141
Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

O 7/ (< 7 o

JavaScript icin nesne yonelimli programlama yaklasimlari

A. Talha KABAKUS!
YUbant Izzet Baysal Universitesi Bilgi Islem Daire Baskanligi Merkez 14280 Bolu

OZET

Bu calismada web tabanli uygulamalarda MVC (Model-View-Controller) mimarisinin ve nesne yonelimli programlama
yaklagimlarmimn kullanilmasinin yazilim gelistirme siireglerine olan pozitif etkisi ele alinmistir. MVC mimarisi,
uygulama katman ve nesnelerini birbirinden ayirarak yazilim mimarisinin sadelestirilmesini saglamaktadir. JavaScript
web tarayicilarin dogal dili oldugundan dogrudan tarayicilar tarafindan yorumlanabilmektedir. Bundan dolay1 JavaScript
web tabanli uygulamalar i¢in en popiiler ve en etkili betik dilidir. Nesne yonelimli programlama, programlama

Ar!ahtar nesnelerinin gercek diinya nesnelerine benzetilerek problemlerin ¢dziilmesini saglar. JavaScript, kendi yapisi itibariyle
Kellmel_er: nesne yonelimli yaklasimlari ve MVC mimarisini desteklememektedir. Sencha Ext JS, nesne yonelimli programlama
JavaScript, yaklagimlarindan ve MVC mimarisinden faydalanarak zengin web uygulamalari gelistirmeyi saglayan bir kiitiiphanedir.

MVC, Nesne Performans, web tabanli uygulamalar i¢in her zaman kritiktir. Bu sebeple web sayfalarinda tanimli olan kaynak boyutu,
Yonelimli performans artis1 saglamak i¢in miimkiin oldugunca kiigiiltiilmelidir. Bu kii¢iiltme hem kaynak sayisinin azaltilmas1 hem

de kaynaklarn sikistirilmasi ile yapilabilmektedir. Kalitim, JavaScript'in dogrudan desteklemedigi nesne yonelimli
Programlama,) snemli elliklerinden birisidic. Geroek di terinin hepsi birbirinden tiredizi

.. programlamanin onemli 6zelliklerinden birisidir. Gergek diinya nesnelerinin hepsi birbirinden tiirediginden kalitim

Ug Katmanli kullanilmadan gergek diinya nesnelerini web tabanli uygulamalarda kullanmak miimkiin degildir. Dinamik kaynak

Mimari, Web yikleme, web tabanli uygulamalar ig¢in olduk¢a yeni bir yaklasim olup, kaynaklarin gerektik¢e yiiklenmesini
Tabanli Mimari | saglamaktadir. Calisma boyunca elde edilen tecriibeler ve sonuglar, nesne yonelimli yaklasim ve MVC mimarisinin
yazilim gelistirme siireclerini kolaylastirdigini, hem gelistirme hem de iiretim asamalarinda klasik web uygulama
gelistirme yaklasimlarina gore biiyiilk performans kazanci elde edildigini gostermektedir. Ayrica bu yaklasimlarin
kullanilmamas1 durumunda, &zellikle biiyiik ¢apli yazilim projelerinin bakiminin ve revizyonunun ¢ogu zaman miimkiin
olmadig1 gozlemlenmistir. JavaScript yap: olarak nesne yonelimli programlama yaklasimlarina uygun oldugundan bu
yaklagimlarin JavaScript'e uyarlanmasmin web tabanli uygulamalara performans ve yetenek kazandiracagi
diigtiniilmektedir.

Object-oriented programming approaches for JavaScript

ABSTRACT

In this study, web application development with MVC (Model-View-Controller) architecture and object-oriented

programming approaches is discussed in order to show how much these approaches simplify web application

development. MVC simplifies application architecture by separating application domain layers and objects. Because of
Key JavaScript is the native language of web browsers that can be directly interpreted by them, it is currently most popular

Words: and effective scripting language for web applications. Object-oriented programming (OOP) is the paradigm of using

objects a representation of real-world objects to solve problems. JavaScript doesn't have a built-in (native) support for

Javascript, both OOP and MVC approaches. Sencha Ext JS is a complete RIA (Rich Internet Application) development library
MVC, O_OP, makes available to use most of OOP principles with MV C architecture for JavaScript. Performance is always critical for
Three-tier web applications, so its required resource size must be minimized in order to boost its performance. This minimization
architecture, can be done through eliminating unnecessary sources and source compression. Inheritance is also another key object-
Web-based oriented programming feature that JavaScript doesn't support. Because of everything in real-life extends from

something, it is impossible to define real-life objects for web applications without inheritance. Results and experiments
show that OOP and MVC approaches simplified development stages and offered big performance gains for both
development and production stages than classic web application development paradigms. Also without these
approaches, most of time it becomes impossible to maintenance and revise software projects especially big scaled ones.
JavaScript has suitable structure for object-oriented programming approaches, so its approaches can be imitated for
JavaScript to improve performances of web applications and extend their capabilities.

architecture

Sorumlu yazar (Corresponding outhor) e-mail:

142

Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149
2. Materials and Methods

1. Introduction

Web has become more and more important for last 10 years
because of its nature. There are reasonable technical and
social reasons for this huge growing up. First of all, web is a
public area for people all over the world without any
requirements except than a web browser. Web has changed
the communication way people does, opened information
access and share to all over the world. With development of
software technologies, web applications architecture is also
developed a lot. Rich Internet Application (RIA) defines web
applications which has quite similar user interface (ui) like
desktop applications that offers powerful and modern
components on web. Google trends about RIA technologies
shows (as November 2013) that plugin based frameworks are
in the process of being replaced by HTML5 and JavaScript
based alternatives. Model-View—Controller architecture is a
design approach of dividing the software into Model, View
and Controller component to better control the software
quality with respect to processing, and interface design
(Hasan & lIsaac 2011). MVC follows the most common
approach of layering. Layering is nothing but a logical split
up of our code in to functions in different classes (Uyun &
Rifgi 2010). Major benefits of MV C architecture can be listed
as enhanced maintainability and extensibility of the system,
potential multiple views of the same model, pluggable views
and controllers, synchronized views and re-usability (Varma
2009).

JavaScript is directly interpreted by web browser. JavaScript's
natural association with browsers makes it one of the most
popular programming languages in the world (Crockford
2008). JavaScript has some lacks of ability that is available
for object-oriented programming languages. These lacks can
be overcome by imitating object-oriented approaches.

Usability is always very critical for software applications and
it becomes even more critical if the software is a web
application. In order to reach as many users as possible and
satisfy user contentment, web applications must offer a user-
friendly interface and be responsive. Performance is always
the most critical issue for thin client applications through its
architecture. There are many metrics for performance
measurement including response time, render speed, resource
load management. Web applications consist two main layers
which are presentation and business (application) layer.
Presentation layer is responsible for views and interactions
with users at clients. This layer is also known as “front-end”.
The other layer is the layer of users interactions are handled
and responded to server. This layer is also called as
“backend”.

This paper is organized as follows: Section 2 presents each
MVC layer with details. Section 3 presents performance
improvements and features enabled by OOP approach.
Section 4 presents key findings of experiments and
conclusions.

Web applications run on web browsers and performance is a big
issue because of its nature. Web browsers interpret languages
like JavaScript, CSS (Cascading Style Sheets) and

Best-practices recommend separating client-side and server-side

responsibilities

to gain performance. Also it's strongly

recommended doing validations at client-side in order to prevent
server from unnecessary calls and performance gain. Sencha Ext
JS' is an open-source rich internet application (RIA) library that
offers rich, powerful and modern user-interface widgets with
cross platform browser compatibility with rich validation
controls. With its latest release (Ext JS 4), Sencha Ext JS
supports MV C architecture which allows defining models, views
and controllers separately like commonly used approach for
backend (server-side) implementations as it is shown in Figure
1. This brand-new architecture for JavaScript offers easily
organize, maintain the source code with decreasing the amount
of code. One of the benefits of using the MV C architecture is re-
use of code (Loiane Groner 2012).

One of the biggest advantages of using Ext JS is loading
resources dynamically (on demand). This means that Ext JS
automatically loads sources (classes) when they are necessary
which provides big performance gains through loading only
required sources and when they are required. Ext.require is the
keyword of required class definition when defining new classes.
Ext.Loader class is responsible for loading sources through
dependencies. As it is shown in Table 1, dynamic loading
decreases page loading time by 525%.

Table 1. Required source sizes per each page loading approach

Approach File Size (KB)
Classic way (Directly importing all 1500

sources)

Dynamic loading 240

The main new concept in Ext JS 4 is trying to imitate object-
oriented programming (OOP) concepts for JavaScript as much

as

possible which isn't available with pure JavaScript.

Inheritance is the ability of creating new classes by extending
existing class(es) to reuse code of existing class without defining
again. Inheritance is one of the new OOP features which are
available with Ext JS 4. This is also brand-new concept for
JavaScript which the language itself doesn't provide. In Ext JS 4,
everything is inherited from Ext.Base class. Ext.define is the
keyword of creating new classes with inheritance. Inheritance is
done through “extends” configuration while defining new
classes. Inheritance reduces total lines of code (LoC) and offers
central management for extended classes through their bases
classes. JavaScript currently only support inheritance through
use of prototype chaining. The basic idea behind prototype
chaining is to use the concept of prototypes to inherit
properties and methods between two reference types (Zakas
2012).

143

Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

This approach doesn't offer multiple inheritance which can
be done through Ext JS 4. Also at the same time, an
extended class can have mixins to include previously
defined behaviors and configurations on other classes.
JavaScript MVC? is another JavaScript library based on
MVC architecture. Its inheritance model is based on strings.
So it doesn't offer a real package based inheritance. In Ext
JS 4, dependencies can be added one by one like
Ext.grid.feature.Grouping or as a group by using wildcard
character (*) like Ext.grid.* as it is commonly used with
object-oriented programming languages. Another major
difference is Ext JS offers freedom to work with 3rd party
libraries through its extensible architecture. Wrapper
components for 3rd party libraries can be easily created by
extending Ext.Component class. Leaflet is an open source
mapping JavaScript library. A sample wrapper component
source code for Leaflet map is shown in Figure 1.

Ext.define('Ext.ux.LeafletMapView', {
extend: 'Ext.Component’,
alias: 'widget.leafletmapview’,
config:{
map: null
2
afterRender: function(t, eOpts){

this.callParent(arguments);

var leafletRef = window.L;

if (leafletRef == null){
Figure 1. Wrapper component for Leaflet

Mixin is another brand-new feature for JavaScript. “mixins”
offer which is reusable sets of behavior and configuration
that can be ‘mixed in’ to a class (Spencer 2011). It can be
defined as modern Object Oriented Programming pattern
that allows for multiple inheritance (Garcia et al. 2013). A
programmer implements mixins in exactly the same way as
a derived class, except that the programmer cannot rely on
the implementation of the mixin's superclass, only on its
interface (Flatt et al. 1999). There are some works to
support transitive mixins (“mixins of mixins”) as a way to
model the interdependencies among different mixins
(Neumann et al. 2007). Sencha Ext JS 4 offers to develop
good-looking, modern web user interfaces including all of
these advantages. Figure 2 illustrates Ext JS 4 MVC
architecture.

(app/
,; controller/

app/
Lo view/

=
e
f
e
r
e
n
c
e

appl
---» store/

app/
- model/

Figure 2. Ext JS 4 MVC architecture diagram (Loaine
Groner 2012)

Mixin is another brand-new feature for JavaScript. “mixins” offer
which is reusable sets of behavior and configuration that can be
‘mixed in’ to a class (Spencer 2011). It can be defined as modern
Object Oriented Programming pattern that allows for multiple
inheritance (Garcia et al. 2013). A programmer implements
mixins in exactly the same way as a derived class, except that the
programmer cannot rely on the implementation of the mixin's
superclass, only on its interface (Flatt et al. 1999). There are
some works to support transitive mixins (“mixins of mixins”) as a
way to model the interdependencies among different mixins
(Neumann et al. 2007). Sencha Ext JS 4 offers to develop good-
looking, modern web user interfaces including all of these
advantages. Figure 2 illustrates Ext JS 4 MVC architecture.

2.1. Model Layer

The model is where all the application’s data objects are stored. A
model doesn’t know anything about views or controllers. The only
thing a model should contain is data and the logic associated
directly with that data. Any event handling code, view templates,
or logic not specific to that model should be kept well clear of it.
You know an application’s MVC architecture is violated when
you start seeing view code in the models (MacCaw 2011). With
MVC support, we can use database tables as JavaScript objects
(models) as Figure 3 illustrates each model per layer. Model is
collection of fields that provides to define each field with the
associated type and defining associations like belongsTo, hasOne,
hasMany (Boerman 2012). Also it's possible to add validations to
each field like minimum & maximum length, required fields,
regex expressions, etc. This approach keeps server away from
unnecessary calls with handling these validations which are
executed against validator functions at front-end before backend
does. With Ext JS 4, we are able to add validations through other
user-defined models in order to associate objects within others.

144

Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

This is another great sample of object-oriented programming
paradigm offered for JavaScript. Most of JavaScript libraries
offer validation through just primitive type (string, integer,
boolean, double, etc.) values.

R D
--.h i 1

Client-side Server-side

v ov 4
m /B 8

Javascript Object Java Ohject Database Table

Figure 3. Representation of domain objects of each layer
2.2. View Layer

View classes describe all user-interface components that can
be reused. Ext JS provides many powerful, rich and modern
widgets that can be customizable and expendable. View layer
is only responsible for application view objects that are going
to be rendered. Ext JS offers many useful built-in
functionalities for view components. For example, a grid
component has built-in features like sorting, searching,
grouping, filtering, etc. This is also a big advantage for
developers to concentrate on application business instead of
implementation details. MV C approach separates all business
logic like event handling, user interactions, etc. from view
classes.

2.3. Controller Layer

All controls and user interactions on view objects are defined
in this layer regards to three-tier architecture. With this
approach, same view objects can be used for different business
operations with their own behaviors (this is also known as re-
usability). Controller is the place where business logic goes.
All dynamic actions are defined in controllers like event
handlers, button actions, etc. ComponentQuery is another new
feature which provides searching user-interface components by
their type with a similar syntax to a CSS selector. With this
singleton class, we are able to define actions towards to all
selected components. For example, an action like “load all
stores in the page/panel” or “disable all buttons in the
page/panel” can be defined by ComponentQuery class with a
query that selects all grid components in the view. With this
feature once a behavior of a view object is defined, this can be
applied to all instances of it.

1 http://www.sencha.com/products/sencha-cmd

Despite it is not mandatory, the recommended folder structure
is shown in Figure 4. A new folder is created for each layer.
Folder paths are fully configurable and should match with
defined packages. For example, a class like
“MyApp.view.user.RegistrationForm” should be located in
“MyApp/view/user” folder with “RegistrationForm.js” file
name.

¥ = Webapp
b B airballoon

——

C [

controller
118n
model
resouUrces
store

test

ux

yFvyYwvwvwyerwr
ERREERERI

[
B view

> B extjs

Figure 4. Recommended folder structure for Ext JS applications

3. Results and Discussion

OOP and MVC architecture does not only simplify software
development stages; but also improves software performance.
For a web application, these approaches are experienced during
this study. In the following sections, each performance
improvement and feature is discussed.

3.1. Resource Compression and Dynamic Loading

A tool named Sencha Cmd (Command)® can be used to
compress resources and minify their sizes to improve page
loading speed. After JavaScript source compression using
Sencha Cmd for an application that uses all sources, required
source size becomes 850 KB which offers almost 100%
performance improvement than classic way as it is shown in
Table 2. This tool also excludes unnecessary sources before
source compression.

Table 2. Compressed file size

Approach File Size (KB)
Source size without compression 1500
Source size with compression 850

145
Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

Compression minimizes resource size that is going to be loaded. oA

This helps server to load resources more quickly and making 1 o I
views more responsive. Another filter named GZIP* compression .|] \\2{ i /4 a
is used to compress responses from server and decompress them Belgelerim Bigiendirmelerim Gérevlerim Evrak Kayit Defteri izinlerim
after it is loaded into browser. GZIP compression is standardized

=

respectively as RFC1952° by IETF® (Internet Engineering Task | # Menu Listesi «
Force). AImOSt a" Web brOWSEI’S accept GZIP enCOding fOI’ | Belgelerim | © Belgelerim J Bilgilendirmelerim
compression by looking HTTP (Hyper Text Traqsfgr.Protocol) ::Bﬂgiwfme'efm 7 Kiasrier
Response Header “Content-Encoding” property as it is illustrated {1 Gorevierim o
in Figure 5. i J Evrak Kayit Defteri J=
'; S | sahsi(1)
& Izinkerim .
+ 8 Yénetm | fakiitte (11)
- B i [dekanlik (1)
Mena Listesi o
Request Header b Kutanic: Yonetimi e (0)
N _ 5 Ayariar
i Accept-Encoding: gzip @ serviciga
= L] s
st Yapilandirma
|| LookUp Diizenle <
Content.Encodi i Server
ontent-Encoding: gzi
Browser g-921p
User Menus
D © &
- =L &

Figure 5. A diagram that illustrates how GZIP Compression My Documents Nofifications My Tasks Notebook | My Vacations
works

Menu List 4%

[My Documents [My Documents *|| (2 Notifications
3.2. Internalization 1l Notifications =SS

(2 My Tasks _
Internalization (i18n) is the process of planning and implementing i Notebook j‘—’-‘f’”””“
products and services so that they can easily be adapted to specific & wyvacatons £ personcl 1)
local languages. Internalization can be applied by using resource 4 g Agmiistration 15 faculy (11)
bundle implementation. Different languages can be easily added = Menu List 5 dean (1)
by just adding its resource bundle into the system. A resource £ Manage Users [magament (0)
bundle is simply a properties file that contains key-value pairs 45 settings
which keys contain variables and value contains language specific Server Logs
equivalents of these variables as it is shown in Figure 6. Resource 5. Organize

bundles contain locale based information and provide separating
this information from source code. The content of interface can be
changed by just editing these resource bundles without making
any changes to source code. This approach brings together all
language specific content and prevents users from possible Figure 7. English and Turkish interfaces side-by-side
mistakes that can occur while editing source code. Figure 7 shows
Turkish and English user interface localized through using
resource bundles.

:zz| Manage LookUps 1

3.3. Client-side logging

Another new feature for client-side development is client-

side logging. An open-source library named log4js-ext
grid_actions:i§|em|er grid'action5=i$|em|er which is an extension for Ext JS 4 prOVides client-side
logging with details like priority, time, category and it also
has a built-in log viewer window to show stored logs with
all details as it is shown in Figure 8.

success=Basarili success=Basarili

info=Bilgilendirme

info=Bilgilendirme

Figure 6. Samples from Turkish and English resource bundles

2 http://gzip.org
3 http://tools.ietf.org/html/rfc1952
4 http://ietf.org

146

Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

Main features of this library can be listed as:

= It allows logging with categories including various log
priorities like info, warning, debug, error.

= Offers Nested Diagnostic Context (NDC) to distinguish
interleaved log output from different sources

= Offers nicely highlighted log viewer GUI (Graphical
User Interface) to search logs through their content,
priority level and category.

= Library offers to log nested complex objects; not just
simple messages

= Provides advanced and customizable log formats

= Uses very similar syntax to highly popular logging
libraries

4, Conclusion

JavaScript is a powerful scripting language directly
interpreted by web browsers. There are some deficiencies
about its architecture that must be overcome in order to offer
advanced approaches for both software development and
performance.

Yet JavaScript doesn’t have a built-in object-oriented
programming support, an imitation of it can be built for taking
advantages of object-oriented concepts. In this study, a
JavaScript library that encapsulates these deficiencies is tested to
reveal its effects.Ext JS 4 is a powerful and extensible JavaScript
framework that supports both MVC and OOP approaches. Every
object of Ext JS is derived from Ext.Object and it supports
inheritance, encapsulation with demand on resource loading
(which is also known as dynamic loading). This is done by a
class named Ext.Loader which basically defines paths for
packages as it is discussed before. This approach improves
application startup performance by 525% as it is shown in Table
1. With source compression and dynamic source loading
features, web pages are loaded almost 100% faster than before
because of reduced source size as it is shown in Table 2.
Whenever a class needs another, this requirement is defined by a
‘requires’ relation which guaranties required sources to be
loaded before launching the class. 'mixins' feature can be used to
meet multiple inheritance deficiency for client-side objects.

& logdjs
Priority: TRACE ¥ | Category: Message:
Time ~ P. Category NDC Message

= 2012-09-10 20:06:54.408 ApplLogger

Time: 2012-08-10 20:06:54.408 Prierity: DEBUG Category: Applogger NDC:
Message: Second debug message

2012-09-10 20:06:54.406 (i) Applogger

= 2012-09-10 20:06:54.405 ApplLogger

Time: 2012-08-10 20:06:54.405 Priority: DEBUG Category: Applogger NDC:
Message: Debug message

= 2012-09-10 20:06:54.404 @ Applogger
Time: 2012-08-10 20:06:54.404 Pricrity: ERROR Category: AppLogger NDC:
Message: Message, levelFERROR (text substitutions=2)

H | 2012-09-10 20:06:54.403 1, Applogger

H 9047 0040 20-nE-RA 308 (Y Annloonaer Arnlie atinn ie

Second debug message

Debug message

Message, level=ERROR (text substitutions=2)

Message, level=WARN (text substitutions=2)

initializinal

[14
NDC: Logged object:
LO? Logged Object
v { name: "John', deg: { name: "Spol

3250, 19801}

-

v
¥ Clearlogs () Set logging state ~

Figure 8. An overview of Log4js log viewer window

References

1. Boerman, R.: Using Model Associations in Sencha Touch
2 and Ext JS 4,
http://appointsolutions.com/2012/07/using-model-
associations-in-sencha-touch-2-and-ext-js-4/, July 2012.

2. Crockford, D., JavaScript: The Good Parts, s. 2, O’Reilly
Media/Yahoo Press, 1005 Gravenstein Highway North,
Sebastopol, CA 95472, 2008.

3. Flatt, M., Krishnamurthi, S., Felleisen, M., A
programmer’s reduction semantics for classes and mixins,
In: Alves-Foss, J. (ed.) Formal syntax and semantics of
Java, s. 13, Springer, 1999.

4. Garcia, J., Andresen, J.K., Grisogono, G., ExtJS in
Action, 2nd ed., s. 19, Manning Publication Co., 180
Broad St. Suite 1323 Stamford, CT 06901, USA, 2013.

5. Groner, L., Ext JS 4 First Look, s. 272, Packt Publishing,
Livery Place 35 Livery Street Birmingham B3 2PB, UK,
2012.

6. Groner, L.. ExtJS 4 MVC Architecture Mind Map,
http://www.slideshare.net/loianeg/extjs-4-mvc-architecture-
mind-map-13669488, July 2012.

7. Hasan, S.S., Isaac, R.K., An integrated approach of MAS-
CommonKADS, Model-View—Controller and web
application optimization strategies for web-based expert
system development, Expert Syst. Appl., 38, 417-428,
2011.

8. MacCaw, A., JavaScript Web Applications, s.3, O’Reilly

Media, 1005 Gravenstein Highway North, Sebastopol, CA
95472, 2011.

9. Neumann, G., Zdun, U., Strembeck, M., Object-based and

class-based composition of transitive mixins, Inf. Softw.
Technol., 49, 871-891, 2007.

10.

11.

12.

13.

147
Kabakus, Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi, 30(2):141-149

Spencer, E.: Countdown to Ext JS 4: Dynamic Loading
and New Class System,
http://www.sencha.com/blog/countdown-to-ext-js-4-
dynamic-loading-and-new-class-system, Jan. 2011.

Uyun, S., Rifgi, M., Implementation Of Model View
Controller (MVC) Architecture On Building Web-based
Information System, Islam Zeitschrift Fiir Geschichte
Und Kultur Des Islamischen Orients, 47-50, 2010.
Varma, V., Software Architecture: A Case Based
Approach, s. 94, Pearson Education India, New Delhi,
India, 2009.

Zakas, N.C., Professional JavaScript for Web Developers,
s. 202, Wrox, Indianapolis, Indiana, 2012.

