, which are stable and do not disperse with time [21]. 

 

For comparison with earlier results, we take  ε = 1, μ =
4.84 x 10−4, C = 0.3, D = −6, h = 0.001, ∆t = 0.005  

and ∆𝑡 = 0.0005. The run of the algorithm is continued up to 

time 𝑡 =  3 over the problem region 0 ≤ 𝑥 ≤ 2. Values of 

the three invariants as well as 𝐿2 and 𝐿∞ error norms obtained 

from present method have been reported in Table 1. 

 

As seen in Table 1, the error norms 𝐿2 and 𝐿∞ are found to be 

small enough, and the computed values of invariants are in 

good agreement with their analytical values 𝐼1 =
0.144598, 𝐼2 = 0.086759, 𝐼3 = 0.046850. The percentage 

of the relative error of the conserved quantities 𝐼1,  𝐼2 and 𝐼3 is 

calculated with respect to the conserved quantities at 𝑡 =  0. 

Percentage of relative changes of 𝐼1,  𝐼2 and 𝐼3  for ∆𝑡 = 0.005 

are obtained by 0.03%, 0.00%, 0.008% respectively. Thus, 

the quantities in the invariants remain almost constant during 

the computer run. Perspective views of the traveling solitons 

are graphed at time 𝑡 = 0, 1, 2 and 3 in Figure 1.  
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Figure 1: Single solitary wave with 𝐶 = 0.3, ℎ = 0.001, ∆𝑡 =
0.005, 0 ≤ 𝑥 ≤ 2 ,    𝑡 = 0, 1, 2 and 3. 

 

As seen from the figure that the solitons moves to the right at a 

constant speed and preserves its amplitude and shape with 

increasing time as expected.  

 

As a second test problem, evolution of a train of solitary waves 

of the KdV equation has been studied using the Maxwellian 

initial condition 

 

U(x, 0) = exp (−x2)                                                            (19) 

 

with boundary conditions 

U(−15, t) = U(15, t) = 0,         t > 0            
    

for different values of 𝜇. For this problem, the behavior of the 

solution depends on the value of 𝜇 [22]. For  𝜇 ≫ 𝜇𝑐, the 

Maxwellian initial condition does not break up into solitons but 

exhibits rapidly oscillating wave packets. When 𝜇 ≃ 𝜇𝑐 a 

mixed type of solution is found, which consists of a leading 

soliton and an oscillating tail. For 𝜇 < 𝜇𝑐, the Maxwellian 

breaks up into a number of solitons according to the values of 

𝜇.  

 

For the purpose of comparison with results of recent works 

[13, 21], computations are carried out for the cases 𝜇 =
0.04, 0.01, 0.001 and 0.0005 and simulations are run up to time 

𝑡 =  12 with 𝜀 = 1, ℎ = 0.02  and Δ𝑡 = 0.03. A single solitary 

wave and an oscillating tail is formed when 𝜇 = 0.04 as shown 

in Fig.2(a). For 𝜇 = 0.01, the Maxwellian initial pulse breaks 

up into a train of three solitons as drawn in Fig.2(b).  

 

When 𝜇 = 0.001 nine solitons are formed as depicted Fig.2(c). 

Finally for 𝜇 = 0.0005 twelve solitons are formed as shown in 

Fig.2(d). These graphs are in agreement with the ones found in 

Refs. [13, 21].  
 

The computed values of the invariants of motion for different 

values of 𝜇 are tabulated in Table 2. It is observed that the 

obtained values of the invariants remain almost constant during 

the computer run which are all in good agreement with the 

Refs. [13, 21].   

 

Figure 2: Maxwellian initial condition for KdV type 

solutions. 

 

3.2 Burgers' tipi çözümler 

 

By taking 𝜇 = 0 and 𝜀 = 1 in Eq.(3), we obtain Burgers' 

equation. We consider the Burgers' equation with the 

boundary conditions 

 𝑈(𝑎, 𝑡)  =  𝑈(𝑏, 𝑡)  =  0                   𝑡 ≥ 1, 

 

and the initial condition at time 𝑡 =  1 given by 

𝑈(𝑥, 1) =
𝑥

1 + exp [
1
4𝑣
(𝑥2 − 1 4⁄ )]

 

 

Burgers' equation has the following analytic solution [23], 

𝑈(𝑥, 𝑡) =
𝑥
𝑡⁄

1+√𝑡 𝑡0⁄
 𝑒𝑥𝑝[𝑥2 4𝑣𝑡⁄ ]

 , 

 

where 𝑡0 = exp (1 8𝑣)⁄ . This solution represents shock-like 

solutions of the Burgers' equation. For comparison with the 

relevant known results in [13, 15] we have used three set of 

the values 𝑣 = 0.5, ℎ = ∆𝑡 = 0.01 and 0 ≤ 𝑥 ≤ 10, 𝑣 =
0.05, ℎ = ∆𝑡 = 0.01 and 0 ≤ 𝑥 ≤ 3, 𝑣 = 0.005, ℎ =
0.005, ∆𝑡 = 0.01 and 0 ≤ 𝑥 ≤ 1.4.   

 

The computations are carried out for times up to time 𝑡 =  5. 

Table 3 displays a comparison of the values of the error norms 

obtained by the present method with those obtained in Ref. 

[13, 15]. It can be seen from the Table 3 that the error norms 

𝐿2 and 𝐿∞ are found to be small enough and they provide 

better results for the Ref. [15].  
 

Figure 3 illustrates the propagation of shock for 𝑣 = 0.5, ℎ =
∆𝑡 = 0.01 and 0 ≤ 𝑥 ≤ 10, 𝑣 = 0.05, ℎ = ∆𝑡 = 0.01 

 

 And 

 

 0 ≤ 𝑥 ≤ 3, 𝑣 = 0.005, ℎ = 0.005, ∆𝑡 = 0.01 and 0 ≤ 𝑥 ≤
1.4 at some different times, respectively.  
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Table 2: Invariants of Maxwellian initial condition with 𝜇 = 0.04, 0.01, 0.001 and 0.0005. 

 

𝑡 𝜇 𝐼1 𝐼2 𝐼3 𝜇 𝐼1 𝐼2 𝐼3 

0 0.4 1.7724545 1.2533143 0.8729292 0.001 1.7724545 1.0195668 1.0195668 

3  1.7725009 1.2532528 0.8728428  1.7724323 1.2477440 1.0138905 

6  1.7721406 1.2532358 0.8709166  1.7723277 1.2459644 1.0121144 

9  1.7730989 1.2532011 0.7871368  1.7722212 1.2455925 1.0116252 

12  1.7672991 1.2531067 0.7337504  1.7721151 1.2453424 1.0112155 

0 0.01 1.7724545 1.2533143 0.9857274 0.00005 1.7724545 1.2533143 1.0214468 

3  1.7724545 1.2528271 0.9852049  1.7721824 1.2419779 1.0099962 

6  1.7724530 1.2526859 0.9850665  1.7710074 1.2364783 1.0029630 

9  1.7724540 1.2526720 0.9850535  1.7698574 1.2368802 0.9985923 

12  1.7724932 1.2526694 0.9848915  1.7687514 1.2316253 0.9845714 

 

In this figure, both numerical and analytical solutions 

visualized at some times for 𝑣 =  0.5 and 𝑣 =  0.005 from 

which it has seen that initial shock becomes steadier for the 

larger viscosity 𝑣 =  0.5 and sharpness remains the same for 

the smaller viscosity 𝑣 =  0.005 as program runs. These 

graphs are in complete agreement with those reported by 

Refs.[15] and profiles of those solutions are in distinguishable. 

 

Figure 3: Burgers' type solutions different values for 𝑣 =  0.5,
0.05 and 0.005 at time 𝑡 =  2, 3, 4, 5.  

3.3 KdVB tipi çözümleri 

 

As a last problem, we have considered the behavior of the 

KdVB equation and have studied the effect of using different 

values of v on the solution vector. For this problem we use 

the initial condition [14]. 
 

U(x, 0) = 0.5 [1 − tan h 
|x| − x0
d

] 

 

and boundary conditions 𝑈(−50, 𝑡) = 𝑈(150, 𝑡) = 0. We 

have chosen an interval −50 ≤ 𝑥 ≤ 150, in the time period 

𝑡 ∈  [0, 800] for a simulation with 𝑥0 = 25 and 𝑑 =  5.  

 

We have taken 𝜀 = 0.2, 𝜇 = 0.1, ℎ = 0.05, ∆𝑡 = 0.4 and 

𝑣 =  0, 0.0001, 0.005, 0.01, 0.03, 0.05, 0.2 and 0.4 

respectively, to see the effects of viscosity in Eq.(3).  

 

Figure 4 illustrates the behaviour of the solutions for different 

values of 𝑣 at time 𝑡 =  800. As shown in Figure 4a, 4b, 4c, 

4d solution of the KdVB equation behaves similarly to that of 

the KdV equation when small viscosities are used. In these 

cases Eq. (3) is a KdV type equation and a train of 

10, 10, 9 and 8 solitons are formed, respectively.  

 

It is clearly observed from Figures 4g and 4h that as viscosity 

𝑣 increases the solution of KdVB equation tends to behave 

like the solution of Burgers' equation and solutions behaves 

like a travelling wave for which the amplitude is damped.  

 

The values of the invariants, amplitude and peak position at 

time 𝑡 =  800 for 𝑣 =  0 are displayed in Table 4. It is clear 

from the Table that the conservation quantities are 

satisfactorily constant with the proposed algorithms.  
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Table 3: Error norms for different values of 𝑣. 

𝑡 𝑣 = 0.5 𝑣 = 0.05 𝑣 = 0.005 

       𝐿2 𝑥 10
5 𝐿∞ 𝑥 10

5 𝐿2 𝑥 10
5 𝐿∞ 𝑥 10

5 𝐿∞ 𝑥 10
5 𝐿∞ 𝑥 10

5 

2 0.194 0.120 0.249 0.528 0.837 0.390 

3 0.121 0.060 0.215 0.333 0.238 0.263 

4 0.369 0.527 0.473 1.639 0.381 0.564 

𝑡 = 4[13] 

 
0.116 0.389 0.092 0.101 0.212 1.423 

𝑡 = 4[15] 0.245 0.528 0.461 1.703 0.208 0.692 

 

Table 4: Invariants for KdV type simulation with ℎ = 0.05, ∆𝑡 = 0.4,

𝜀 = 0.2, 𝜇 = 0.1, −50 ≤ 𝑥 ≤ 150 at time 𝑡 =  800. 

 

 

 

 

Figure 4: KdVB type solutions at time 𝑡 =  800, different values for 

𝑎) 𝑣 = 0 𝑏) 𝑣 =  0.0001 𝑐) 𝑣 =  0.005, 𝑑) 𝑣 =  0.01, 𝑒) 𝑣 =
 0.03;  𝑓) 𝑣 =  0.05, 𝑔) 𝑣 =  0.2, ℎ) 𝑣 =  0.4. 

 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 

𝑡 𝐼1 𝐼2 𝐼3 

0 50.00030 45.00057 42.30076 

100 50.00041 45.00000 42.30013 

200 50.00233 44.99839 42.29833 

300 50.00386 44.99733 42.29503 

400 49.99742 44.99689 42.29549 

500 49.98584 44.99668 42.29716 

600 49.97126 44.99660 42.29716 

700 49.96681 44.99653 42.29153 

800 49.97301 44.99635 42.28482 

800[13]M𝑄 49.96331 44.99803 42.29974 

800[15] 49.97291 45.00011 42.30072 

4. Sonuç 

 

In this article, a numerical algorithm based on a 

Petrov-Galerkin method using quadratic weight 

functions and cubic B-spline shape functions has been 

successfully presented to obtain the numerical 

solutions of KdVB equation. To show the validity of 

the method and compare with earlier works we choose 

the appropriate test problems and observe the solutions 

under the different values of 𝑣 and 𝜇. It is shown that 

our scheme is accurate and efficient. It has been 

concluded that the numerical solutions tend to behave 

like Burgers' equation when diffusion dominates 

whereas KdV type behavior has been obtained when 

dispersion dominates. Our scheme for KdV and 

Burgers' equation is agreement with earlier schemes in 

the literature. The numerical method has been shown 

for the long runs, 𝑡 =  800, considered with the 

simulations of the KdVB equation have assured us that 

the present method can be effectively used for long 

runs of the KdVB equation. So the method can be also 

used efficiently for solving a large number of 

physically important nonlinear problems. 
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