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ABSTRACT 

 
The main purpose of this article is to present an approximation method  for logarithmic singular (Symm’s 

integral equation [1] integro-differential equations in the most general form under the mixed conditions in 

terms of the first kind Chebyshev polynomials. This method is based on the first-kind Chebyshev 

polynomials. The solution is obtained in terms of the first-kind Chebyshev polynomials. This scheme is 

based on taking the truncated the first-kind Chebyshev expansion of the function in the Logaritmic singular 

integro-differential equations. Hence, the result matrix equation can be solved and the unknown the first-

kind Chebyshev polynomial coefficients can be found approximately. The error analysis and convergence 

for the proposed method is also introduced. 
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ÖZET 

 
Bu çalışmanın temel amacı karışık koşullar ile en genel halde verilen logaritmik tekil integro diferasiyel  
denklemlerin nümerik çözümleri için birinci tip Chebyshev polinomları yardımıyla bir yöntem 

geliştirmektir. Bu yöntem denklem çözümünün birinci tip Chebyshev polinomları cinsinden seriye açılma 

esasına dayanır. Logaritmik tekil integro diferansiyel denklemde bulunan fonksiyonların birinci tip 

Chebyshev serisine açılması ile elde edilen matris denklemi çözülerek Chebyshev katsayıları bulunmuştur. 

Önerilen yöntem için hata analizi ve yakınsaklık incelemesi yapılmıştır. 

*Sorumlu Yazar (Corresponding author) e-posta:  
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1. Introduction 

 

Many problems of mathematical physics, engineering and 

contact problems in the theory of elasticity lead to singular 
integro differential equations. Logarithmic singular integro 

differential equation are found in many applications such 

elasticity and potential theory[1-2], asacoustic scattering [3] 

and fluid mechanics[4-7]. Several methods for the solution of 

singular equations have been presented, which are the H and 

H-R method [8], Spline Galerkin method[9] and others [10-

11]. In recent years the Chebyshev polynomials have been 

used to find the approximate solutions ofdifferential 

equation[12], integro-differential-difference equations[13], 

Abel equation[14], Volterra differential equation[15], 

singular-perturbation equation[16], pantograph equations[17]. 
In this paper, we consider the logarithmic integro-differential 

equation 
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with the mixed conditions 
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and the solution is expressed in terms of the the first kind 

Chebyshev functions as follows: 
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where ai , i=0,1,...,N are the coefficients to be determined. 

Here )(xPk  and )(xf  are continous functions on ]1,1[  

and 
k

kjc , kjc  and   are appropriate constants. Note that this 

kernel has a weak logarithmic singularity at tx  . Equation 

(1) is usually referred to as Symm’s integral equation which is 

of importance in potential theory [1]. Symm’s integral 
equation has a unique solution [18]. 

 

2. Preliminaries and notations 

In this section, we state some basic results about polynomial 

approximations. These important properties will enable us to 

solve the singular integro differential equations. Polynomials 

are the only functions that the computer can evaluate exactly, 

so we make approximate functions RR   by polynomials. 

We consider real-valued functions on the compact interval 

]1,1[ : 

Rf  ]1,1[:  

and we denote  the set all real-valued polynomials on ]1,1[  by  P, 

that is 
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and  

Definition 2.1 

For a given continuous function ],[ baCf  , a best approximation 

polynomial of degree N  is a polynomial 
NN Pfp )(*

 such that 
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where the uniform norm  is defined by  )(max
]1,1[

xff
x 

 . 

Theorem 2.1 [19-22] Let ],[ baCf  . Then for any 0 , there 

exist a polynomial p for which  




pf  

The theorem states that any continuous function f  can be 

approximated uniformly by polynomials, no matter how badly behaved 

f  may be on ],[ ba . For phrasing; for any continuous function on 

]1,1[ , f , there exist a sequence of polynomial NNNp )(  which 

converges uniformly towards f  such that 

0lim 


N
N

pf . 

Theorem 2.2[19-22] For any ]1,1[f  and 0N  the best 

approximation polynomial )(* fpN  exists and is unique. 

 

Definition 2.2 

Given an integer 1N  then  NiixX  0)(  is  a grid points of 

1N  points in ]1,1[  such that 11 10  Nxxx  . 

Then points Niix 0)(  are called the nodes of the grid. 

 

Theorem 2.3 [19-22] Given a function ]1,1[Cf  and a grid of 

1N  nodes NiixX  0)(  there exist a unique polynomial 

)( fI X

N  of degree N  such that  

)())(( ii

X

N xfxfI  ,  Ni 0  

)( fI X

N  is called the interpolant  of f through the grid X . 

The interpolant )( fI X

N  can be express in the Lagrange form as 
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where )(xX

i  is the i-th Lagrange cardinal polynomial associated 

with the grid X : 
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The Lagrange cardinal polynomials are  

ij

X

i x )( ,  Nji  ,,0 . 

The best approximation polynomials )(* fpN is also an interpolant of 

f  at 1N  nodes and the error in given by : 
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X

N  

where )(XN  is the Lebesque constant relative to the grid X  
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The uniform norm (or maximum norm) is defined by  
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The Lebesque constant contains all the information on the effects of the 

choice of X on 


 )( fIf X

N . 

 

Theorem 2.4 [19,21] For any choice of the grid X , there 

exist a constant 0C  such that 

CNXN  )1ln(
2

)(
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Corollary 2.1 Let  )(XN  be Lebesque constant relative 

to the grid X, then  

 )(XN  as n . 

In a similar way, by a uniform grid, 

NeN
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N

N
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This means that for any choice of type sampling of ]1,1[ , 

there exists a continuous function ]1,1[Cf  such that 

)( fI X

N  does not convergence uniformly towards f . Let 

assume that the function f is sufficiently smooth to have 

derivatives at least up to order 1N , with 
)1( Nf  

continuous i.e. ],[1 baCf N . 

 

Definition 2.3 

 

The nodal polynomial associated with the grid is the unique 

polynomial of degree )1( N  and leading coefficient 1  

whose zeroes are the 1N  nodes of X : 
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Theorem 2.5 [19-22]  If ]1,1[1  NCf , then for any grid 
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where  ]1,1[)(  x  and )(1 xwX

N  nodal polynomial 

associated with the grid X . 

 

Definition 2.4 

The Chebyshev polynomials 
)(xTn  of the first kind are the 

polynomials in x  of degree n , defined by relation[22] 

nxTn cos)( 
,  when cosx  

If the range of the variable x  is the interval 
]1,1[

, the 

range the corresponding variables   can be taken 
],0[ 
. 

These polynomials have the following properties [19-20]: 

 

i)
)(1 xTn   has exactly 1n  real zeroes on the interval 

ii) )(xTn is ortogonal on ]1,1[  with respect to the weight 

function 2

1

2 )1()(


 xxw . 

iii) It is well known that [22] the relation between the powers 
nx  and the Chebyshev polynomials )(xTn  is  

Theorem 2.6 [22]Let 
)(xTn be a first kind Chebyshev 

polynomials then 
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Definition 2.5 

The grid points NiixX  0)(  such that the ix ’s are the 

1N  zeroes of the Chebyshev polynomials of degree  

)1( N  is called the Chebyshev-Gauss (CG) grid. 

Theorem 2.7[20-22] The polynomials  of degree 
)1( N

 and 

leading coefficient 1 , the unique polynomial which has the 

smallest uniform norm on 
]1,1[

 is the 
)1( n

th Chebyshev 

polynomial divided by 
N2 . 

 

3. Fundamental relations 

 

Let us consider Eq. (1) and find the matrix forms of the equation. 

First we can convert the solution 
)(xyN   defined by a truncated 

Chebyshev series (3) and its derivative 
)(

)(
ty

k

N  to matrix 

forms 

AT )()( xxyN  ,  AT )()( )()( xxy kk

N  Nk ,,1,0   (9) 

where 

)](...)()([)( 10 xTxTxTx NT
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. The i -th zero inx ,  of 
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By using the expression (5) and (6), taking n=0,1,…,N we find 

the corresponding matrix relation as follows 
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Then, by taking into account (10) we obtained 
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To obtain the matrix )(t(k)
X  in terms of the matrix )(tX , 
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Consequently, by substituting the matrix forms (11) and 
(12) into (9) we have the matrix relation 
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The similar way in the above procedure, for the 
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4. Method of solution 

 

We are ready to construct the fundamental matrix equation 

corresponding to Eq. (1). For this purpose, first substituting the 

matrix relations (13) and (14) into Eq. (1) then we obtain 
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The fundamental matrix equation (18) for  Eq.(1) corresponds 

to a system of (N+1) algebraic equations for the (N+1) 

unknown coefficients a0, a1,...,aN. Briefly we can write 

Eq.(18) as  

WA=F  or  [ W F ]  (19)  

so that 
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We can obtain the matrix form for the mixed conditions (2), 
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To obtain the solution of Eq.(1) under the conditions (2), by 

replacing the rows matrices (21) by the last m rows of the 
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N

N
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N

N
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xgwww

xgwww

xgwww




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  (22) 

 

or the corresponding matrix equation 

W
*
A=F  

If rank (W*)=rank [W*;F*]=N+1, then we can write  

A=(W*)-1
F

* (23)  

Thus the coefficients an;n=0,1,...,N  are uniquely determined 
by Eq.(23). 

 

4.1 Error analysis and convergence 

Since, 11 
NT , we conclude that if we choose the grid 

nodes Niix 0)(  to be zero the (N+1) zeroes of the 

Chebyshev polynomials 1NT , we have 

N

X

Nw
2

1
1   

and this is the smallest possible value. In particular, from 

Theorem 2.10, for any ]1,1[1  NCy  we have 





 
 1

)!1(2

1 N

NN f
N

yy  

If 
)1( Ny  is uniformly bounded, the convergence of the 

interpolation Ny  towards y  when N  is then 

extremly fast. Also the Lebesgue constant associated with the 

Chebyshev-Gauss grid is small 

)1ln(
2

~)(  NXN


 as N  

This is much beter than uniform grids and close to the optimal 

value. 

5. Illustra tive example 

In this section, a numerical example is given to illustrate the 

accuracy and effectiveness properties of the method and all of 

them were performed on the computer using a program written 

in Maple 9.  

 

Example 5.1 

Consider the following logarithmic singular integro-differential 

equation  

 









1

1
2

)(
1

)log(
2log2)1(' dtty

t

xt
xyy 

 

with 1)0( y . We seek the solution )(xyN  as a truncated 

first-kind Chebyshev polynomial 




N

r
rrN xTaxy

0

)()( . 

So that, 2log2)1()(   xxf , 1)(0 xP , 1)(0 xP , 

1 . Then, for 5N  the zeroes of )(6 xT  






































12
cos,

2

2
,

12

5
cos,

12

5
cos,

2

2
,

12
cos 543210


xxxxxx

 

and the fundamental matrix equation of the problem is defined 

by 

 

  FADXDBXPDX(BP   1*11

1

10

0 ))(()()()() TTTTT x  . (24) 

And matrices for condition are  

 

X(0) (MT
)

1
=[ 010101  ]A=[1],          (25) 

 

where P0, P1, B, F, D  are matrices of order (6x6) defined by 

 





























100000

010000

001000

000100

000010

000001

0P




























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010000

001000

000100

000010

000001

1P





























000000

500000

040000

003000

000200

000010

B
 





























946187.6

874261.5

017636.4

873790.1

017165.0

054757.1

F
 

 



































16

1
0

16

5
0

8

5
0

0
8

1
0

2

1
0

8

3

00
4

1
0

4

3
0

000
2

1
0

2

1
000010

000001

D
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If these matrices are substituted  (24), we have the linear algebraic system: 

 

 

























 















1

874261.5

017636.4

873790.1

017165.0

054757.1

;

;

;

;

;

;

503010

227551.0766775.4890470.2453509.3928548.3945713.1

019749.6954180.2269947.5566016.0071923.2945713.1

340257.3218422.4877642.0636568.2071923.0945713.1

772448.9766675.4890470.8203344.2928548.1945713.1

650684.13193538.18817656.12012245.1000471.3945713.1

; **
FW

 

Then, when this system is solved, we obtain the Chebyshev 

coefficient matrix A  as: 

 

 T000011A  

 

When the Chebyshev coefficient matrix A  is subsituting in 
Eq.(3), we obtained the approximate solution of the problem 

for 5N  

xxTaxy
r

rr  


1)()(
5

0
5  

which is the exact solution of this problem.  

 

 

Example 5.2 

Consider the following logarithmic singular integro-differential 

equation  

 


 




1

1
2

3

)(
1

)log(1
6

3
3''' dtty

t

xt
x

x
yxyy


 

with the conditions 0)0( y , 0)0(' y . The exact solution 

of this problem is 
3xy  . We obtained the approximate 

solution of the problem for N=4,5,6 which are tabulated and 

graphed. For numerical results, see Table 1. We display a plot 

of absolute difference exact and approximate solutions in Fig.1 

and error functions for various N  is shown in Fig.2.  

 
 

Table 1 Error analysis of Example 5.2 for the x value 

x Exact 
Sol. 

 
N=4 

 
Ne=4 

Present Method 
N=5                 Ne=5 

 
N=6 

 
Ne=6 

-1.0 -1.000 -0.999999 0.700E-6 -0.999999 0.300E-7 -0.999999 0.500E-8 

-0.8 -0.512 -0.511999 0.500E-6 -0.51199 0.200E-7 -0.511999 0.100E-8 

-0.6 -0.216 -0.215999 0.200E-6 -0.215999 0.100E-7 -0.216000 0.000E-0 

-0.4 -0.064 -0.063999 0.700E-7 -0.063999 0.600E-8 -0.064000 0.300E-9 

-0.2 -0.008 -0.008000 0.300E-8 -0.007999 0.190E-8 -0.008000 0.600E-10 

0.0 0.000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0 

0.2 0.008 0.007999 0.100E-8 0.007999 0.250E-8 0.008000 0.800E-10 

0.4 0.064 0.063999 0.150E-6 0.063999 0.600E-8 0.064000 0.500E-9 

0.6 0.216 0.215999 0.600E-6 0.215999 0.200E-7 0.216000 0.000E-0 

0.8 0.512 0.511998 0.170E-5 0.511999 0.100E-7 0.511999 0.300E-8 

1.0 1.000 0.999996 0.390E-5 0.999999 0.100E-7 0.999999 0.150E-7 

 
Figure 1: Numerical and exact solution  of the Example 5.2  for 

N=4,5,6. 

 
 

  
Figure 2: Error function of Example 5.2for varios N. 
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Example 5.3 

 

Let us consider the following logarithmic singular 
integro-differential equation 


 




1

1
2

)(
1

)log(1
)()('' dtty

t

xt
xfxy


,   0)0( y ,   ey )1(  

The exact solution of this problem is )exp()( xxy  .  

We approximately solve this problem by our method. 

Then, we give comparison of exact solution and 

approximate solutions in Table 2. Also, Fig.3 display 

numerical results and exact solution for various N  and 

Fig.4 is given absolute errors. 
 

Table 2 Error analysis of Example 5.3 for the x value 

 

 

 

 

 

 

 

 

 

 

 
 

x Exact 

Sol. 

 

N=4 

 

Ne=4 

Present Method 

N=6                 Ne=6 

 

N=8 

 

Ne=8 

0.0 1.000000 0.999999 0.100E-9 1.000000 0.000E-0 1.000000 0.000E-0 

0.1 1.105170 1.099438 0.573E-2 1.105128 0.420E-4 1.105175 0.286E-5 

0.2 1.221402 1.197128 0.242E-1 1.221603 0.201E-3 1.221405 0.326E-5 

0.3 1.349858 1.292297 0.576E-1 1.349363 0.495E-3 1.349854 0.423E-5 

0.4 1.491182 1.384398 0.107E-0 1.491752 0.570E-3 1.491188 0.601E-5 

0.5 1.648721 1.473106 0.175E-0 1.648050 0.670E-3 1.648729 0.815E-5 

0.6 1.822118 1.558321 0.263E-0 1.821158 0.960E-3 1.822127 0.944E-5 

0.7 2.013752 1.640164 0.373E-0 2.014863 0.111E-2 2.013742 0.100E-4 

0.8 2.225540 1.718983 0.506E-0 2.223250 0.229E-2  2.225555 0.155E-4 

0.9 2.459603 1.795334 0.664E-0 2.455881 0.372E-2 2.459156 0.236E-4 

1.0 2.718281 1.870050 0.848E-0 2.724769 0.648E-2 2.718258 0.536E-4 

 
 

Figure 3: Numerical and exact solution of the Example 5.3 for 

N=4,6,8 

Figure 4: Error function of Example 5.3 for varios  N. 

 

5. Conclusion 

 

A new method based on the truncated Chebyshev series of the 

first kind is developed to numerical solve logarithmic singular 

integro-differential equations with mixed conditions on 

Chebyshev-Gauss grid. Logarithmic integro-differential 
equations and logarithmic singular equations are usually 

difficult to solve analytically. In many cases, it is required to 

obtained the approximate solution. For this propose, the 

present method can be proposed. In this paper, the first kind 

Chebyshev polynomial approach has been used for the 

approximate solution of logarithmic singular integro-

differential equations. For the suggested method, we show 

error analysis and converge. Thus the proposed method is 

suggested as an efficient. Examples with the satisfactory 

results are used to demonstrate the application of this method. 

Suggested approximations make this method very attractive 

and contributed to the good agreement between approximate 
and exact values in the numerical example. 
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