
141
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

JavaScript için nesne yönelimli programlama yaklaşımları

A. Talha KABAKUŞ
1

1
Abant İzzet Baysal Üniversitesi Bilgi İşlem Daire Başkanlığı Merkez 14280 Bolu

Anahtar

Kelimeler:

JavaScript,

MVC, Nesne

Yönelimli

Programlama,

Üç Katmanlı

Mimari, Web

Tabanlı Mimari

ÖZET
Bu çalışmada web tabanlı uygulamalarda MVC (Model-View-Controller) mimarisinin ve nesne yönelimli programlama

yaklaşımlarının kullanılmasının yazılım geliştirme süreçlerine olan pozitif etkisi ele alınmıştır. MVC mimarisi,

uygulama katman ve nesnelerini birbirinden ayırarak yazılım mimarisinin sadeleştirilmesini sağlamaktadır. JavaScript

web tarayıcıların doğal dili olduğundan doğrudan tarayıcılar tarafından yorumlanabilmektedir. Bundan dolayı JavaScript

web tabanlı uygulamalar için en popüler ve en etkili betik dilidir. Nesne yönelimli programlama, programlama

nesnelerinin gerçek dünya nesnelerine benzetilerek problemlerin çözülmesini sağlar. JavaScript, kendi yapısı itibariyle

nesne yönelimli yaklaşımları ve MVC mimarisini desteklememektedir. Sencha Ext JS, nesne yönelimli programlama

yaklaşımlarından ve MVC mimarisinden faydalanarak zengin web uygulamaları geliştirmeyi sağlayan bir kütüphanedir.

Performans, web tabanlı uygulamalar için her zaman kritiktir. Bu sebeple web sayfalarında tanımlı olan kaynak boyutu,

performans artışı sağlamak için mümkün olduğunca küçültülmelidir. Bu küçültme hem kaynak sayısının azaltılması hem

de kaynakların sıkıştırılması ile yapılabilmektedir. Kalıtım, JavaScript'in doğrudan desteklemediği nesne yönelimli

programlamanın önemli özelliklerinden birisidir. Gerçek dünya nesnelerinin hepsi birbirinden türediğinden kalıtım

kullanılmadan gerçek dünya nesnelerini web tabanlı uygulamalarda kullanmak mümkün değildir. Dinamik kaynak

yükleme, web tabanlı uygulamalar için oldukça yeni bir yaklaşım olup, kaynakların gerektikçe yüklenmesini

sağlamaktadır. Çalışma boyunca elde edilen tecrübeler ve sonuçlar, nesne yönelimli yaklaşım ve MVC mimarisinin

yazılım geliştirme süreçlerini kolaylaştırdığını, hem geliştirme hem de üretim aşamalarında klasik web uygulama

geliştirme yaklaşımlarına göre büyük performans kazancı elde edildiğini göstermektedir. Ayrıca bu yaklaşımların

kullanılmaması durumunda, özellikle büyük çaplı yazılım projelerinin bakımının ve revizyonunun çoğu zaman mümkün

olmadığı gözlemlenmiştir. JavaScript yapı olarak nesne yönelimli programlama yaklaşımlarına uygun olduğundan bu

yaklaşımların JavaScript'e uyarlanmasının web tabanlı uygulamalara performans ve yetenek kazandıracağı

düşünülmektedir.

Object-oriented programming approaches for JavaScript

Key

Words:

JavaScript,

MVC, OOP,

Three-tier

architecture,

Web-based

architecture

ABSTRACT
In this study, web application development with MVC (Model-View-Controller) architecture and object-oriented

programming approaches is discussed in order to show how much these approaches simplify web application

development. MVC simplifies application architecture by separating application domain layers and objects. Because of

JavaScript is the native language of web browsers that can be directly interpreted by them, it is currently most popular

and effective scripting language for web applications. Object-oriented programming (OOP) is the paradigm of using

objects a representation of real-world objects to solve problems. JavaScript doesn't have a built-in (native) support for

both OOP and MVC approaches. Sencha Ext JS is a complete RIA (Rich Internet Application) development library

makes available to use most of OOP principles with MVC architecture for JavaScript. Performance is always critical for

web applications, so its required resource size must be minimized in order to boost its performance. This minimization

can be done through eliminating unnecessary sources and source compression. Inheritance is also another key object-

oriented programming feature that JavaScript doesn't support. Because of everything in real-life extends from

something, it is impossible to define real-life objects for web applications without inheritance. Results and experiments

show that OOP and MVC approaches simplified development stages and offered big performance gains for both

development and production stages than classic web application development paradigms. Also without these

approaches, most of time it becomes impossible to maintenance and revise software projects especially big scaled ones.

JavaScript has suitable structure for object-oriented programming approaches, so its approaches can be imitated for

JavaScript to improve performances of web applications and extend their capabilities.

Sorumlu yazar (Corresponding outhor) e-mail:

142
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

1. Introduction

Web has become more and more important for last 10 years

because of its nature. There are reasonable technical and

social reasons for this huge growing up. First of all, web is a

public area for people all over the world without any

requirements except than a web browser. Web has changed

the communication way people does, opened information

access and share to all over the world. With development of

software technologies, web applications architecture is also

developed a lot. Rich Internet Application (RIA) defines web

applications which has quite similar user interface (ui) like

desktop applications that offers powerful and modern

components on web. Google trends about RIA technologies

shows (as November 2013) that plugin based frameworks are

in the process of being replaced by HTML5 and JavaScript

based alternatives. Model–View–Controller architecture is a

design approach of dividing the software into Model, View

and Controller component to better control the software

quality with respect to processing, and interface design

(Hasan & Isaac 2011). MVC follows the most common

approach of layering. Layering is nothing but a logical split

up of our code in to functions in different classes (Uyun &

Rifqi 2010). Major benefits of MVC architecture can be listed

as enhanced maintainability and extensibility of the system,

potential multiple views of the same model, pluggable views

and controllers, synchronized views and re-usability (Varma

2009).

JavaScript is directly interpreted by web browser. JavaScript's

natural association with browsers makes it one of the most

popular programming languages in the world (Crockford

2008). JavaScript has some lacks of ability that is available

for object-oriented programming languages. These lacks can

be overcome by imitating object-oriented approaches.

Usability is always very critical for software applications and

it becomes even more critical if the software is a web

application. In order to reach as many users as possible and

satisfy user contentment, web applications must offer a user-

friendly interface and be responsive. Performance is always

the most critical issue for thin client applications through its

architecture. There are many metrics for performance

measurement including response time, render speed, resource

load management. Web applications consist two main layers

which are presentation and business (application) layer.

Presentation layer is responsible for views and interactions

with users at clients. This layer is also known as “front-end”.

The other layer is the layer of users interactions are handled

and responded to server. This layer is also called as

“backend”.

This paper is organized as follows: Section 2 presents each

MVC layer with details. Section 3 presents performance

improvements and features enabled by OOP approach.

Section 4 presents key findings of experiments and

conclusions.

2. Materials and Methods

Web applications run on web browsers and performance is a big

issue because of its nature. Web browsers interpret languages

like JavaScript, CSS (Cascading Style Sheets) and

Best-practices recommend separating client-side and server-side

responsibilities to gain performance. Also it's strongly

recommended doing validations at client-side in order to prevent

server from unnecessary calls and performance gain. Sencha Ext

JS
1
 is an open-source rich internet application (RIA) library that

offers rich, powerful and modern user-interface widgets with

cross platform browser compatibility with rich validation

controls. With its latest release (Ext JS 4), Sencha Ext JS

supports MVC architecture which allows defining models, views

and controllers separately like commonly used approach for

backend (server-side) implementations as it is shown in Figure

1. This brand-new architecture for JavaScript offers easily

organize, maintain the source code with decreasing the amount

of code. One of the benefits of using the MVC architecture is re-

use of code (Loiane Groner 2012).

One of the biggest advantages of using Ext JS is loading

resources dynamically (on demand). This means that Ext JS

automatically loads sources (classes) when they are necessary

which provides big performance gains through loading only

required sources and when they are required. Ext.require is the

keyword of required class definition when defining new classes.

Ext.Loader class is responsible for loading sources through

dependencies. As it is shown in Table 1, dynamic loading

decreases page loading time by 525%.

Table 1. Required source sizes per each page loading approach

Approach File Size (KB)

Classic way (Directly importing all

sources)
1500

Dynamic loading 240

The main new concept in Ext JS 4 is trying to imitate object-
oriented programming (OOP) concepts for JavaScript as much
as possible which isn't available with pure JavaScript.
Inheritance is the ability of creating new classes by extending
existing class(es) to reuse code of existing class without defining
again. Inheritance is one of the new OOP features which are
available with Ext JS 4. This is also brand-new concept for
JavaScript which the language itself doesn't provide. In Ext JS 4,
everything is inherited from Ext.Base class. Ext.define is the
keyword of creating new classes with inheritance. Inheritance is
done through “extends” configuration while defining new
classes. Inheritance reduces total lines of code (LoC) and offers
central management for extended classes through their bases
classes. JavaScript currently only support inheritance through
use of prototype chaining. The basic idea behind prototype
chaining is to use the concept of prototypes to inherit
properties and methods between two reference types (Zakas
2012).

143
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

This approach doesn't offer multiple inheritance which can

be done through Ext JS 4. Also at the same time, an

extended class can have mixins to include previously

defined behaviors and configurations on other classes.

JavaScript MVC
2
 is another JavaScript library based on

MVC architecture. Its inheritance model is based on strings.

So it doesn't offer a real package based inheritance. In Ext

JS 4, dependencies can be added one by one like

Ext.grid.feature.Grouping or as a group by using wildcard

character (*) like Ext.grid.* as it is commonly used with

object-oriented programming languages. Another major

difference is Ext JS offers freedom to work with 3rd party

libraries through its extensible architecture. Wrapper

components for 3rd party libraries can be easily created by

extending Ext.Component class. Leaflet is an open source

mapping JavaScript library. A sample wrapper component

source code for Leaflet map is shown in Figure 1.

 Figure 1. Wrapper component for Leaflet

Mixin is another brand-new feature for JavaScript. “mixins”

offer which is reusable sets of behavior and configuration

that can be „mixed in‟ to a class (Spencer 2011). It can be

defined as modern Object Oriented Programming pattern

that allows for multiple inheritance (Garcia et al. 2013). A

programmer implements mixins in exactly the same way as

a derived class, except that the programmer cannot rely on

the implementation of the mixin's superclass, only on its

interface (Flatt et al. 1999). There are some works to

support transitive mixins (“mixins of mixins”) as a way to

model the interdependencies among different mixins

(Neumann et al. 2007). Sencha Ext JS 4 offers to develop

good-looking, modern web user interfaces including all of

these advantages. Figure 2 illustrates Ext JS 4 MVC

architecture.

 Figure 2. Ext JS 4 MVC architecture diagram (Loaine

Groner 2012)

Mixin is another brand-new feature for JavaScript. “mixins” offer
which is reusable sets of behavior and configuration that can be
‘mixed in’ to a class (Spencer 2011). It can be defined as modern
Object Oriented Programming pattern that allows for multiple
inheritance (Garcia et al. 2013). A programmer implements
mixins in exactly the same way as a derived class, except that the
programmer cannot rely on the implementation of the mixin's
superclass, only on its interface (Flatt et al. 1999). There are
some works to support transitive mixins (“mixins of mixins”) as a
way to model the interdependencies among different mixins
(Neumann et al. 2007). Sencha Ext JS 4 offers to develop good-
looking, modern web user interfaces including all of these
advantages. Figure 2 illustrates Ext JS 4 MVC architecture.

2.1. Model Layer

The model is where all the application‟s data objects are stored. A

model doesn‟t know anything about views or controllers. The only

thing a model should contain is data and the logic associated

directly with that data. Any event handling code, view templates,

or logic not specific to that model should be kept well clear of it.

You know an application‟s MVC architecture is violated when

you start seeing view code in the models (MacCaw 2011). With

MVC support, we can use database tables as JavaScript objects

(models) as Figure 3 illustrates each model per layer. Model is

collection of fields that provides to define each field with the

associated type and defining associations like belongsTo, hasOne,

hasMany (Boerman 2012). Also it's possible to add validations to
each field like minimum & maximum length, required fields,
regex expressions, etc. This approach keeps server away from
unnecessary calls with handling these validations which are
executed against validator functions at front-end before backend
does. With Ext JS 4, we are able to add validations through other
user-defined models in order to associate objects within others.

Ext.define('Ext.ux.LeafletMapView', {

 extend: 'Ext.Component',

 alias: 'widget.leafletmapview',

 config:{

 map: null

 },

 afterRender: function(t, eOpts){

 this.callParent(arguments);

 var leafletRef = window.L;

 if (leafletRef == null){

144
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

This is another great sample of object-oriented programming

paradigm offered for JavaScript. Most of JavaScript libraries

offer validation through just primitive type (string, integer,

boolean, double, etc.) values.

Figure 3. Representation of domain objects of each layer

2.2. View Layer

View classes describe all user-interface components that can

be reused. Ext JS provides many powerful, rich and modern

widgets that can be customizable and expendable. View layer

is only responsible for application view objects that are going

to be rendered. Ext JS offers many useful built-in

functionalities for view components. For example, a grid

component has built-in features like sorting, searching,

grouping, filtering, etc. This is also a big advantage for

developers to concentrate on application business instead of

implementation details. MVC approach separates all business

logic like event handling, user interactions, etc. from view

classes.

2.3. Controller Layer

All controls and user interactions on view objects are defined

in this layer regards to three-tier architecture. With this

approach, same view objects can be used for different business

operations with their own behaviors (this is also known as re-

usability). Controller is the place where business logic goes.

All dynamic actions are defined in controllers like event

handlers, button actions, etc. ComponentQuery is another new

feature which provides searching user-interface components by

their type with a similar syntax to a CSS selector. With this

singleton class, we are able to define actions towards to all

selected components. For example, an action like “load all

stores in the page/panel” or “disable all buttons in the

page/panel” can be defined by ComponentQuery class with a

query that selects all grid components in the view. With this

feature once a behavior of a view object is defined, this can be

applied to all instances of it.

Despite it is not mandatory, the recommended folder structure

is shown in Figure 4. A new folder is created for each layer.

Folder paths are fully configurable and should match with

defined packages. For example, a class like

“MyApp.view.user.RegistrationForm” should be located in

“MyApp/view/user” folder with “RegistrationForm.js” file

name.

Figure 4. Recommended folder structure for Ext JS applications

3. Results and Discussion

OOP and MVC architecture does not only simplify software

development stages; but also improves software performance.

For a web application, these approaches are experienced during

this study. In the following sections, each performance

improvement and feature is discussed.

3.1. Resource Compression and Dynamic Loading

A tool named Sencha Cmd (Command)
3
 can be used to

compress resources and minify their sizes to improve page

loading speed. After JavaScript source compression using

Sencha Cmd for an application that uses all sources, required

source size becomes 850 KB which offers almost 100%

performance improvement than classic way as it is shown in

Table 2. This tool also excludes unnecessary sources before

source compression.

 Table 2. Compressed file size

Approach File Size (KB)

Source size without compression 1500

Source size with compression 850

1 http://www.sencha.com/products/sencha-cmd

145
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

Compression minimizes resource size that is going to be loaded.

This helps server to load resources more quickly and making

views more responsive. Another filter named GZIP
4
 compression

is used to compress responses from server and decompress them

after it is loaded into browser. GZIP compression is standardized

respectively as RFC1952
5
 by IETF

6
 (Internet Engineering Task

Force). Almost all web browsers accept GZIP encoding for

compression by looking HTTP (Hyper Text Transfer Protocol)

Response Header “Content-Encoding” property as it is illustrated

in Figure 5.

Figure 5. A diagram that illustrates how GZIP Compression

works

3.2. Internalization

Internalization (i18n) is the process of planning and implementing

products and services so that they can easily be adapted to specific

local languages. Internalization can be applied by using resource

bundle implementation. Different languages can be easily added

by just adding its resource bundle into the system. A resource

bundle is simply a properties file that contains key-value pairs

which keys contain variables and value contains language specific

equivalents of these variables as it is shown in Figure 6. Resource

bundles contain locale based information and provide separating

this information from source code. The content of interface can be

changed by just editing these resource bundles without making

any changes to source code. This approach brings together all

language specific content and prevents users from possible

mistakes that can occur while editing source code. Figure 7 shows

Turkish and English user interface localized through using

resource bundles.

Figure 6. Samples from Turkish and English resource bundles

Figure 7. English and Turkish interfaces side-by-side

3.3. Client-side logging

Another new feature for client-side development is client-

side logging. An open-source library named log4js-ext

which is an extension for Ext JS 4 provides client-side

logging with details like priority, time, category and it also

has a built-in log viewer window to show stored logs with

all details as it is shown in Figure 8.

2 http://gzip.org
3 http://tools.ietf.org/html/rfc1952
4 http://ietf.org

grid.actions=İşlemler

success=Başarılı

info=Bilgilendirme

grid.actions=İşlemler

success=Başarılı

info=Bilgilendirme

146
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

Main features of this library can be listed as:

 It allows logging with categories including various log

priorities like info, warning, debug, error.

 Offers Nested Diagnostic Context (NDC) to distinguish

interleaved log output from different sources

 Offers nicely highlighted log viewer GUI (Graphical

User Interface) to search logs through their content,

priority level and category.

 Library offers to log nested complex objects; not just

simple messages

 Provides advanced and customizable log formats

 Uses very similar syntax to highly popular logging

libraries

4. Conclusion

JavaScript is a powerful scripting language directly

interpreted by web browsers. There are some deficiencies

about its architecture that must be overcome in order to offer

advanced approaches for both software development and

performance.

Yet JavaScript doesn‟t have a built-in object-oriented

programming support, an imitation of it can be built for taking

advantages of object-oriented concepts. In this study, a

JavaScript library that encapsulates these deficiencies is tested to

reveal its effects.Ext JS 4 is a powerful and extensible JavaScript

framework that supports both MVC and OOP approaches. Every

object of Ext JS is derived from Ext.Object and it supports

inheritance, encapsulation with demand on resource loading

(which is also known as dynamic loading). This is done by a

class named Ext.Loader which basically defines paths for

packages as it is discussed before. This approach improves

application startup performance by 525% as it is shown in Table

1. With source compression and dynamic source loading

features, web pages are loaded almost 100% faster than before

because of reduced source size as it is shown in Table 2.

Whenever a class needs another, this requirement is defined by a

„requires‟ relation which guaranties required sources to be

loaded before launching the class. 'mixins' feature can be used to

meet multiple inheritance deficiency for client-side objects.

 Figure 8. An overview of Log4js log viewer window

References

1. Boerman, R.: Using Model Associations in Sencha Touch

2 and Ext JS 4,

http://appointsolutions.com/2012/07/using-model-

associations-in-sencha-touch-2-and-ext-js-4/, July 2012.

2. Crockford, D., JavaScript: The Good Parts, s. 2, O‟Reilly

Media/Yahoo Press, 1005 Gravenstein Highway North,

Sebastopol, CA 95472, 2008.

3. Flatt, M., Krishnamurthi, S., Felleisen, M., A

programmer‟s reduction semantics for classes and mixins,

In: Alves-Foss, J. (ed.) Formal syntax and semantics of

Java, s. 13, Springer, 1999.

4. Garcia, J., Andresen, J.K., Grisogono, G., ExtJS in

Action, 2nd ed., s. 19, Manning Publication Co., 180

Broad St. Suite 1323 Stamford, CT 06901, USA, 2013.

5. Groner, L., Ext JS 4 First Look, s. 272, Packt Publishing,

Livery Place 35 Livery Street Birmingham B3 2PB, UK,

2012.

6. Groner, L.: ExtJS 4 MVC Architecture Mind Map,

http://www.slideshare.net/loianeg/extjs-4-mvc-architecture-

mind-map-13669488, July 2012.

7. Hasan, S.S., Isaac, R.K., An integrated approach of MAS-

CommonKADS, Model–View–Controller and web

application optimization strategies for web-based expert

system development, Expert Syst. Appl., 38, 417–428,

2011.

8. MacCaw, A., JavaScript Web Applications, s.3, O‟Reilly

Media, 1005 Gravenstein Highway North, Sebastopol, CA

95472, 2011.

9. Neumann, G., Zdun, U., Strembeck, M., Object-based and

class-based composition of transitive mixins, Inf. Softw.

Technol., 49, 871–891, 2007.

147
Kabakuş, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2):141-149

10. Spencer, E.: Countdown to Ext JS 4: Dynamic Loading

and New Class System,

http://www.sencha.com/blog/countdown-to-ext-js-4-

dynamic-loading-and-new-class-system, Jan. 2011.

11. Uyun, S., Rifqi, M., Implementation Of Model View

Controller (MVC) Architecture On Building Web-based

Information System, Islam Zeitschrift Für Geschichte

Und Kultur Des Islamischen Orients, 47–50, 2010.

12. Varma, V., Software Architecture: A Case Based

Approach, s. 94, Pearson Education India, New Delhi,

India, 2009.

13. Zakas, N.C., Professional JavaScript for Web Developers,

s. 202, Wrox, Indianapolis, Indiana, 2012.

