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ABSTRACT

The main purpose of this article is to present an approximation method for logarithmic singular (Symm’s
integral equation [1] integro-differential equations in the most general form under the mixed conditions in
terms of the first kind Chebyshev polynomials. This method is based on the first-kind Chebyshev
polynomials. The solution is obtained in terms of the first-kind Chebyshev polynomials. This scheme is
based on taking the truncated the first-kind Chebyshev expansion of the function in the Logaritmic singular
integro-differential equations. Hence, the result matrix equation can be solved and the unknown the first-
kind Chebyshev polynomial coefficients can be found approximately. The error analysis and convergence
for the proposed method is also introduced.

Numerical solution of Logaritmic singular integro differential equations

Anahtar
Kelimeler:
Birinci tip
Chebyshev
polinomlart,
siralama yontemi,
logaritmik tekil
integral,
Symm’s integral
denklemi,
yaklasim
yontemleri.

OZET

Bu calismanin temel amaci karisik kosullar ile en genel halde verilen logaritmik tekil integro diferasiyel
denklemlerin niimerik ¢oziimleri igin birinci tip Chebyshev polinomlar1 yardimiyla bir yontem
gelistirmektir. Bu yontem denklem ¢6ziimiiniin birinci tip Chebyshev polinomlari cinsinden seriye agilma
esasina dayanir. Logaritmik tekil integro diferansiyel denklemde bulunan fonksiyonlarin birinci tip
Chebyshev serisine agilmasi ile elde edilen matris denklemi ¢oziilerek Chebyshev katsayilar1 bulunmustur.
Onerilen yontem icin hata analizi ve yakinsaklik incelemesi yapilmistir.
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1. Introduction

Many problems of mathematical physics, engineering and
contact problems in the theory of elasticity lead to singular
integro differential equations. Logarithmic singular integro
differential equation are found in many applications such
elasticity and potential theory[1-2], asacoustic scattering [3]
and fluid mechanics[4-7]. Several methods for the solution of
singular equations have been presented, which are the H and
H-R method [8], Spline Galerkin method[9] and others [10-
11]. In recent years the Chebyshev polynomials have been
used to find the approximate solutions ofdifferential
equation[12], integro-differential-difference equations[13],
Abel equation[14], Volterra differential equation[15],
singular-perturbation equation[16], pantograph equations[17].
In this paper, we consider the logarithmic integro-differential

equation
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and the solution is expressed in terms of the the first kind
Chebyshev functions as follows:

Yo (x) = 3a,T, (%), 0<i<N @
r=0

where a; , i=0,1,...,N are the coefficients to be determined.
Here P, (X) and f(X) are continous functions on [—11]

and C,':j, Cy; and A are appropriate constants. Note that this

kernel has a weak logarithmic singularity at X =1t. Equation
(1) is usually referred to as Symm’s integral equation which is
of importance in potential theory [1]. Symm’s integral
equation has a unique solution [18].

2. Preliminaries and notations

In this section, we state some basic results about polynomial
approximations. These important properties will enable us to
solve the singular integro differential equations. Polynomials
are the only functions that the computer can evaluate exactly,

so we make approximate functions R — R by polynomials.
We consider real-valued functions on the compact interval

[-11]:

f:[-11] >R

and we denote the set all real-valued polynomials on [—1,1] by P,

that is

and

vp eP, Vxe[-11], p(x) = ZN:aix‘

i=0

Definition 2.1
For a given continuous function f e C[a, D], a best approximation

polynomial of degree N is a polynomial p; () € P suchthat
|f = pu(F)], =ming|f —p], :pePRy}

where the uniform norm is defined by ” f ” = max | f (X)| :
© xe[-1,1]

Theorem 2.1 [19-22] Let f € C[a,b]. Then forany & > 0, there
exist a polynomial P for which

[t =pl, <e

The theorem states that any continuous function f can be
approximated uniformly by polynomials, no matter how badly behaved
f may be on [a,b]. For phrasing; for any continuous function on

[-11], f, there exist a sequence of polynomial (P )yey Which
converges uniformly towards f such that

lim|f - =0.

lim [ — py|

Theorem 2.2[19-22] Forany f €[—1,1] and N > O the best
approximation polynomial p; () exists and is unique.

Definition 2.2

Givenaninteger N >1 then X = (X, )<<y is agrid points of

N +1 pointsin[-1,1] such that —1< X, < X; <--- < Xy <1.

Then points (X; ) i< are called the nodes of the grid.

Theorem 2.3 [19-22] Given a function f € C[—1,1] and a grid of
N +1 nodes X = (X; )<<y there exist a unique polynomial
I3 (f) of degree N such that

IX(F)(x)=f(x), 0<i<N
I () is called the interpolant of f through the grid X .

The interpolant |} () can be express in the Lagrange form as
N
I3 (F) =2 ()05 (%)
i-0

where /¢ IX (X) is the i-th Lagrange cardinal polynomial associated

with the grid X :
N
X=X
X -
Ki(x):” —, 0<i<N.
j=0ii2j Xi — X
The Lagrange cardinal polynomials are

0¥ (x)=5;, 0<i,j,<N.

The best approximation polynomials Py, ( f) is also an interpolant of

f at N +1 nodes and the error in given by :

[ =13 (D), <@+ A )| f =Py ()]

where A, (X)) is the Lebesque constant relative to the grid X
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— . < + N
. Py ={p(x) deQ( p(X))— N-, NeZ"} Ay (X) = max Z(IX (x)‘
The uniform norm (or maximum norm) is defined by xe[-111955
” f ” = max | f (X)| The Lebesque constant contains all the information on the effects of the
oo choice of X on Hf - |,3,((f)H :
Theorem 2.4 [19,21] For any choice of the grid X, there i) T, (X) is ortogonal on [—1,1] with respect to the weight
exist a constant C > 0 such that 1
2 i —(1—x2) 2
Ay(X)>ZIn(N +1)-C fy_ncthn w(x) =(1-x°) 2. _
T iii) It is well known that [22] the relation between the powers

X" and the Chebyshev polynomials T, (X) is
Corollary 2.1 Let A (X)) be Lebesque constant relative T (X)
to the grid X, then Theorem 2.6 [22]Let ""“"“be a first kind Chebyshev

Ay (X)—>o0 as n—oo polynomials then
N .

In a similar way, by a uniform grid, n n
Nl X2 — 920+ (x 5
Ay(X)~—2— a5 N—>w. J-Zon—j ) ®
eNInN ]
X2n+l — 2*2[] 2n +1 . (X) (6)
This means that for any choice of type sampling of [-1,1], =\ n—j 2+t

there exists a continuous function f e C[—11] such that
X i Llog(t —x
I 5 (f) does not convergence uniformly towards f . Let _zTn X) = | o )Tn t)dt, n=12,...
n 441-t?

assume that the function f is sufficiently smooth to have

derivatives at least up to order N +1, with f™? andfor n=0,

_ 7
continuous i.e. f € C"*[a,b]. }MTO (t)dt = —rlog 2 @
11—t
Definition 2.3 Corouary 2.2
The nodal polynomial associated with the grid is the unique If y(t) = iarTr (t) then
polynomial of degree (N +1) and leading coefficient 1 r=0
2 L _
whose zeroes are the N +1 noges of X: —7T|Og(2)aoT0(X)+Z(—z)a,Tr x) zjlog(t 2X) y(dt (@)
= G v1-t
W, () = [ T(x=x) l 1
- Definition 2.5

Theorem 2.5 [19-22] If f € CV*'[-11], then for any grid

X of N +1 nodes and for any x €[-1,1], the
interpolation error is

The grid points X = (X; )<<y SUCh that the X, ’s are the

N +1 zeroes of the Chebyshev polynomials of degree

(N +1) is called the Chebyshev-Gauss (CG) grid.

f (N+1) (g)

X X

f(x)—- Iy ()(x) = (N +1)! WN+1(X) Theorem 2.7[20-22] The polynomials of degree (N+1) and

X . ] leading coefficient 1 the unique polynomial which has the

where ¢ =¢(x) €[-11] and Wy, (X) nodal polynomial [~11] (n+1)
. . . smallest uniform norm on = is the th Chebyshev

associated with the grid X .

polynomial divided by 2" .

Definition 2.4
T (x) 3. Fundamental relations
The Chebyshev polynomials " of the first kind are the
polynomials in X of degree 1, defined by relation[22] Let us consider Eq. (1) and find the matrix forms of the equation.
T,(x) =cosng , when X =CO0S 0 First we can convert the solution Yn (%) defined by a truncated

_ (k)
If the range of the variable X is the interval [ 1’1]' the - Chebyshev series (3) and its derivative yu o (0 to matrix
range the corresponding variables 0 can be taken [0, ”]. forms
These polynomials have the following properties [19-20]: V) =TMA, yPx)=TYxX)Ak=01---,N (9)
where
i)T'”l(X) has exactly N+1 real zeroes on the interval 1) =[T () T(x) ... Ty (X)]
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. _ T
[-11] The I -th zero i of Tha(X) is located at A_[éo 3.3y ] , ,
By using the expression (5) and (6), taking n=0,1,...,N we find
2(n—i)+1)r the corresponding matrix relation as follows
Xpi= COSW (4) X'"(x)=DT"(x) and X(x)=T(x)D’ (10)
X(t) =[1 x...x"] and for odd N, where x¢t)=[1 x... x"]
and for odd N, where
[ 1(0 o 0 0 0 i 0 0 0 ... 0
2{0 1 0 0 ... O
0 (1]20 o . 0 B=/0 2 0 0
0
D e
;[321 0 (2}21 0 00 0 N 0
: . 4 . . Consequently, by substituting the matrix forms (11) and
] N ) C (N, (12) into (9) we have the matrix relation
P [(N —1)/2) o (sz | yOx=X)@BM D)*A, k=0L..,N  (13)
for even N,
[ 1(0 5t 0 0 0 ) The similar way in the above procedure, for the
210 logarithmic integral part (8), we obtained the matrix form
(1} 0 as
0 2 0 0 N
0 —zlog2a, + > (- 2)a,T,(x) =[- 710g 2Ty (x) —#T,(x) --- —%TN (1A
°- 1 2 27 2 21 0 E
21 0 = [-zlog2 —zx - —%XN](DT)’lA
N 1N 6 N pion (N 'ZI,N =X"(x)(D") A (14)
[2(N/2 (N=-2)/2 0 |
Then, by taking into account (10) we obtained 4. Method of solution
T(x) = X( )(DT)_l 1) We are ready to construct the fundamental matrix equation
X) = X(X

corresponding to Eq. (1). For this purpose, first substituting the

matrix relations (13) and (14) into Eq. (1) then we obtain
and

mPk XX)BH D) -AX"(x)(D)* A= f
900 = XO )0, k=0L...N (Z (X)X(X)(BT)* (D7) = X" (x)(D") j () (16)

. . ® . . For computing the Chebyshev coefficient matrix A
To obtain the matrlx.X (t) |n. terms of the matrix X(t). numerically, the zeroes of the first kind Chebyshev points
we can use the following relation: defined by (4) are putting the above relation (16). We obtained

X®(x) = X(x)B"

X2 (x) = X1 (X)BT — X(X)(BT )2 (i P (Xi )X(Xi )(BT )k (DT )71 - AX*(Xi )(DT )1JA =f (Xi) )
X©(x) = XY (x)B" = X(x)(B")* (12) So, the fundamental matrix equation is gained

[i P X(BT)*(D")™* _1)(*(DT)*1JA _g (18) where

k=0
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-Pk(XO)

0
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0
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0
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R (X)),
—-rlog2 —7x,
-rlog2 —mx
-rlog2 -7x,
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1 X,
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1 x

XO
2
Xl
2
X2
2
XN
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N 0
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ﬁX

N

ﬁ.X

N N

(%) ]
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f(x,)
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The fundamental matrix equation (18) for Eq.(1) corresponds
to a system of (N+1) algebraic equations for the (N+1)
unknown coefficients ap, a,...,an. Briefly we can write
Eq.(18) as

WA=F or [WF]
so that

W=[w,]= zm:PkX(BT)k(DT)fl _X'(D")* p.q=0,1,....N (20)

(19)

We can obtain the matrix form for the mixed conditions (2),
by means of Eq.(19), briefly, as

UA=[ A4 ]; or [U; 4,1i=0,1,...,m-1
where

m-1
Ui:ZCkij(Cj)Bk(DT)_lf[Uio Upp ... uiN]
k=0

To obtain the solution of Eq.(1) under the conditions (2), by
replacing the rows matrices (21) by the last m rows of the
matrix (19) we have the required augmented matrix

(21)

Woo Wou Wou 5 9(x) |
Wig Wy Wy ()
WG . - B e
Whomo  Wioma Wymn 5 9(Xim)
Uoo U - - - Uy s Ao
Uso Up - - o Uy A
| Unso  Unmas Upan 5 Ao |

or the corresponding matrix equation

WA=F

If rank (W")=rank [W";F"]=N+1, then we can write
A=(W)'F (23)

Thus the coefficients a,;n=0,1,...,N are uniquely determined
by Eq.(23).

4.1 Error analysis and convergence

Since, ||TN+1||OO =1, we conclude that if we choose the grid
nodes (X;)os<y tO be zero the (N+1) zeroes of the
Chebyshev polynomials T, we have

S

2N

and this is the smallest possible value. In particular, from
Theorem 2.10, for any y € C"*[=11] we have

X
HWN +1

1
_ < - f N+1
y=yul. 2" (N +1)!H »
If y('\”l) is uniformly bounded, the convergence of the

interpolation Y, towards y when N — oo is then

extremly fast. Also the Lebesgue constant associated with the
Chebyshev-Gauss grid is small

Ay (X) ~ 2In(N +1) as N = oo
T

This is much beter than uniform grids and close to the optimal
value.

5. lllustra tive example

In this section, a numerical example is given to illustrate the
accuracy and effectiveness properties of the method and all of
them were performed on the computer using a program written
in Maple 9.

Example 5.1
Consider the following logarithmic singular integro-differential
equation

y+y = (r+1)x+2+7log2+ } log(t ~x) y(t)dt

1 41+t°
with y(0) =1. We seek the solution Y, (X) as a truncated
first-kind Chebyshev polynomial

N
Yn (X) = goarTr (X) '
So that, f(x)=(z+l)x+2zlog2, P,(x)=1, Py(x)=1,
A=1.Then, for N =5 the zeroes of 1_(x)
X = —cos(l), X = —Q, X, = —005[5—”} Xy = cos[s—”], X, :Q, X5 = cos(lj

12 2 12 12 2 12

and the fundamental matrix equation of the problem is defined
by

(P,X(BT)°(DT) " +P,X(BT)H(DT)* - AX"()(D") A =F - (24)
And matrices for condition are
XO)MH'=[L 0 -1 0 1 O0JA=[1], (25)

where Py, Py, B, F, D are matrices of order (6x6) defined by

o O O O O
o B O O O O
R O O O O O
o O O~ O
o O, O O
o B O O O
O B O O O O
P O O O © o

O O O O O

O O O © O -

0 00O
0 [—1.054757 ]
0 0.017165

0 1.873790

0 4.017636
5

0

O O O O O O OO o o+ o

5.874261
6.946187 |

© ©O 0o 0o o oo or oo

O O O O NN o
O O O w o o
o O 0 O O O

0O O
0
0

o)
Il
O Wlw O N|rRO P
WUl O MNw O Fr O
O NP O N|FPO O
5l o Mk 0 00
o o

O w|lk O
o




Then, when this system is solved, we obtain the Chebyshev
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If these matrices are substituted (24), we have the linear algebraic system:

wF =

(1.945713
1.945713
1.945713
1.945713
1.945713

0

coefficient matrix A as:

—3.000471
—-1.928548
—-0.071923

2.071923
3.928548
1

A=[1 10 0 0 0f

—-1.012245
—2.203344
—2.636568
—0.566016
3.453509

0

12.817656 —18.193538
8.890470 —4.766675
0.877642 4.218422

—5.269947 —2.954180

—2.890470 -4.766775

-3 0 5
Example 5.2

Consider the following logarithmic singular integro-differential

equation

When the Chebyshev coefficient matrix A is subsituting in

Eg.(3), we obtained the approximate solution of the problem
for N=5

0.8

0.6

0.4

0.2

-0.2

-0.6

-0.8

Yo () = 3a,T, () =1+ X

which is the exact solution of this problem.

of this problem is y:XS. We obtained the approximate
solution of the problem for N=4,5,6 which are tabulated and
graphed. For numerical results, see Table 1. We display a plot
of absolute difference exact and approximate solutions in Fig.1

X 1
"—Xy'+3y = —+6X+—
Y'-xy 43y =~ —|

; 1

1

6.019749 ; 4.017636
—0.227551; 5.874261

13.650684 ; —1.054757 |
—-9.772448; 0.017165
—3.340257; 1.873790

log(t — x)

Y 1+t2

with the conditions y(0) =0, y'(0) =0. The exact solution

y(t)dt

and error functions for various N is shown in Fig.2.

Table 1 Error analysis of Example 5.2 for the x value

X Exact Present Method
Sol. N=4 Ne=4 N=5 Ne=5 N=6 Ne=6
-1.0 -1.000 -0.999999 0.700E-6 -0.999999 0.300E-7 -0.999999 0.500E-8
-0.8 -0.512 -0.511999 0.500E-6 -0.51199 0.200E-7 -0.511999 0.100E-8
-0.6 -0.216 -0.215999 0.200E-6 -0.215999 0.100E-7 -0.216000 0.000E-0
-0.4 -0.064 -0.063999 0.700E-7 -0.063999 0.600E-8 -0.064000 0.300E-9
-0.2 -0.008 -0.008000 0.300E-8 -0.007999 0.190E-8 -0.008000  0.600E-10
0.0 0.000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0
0.2  0.008 0.007999 0.100E-8 0.007999 0.250E-8 0.008000 0.800E-10
0.4 0.064 0.063999 0.150E-6 0.063999 0.600E-8 0.064000 0.500E-9
0.6 0.216 0.215999 0.600E-6 0.215999 0.200E-7 0.216000 0.000E-0
0.8 0.512 0.511998 0.170E-5 0.511999 0.100E-7 0.511999 0.300E-8
1.0 1.000 0.999996 0.390E-5 0.999999 0.100E-7 0.999999 0.150E-7

— N=4

—— Exact solution

|
|
|
t

-0.8

-0.6

0.4

-0.2

0

0.2 0.4 0.6

0.8 1

Figure 1: Numerical and exact solution of the Example 5.2 for

N=4,5,6.

-1 -0.8

Figure 2: Error function of Example 5.2for varios N.

-0.6

-0.4 -0.2

0.2 0.4

0.6

0.8

1
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Example 5.3

Let us consider the following logarithmic singular
integro-differential equation
y(0)=0,

v (x) = f(x)+3jM y(t)dt y@ =e
T4

V1+t?

The exact solution of this problem is y(x) =exp(X) .
We approximately solve this problem by our method.
Then, we give comparison of exact solution and
approximate solutions in Table 2. Also, Fig.3 display
numerical results and exact solution for various N and
Fig.4 is given absolute errors.

Table 2 Error analysis of Example 5.3 for the x value

X Exact Present Method
Sol. N=4 Ne=4 N=6 N.=6 N=8 N.=8
0.0 1.000000  0.999999 0.100E-9  1.000000 0.000E-0 1.000000 0.000E-0
0.1 1.105170 1.099438 0.573E-2 1.105128 0.420E-4 1.105175 0.286E-5
0.2 1.221402 1.197128 0.242E-1 1.221603 0.201E-3 1.221405 0.326E-5
0.3  1.349858 1.292297 0.576E-1  1.349363 0.495E-3 1.349854  0.423E-5
0.4 1.491182 1.384398 0.107E-0 1.491752 0.570E-3 1.491188 0.601E-5
0.5 1.648721 1.473106 0.175E-0  1.648050 0.670E-3 1.648729 0.815E-5
0.6 1.822118 1.558321 0.263E-0 1.821158 0.960E-3 1.822127 0.944E-5
0.7 2.013752 1.640164 0.373E-0 2.014863 0.111E-2 2.013742 0.100E-4
0.8  2.225540 1.718983 0.506E-0  2.223250 0.229E-2 2.225555  0.155E-4
0.9  2.459603 1.795334 0.664E-0  2.455881 0.372E-2 2.459156 0.236E-4
1.0 2.718281 1.870050 0.848E-0 2.724769 0.648E-2 2.718258 0.536E-4

[+ Exact soltion
+ N=4

e - N6
17 N=8

0 01 02 03 04 05 06 07 08 09 1

Figure 3: Numerical and exact solution of the Example 5.3 for
N=4,6,8

5. Conclusion

A new method based on the truncated Chebyshev series of the
first kind is developed to numerical solve logarithmic singular
integro-differential equations with mixed conditions on
Chebyshev-Gauss grid. Logarithmic integro-differential
equations and logarithmic singular equations are usually
difficult to solve analytically. In many cases, it is required to
obtained the approximate solution. For this propose, the
present method can be proposed. In this paper, the first kind
Chebyshev polynomial approach has been used for the
approximate solution of logarithmic singular integro-
differential equations. For the suggested method, we show
error analysis and converge. Thus the proposed method is
suggested as an efficient. Examples with the satisfactory
results are used to demonstrate the application of this method.
Suggested approximations make this method very attractive
and contributed to the good agreement between approximate
and exact values in the numerical example.

.Z.Z
%y
&4

Figure 4: Error function of Example 5.3 for varios N.
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