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ÖZET 

Bu makalede, bir boyutlu hiperbolik kısmi diferansiyel denklemlerin verilen başlangıç ve integral sınır 

koşulları altında çözümü ele alınmıştır. Önerilen yöntem, verilen denklem ve koşulları matris denklemine 

dönüştürerek bilinmeyenleri Taylor katsayıları olan lineer cebirsel denklem sistemi elde eder. Bu matris 

denklemi çözülerek Taylor katsayıları ve polinom yaklaşımı elde edilir. Ayrıca elde edilen sonuçlar bilinen 

değerlerle karşılaştırılmış; yöntemin doğruluğu ve hata analizi yapılmıştır. 
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ABSTRACT 

 
In this paper, the problem of solving the one-dimensional hyperbolic partial differential equation, subject to 

given initial and nonlocal boundary conditions, is considered. The proposed method converts the equation 

and conditions to matrix equation, which corresponds to system of linear algebraic equations with unknown 

Taylor coefficients. Thus by solving the matrix equation, Taylor coefficients and polynomial approach are 

obtained. Also, the obtained results are compared by the known results; the accuracy of solutions and the 

error analysis are performed. 
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1. Introduction 

The development of numerical techniques for solving partial 

differential equations in physics subject to nonlocal conditions 

is a subject of considerable interest. Certain problems of 

modern physics and technology can be effectively described in 

terms of nonlocal problems for partial differential equations. 

These nonlocal conditions arise mainly when the data on the 

boundary cannot be measured directly. Hyperbolic initial 

boundary value problems in one dimension that involve 

nonlocal boundary conditions have been studied by several 

authors [1–15]. 

The presence of an integral term in boundary condition can 

greatly complicate the application of standard numerical 

techniques such as finite difference procedures, finite element 

methods, spectral techniques, boundary integral equation 

schemes, etc. It is therefore important to be able to convert 

nonlocal boundary value problems to a more desirable form, to 

make them more applicable to problems of practical interest. 

In many cases this is a hard task. The purpose of this study 

is to give a Taylor polynomial approximation for the 

solution of Hyperbolic Type Partial Differential Equation 

with an integral Condition. The technique used is an 

improved Taylor matrix method, which has been given for 

solving ordinary differential, integral and integro-

differential equations [16-26]. In this article, the following 

hyperbolic problem is considered with a nonlocal 

constraint replacing the standard boundary condition: with 

initial conditions. 

 

 

 
2 2

2 2
( , ), 0 , 0 ,

u u
G x t x l t T

t x

 
     

   

(1) 

with initial conditions  

( , 0) ( ), 0 ,u x f x x l  
 

(2) and 

 

Dirichlet boundary condition 

 

(0, ) ( ), 0 ;u t h t t T    (4) 

and the nonlocal condition 
1

0

( , ) ( ), 0 1u x t dx k t t    
(5) 

where G, f, g, h and k are known functions. We assume that 

the solution is expressed in the form 

N N
r s (r,s)

r,s 0 1 r,s 0 1 0 1

r 0 s 0

1
u(x, t) a (x c ) (t c ) , a u (c , c ), (c , c ) [a, b]x[0,T]

r!.s! 

     (6) 

so that the Taylor coefficients to be determined are  

r,sa ( r,s=0,…,N ). 

2.  Fundamental Relations  

To obtain the numerical solution of the problem (1)-(5) 

with presented method, we first evaluate the Taylor 

coefficients of the unknown function. For convenience, the 

solution function (6) can be written in the matrix form 

 

u(x, t) (x, t) X A  (7) 

 

The matrix  (x, t)X  can be expressed as 

 0,0 0,1 0,N 1,0 1,1 1,N N,0 N,1 N,N(x, t) X (x, t) X (x, t) ...X (x, t) X (x, t) X (x, t)...X (x, t) ... X (x, t) X (x, t)...X (x, t)X
 
where 

m n
m,n 0 1X (x, t) (x c ) (t c ) , m, n 0,1,..., N   

 
and 

T

0,0 0,1 0,N 1,0 1,1 1,N N,0 N,1 N,Na a ... a a a ... a ... a a ... a  A= . 

On the other hand, the relation between the matrix  ,X x t and its derivative is 

(m,n) m n(x, t) (x, t)( ) ( )X X B B                                                                                  (8) 

where 

(N 1)x(N 1)

0 1 0 0

0 0 2 0

0 0 0 N

0 0 0 0
 

 
 
 
 
 
 
 
 

B , 

2 2
(N 1) x(N 1)

0 0 0

0 0 2 0

0 0 0 N

0 0 0 0
 

 
 
 
 
 
 
 
 

I

I

B

I

, 

2 2
(N 1) x(N 1)

0 0

0 0

0 0
 

 
 
 
 
 
 

B

B
B=

B

; 

here I is the (N+1) x (N+1) identity matrix. By using the relations (7) and (8) we have  
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(m,n) (m,n) m nu (x, t) (x, t) (x, t)( ) ( ) , m, n 0,1, 2.  X A X B B A      ,                                    (9) 

 

 

3. Method of Solution  

      Our purpose is to investigate the approximate solution of the problem (1) -(5), in the series form (6) 

or in the matrix form u(x, t) (x, t) X A . To obtain the solution, we first reduce the terms of Eq. (1) to 

matrix forms as follows 

                                                  
2( , ) ( , )( )xxu x t x t X B A                                                                       (10) 

and 

                                                  
2( , ) ( , )( )ttu x t x t X B A                                                                        (11)                                                      

We can also expand the function G(x, t)  to Taylor series 

                               

(r,s)N N
r s 0 1

r,s 0 1 r,s

r 0 s 0

G (c , c )
G(x, t) g (x c ) (t c ) , g

r!s! 

                                            (12) 

or from (12) we get the matrix form  

                                                   ( , ) ( , )G x t x t X G                                                                              (13) 

where 

                                 
T

0,0 0,1 0,N 1,0 1,1 1,N N,0 N,1 N,Ng g ...g g g ...g ... g g ...gG . 

      Substituting the expressions (10)-(13) into Eq. (1) and simplifying the result, we have the matrix 

equation 

                                                   2 2( ) ( ) B B A G .                                                                          

(14) 

Briefly, we can write Eq. (14) in the form  

                                                             WA G                                                                                 (15) 

where  
2

i, jw , i, j 1,..., (N 1)  W . 

      We now present the alternative forms for u(x, t) which are important to simplify matrix forms of the 

conditions. The simplification in conditions is done only with respect to the variable x or t. Therefore we 

must use different forms for initial and boundary conditions.  For the initial conditions (2) and (3)  

                                                 ( , ) ( ) ( )u x t x t X Q A                                                                             (16) 

and  
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                                                   ( , ) ( ) ( )tu x t x t X Q BA ;                                                                     (17)  

for the boundary condition (3)  

                                                      ( , ) ( ) ( )u x t t xT J A .                                                                       (18)  

Using (18), we can create the matrix form of the nonlocal condition (4) as follows  

                           
0 0 0

( , ) ( ) ( ) ( ) ( ) ( ) ( )

x x x

u x t dx t x dx t x dx t x    T J A T J A T J A                                                 (19) 

where 

2

0 0 0( ) 1 ( ) ( ) ... ( )Nx x c x c x c     X  

2

1 1 1( ) 1 ( ) ( ) ... ( )Nt t c t c t c     T  

2 3 1

0 0 0

0

( ) ( ) ( )
( ) ( ) ...

2 3 1

Nx c x c x c
x x c

N

   
  

 
J I I I  I  

2

0 0 0( ) ( ) ( ) ... ( )Nx x c x c x c     J I I I I  

( ) 0 0

0 ( ) 0
( ) .

0 0 ( )

t

t
t

t

 
 
 
 
 
 

T

T
Q

T

 

     Note that the matrices (x)J  and (t)Q  are of dimensions
2

(N 1)x(N 1)  . On the other hand the matrix 

representations of non-homogeneous terms of Eqs. (2)-(5) can be written in the forms  

               
( )

0

0 1

( )
( ) ( ) , ... , ,

!

n
T

N n

f c
f x x f f f f

n
  X F  F                                               (20) 

               
( )

0

0 1

( )
( ) ( ) , ... , ,

!

n
T

N n

m c
m x x m m m m

n
  X M M                                                       (21) 

               
( )

1

0 1

( )
( ) ( ) ... , ,

!

n
T

N n

h c
h t t h h h h

n
 =T H,          H                                                       (22) 

               
( )

1

0 1

( )
( ) ( ) , ... ,

!

n
T

N n

k c
k t t k k k k

n
  T K K k                                                      (23) 

By substituting the relations (16)-(23) into (2)-(5) and then simplifying the result, we get the matrix 

forms of conditions, respectively, as 

                                                             (0) 
1

K A Q A F                                                                   (24) 

                                                             (0)
2

K A Q BA=M                                                                 (25)      
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                                                             (0)3K A J A=H                                                                     (26) 

                                                             4 (1)K A J A=K                                                                     (27) 

      To obtain solution of Eq. (1) under the conditions (2)-(5), the augmented matrix is formed as follows 

                                                        

4

 
 
 

    
 
 
 
 

1

2

3

K ; F

K ; M

W;G K ; H

K ; K

;W G

                                                                  (28) 

The unknown Taylor coefficients are obtained as 

 
 

1

A W G



418 
Bülbül ve Sezer, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(5):413-420 

 

 

 

where  
  
W; G  is generated by using the Gauss 

elimination method and then removing zero rows 

of gauss eliminated matrix. Here W and G  are 

obtained by throwing away maximum number of 

row vectors from W and G, respectively, so that 

the rank of system defined (28) cannot be smaller 

than
2( 1)N  . This process provides higher 

accuracy because of decreasing truncation error.   

 

4. Accuracy of the solution and error analysis 

 

 We can easily check the accuracy of the method. 

Since the truncated Taylor series (4) is an 

approximate solution of Eq. (1), when the function 

N,Nu (x, t)  and its derivatives are substituted in 

Eq.(1),  the resulting equation must be satisfied 

approximately; that is, for px x , 

   qt t a, b x 0,T  ,  p,q=0,1,2,. 

N,N p q xx p q tt p q p qE (x , t ) u (x , t ) u (x , t ) G(x , t ) 0     

and N,N p q

pqk
E (x , t ) 10


 ( pqk  positive integer). If 

max
pqk

10


= 
k

10


(k positive integer) is prescribed, 

then the truncation limit N is increased until the 

difference N,N p qE (x , t )  at each of the points 

becomes smaller than the prescribed
k

10


. 

 

5. Numerical examples 

 

This section is devoted to computational results. We 

applied the method presented in this paper and solved 

two examples. We illustrate it by the following 

examples. Numerical computations have been done 

using MAPLE 9. 

Example 1.  Consider the problem (1)-(5) with 

0.5T   

( ) 0, 0 1,f x x    

( , ) 0, 0 1, 0 0.5,G x t x t      

( ) sin( ), 0 0.5,h t t t    

( ) cos( ), 0 0.5.m x x t     

The exact solution of the problem is 

( , ) cos( ) sin( )u x t x t  [14, 15 

 

 
 

 
 

Fig.1. a) Comparison of exact solution with the numerical solution b) 
Absolute error of Example 1 for N=20. 

 

a 

b 
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Table 1. Error analysis of Example 1. 

 
Absolute error at t=0.5 Maximum error

,
( ,0.5) ( ,0.5)

i
i x

u x u x


  

t Present 

method(N=20) 

Legendre-Tau 

(m=9)[16] 

Present 

method(N=20) 

MOL I MOL II 

0.1 5.8E-15 1.5E-6 9.0E-20 1.9E-5 1.0E-7 

0.2 1.4E-13 1.2E-6 5.6E-15 2.9E-5 1.0E-7 

0.3 2.2E-12 8.5E-6 1.2E-11 2.7E-5 9.5E-8 

0.4 2.2E-11 5.3E-6 6.4E-10 1.6E-5 6.2E-8 

0.5 1.5E-10 0 1.0E-8 1.1E-14 2.1E-14 

0.6 7.8E-10 1.5E-6 8.9E-8 1.6E-5 6.2E-8 

0.7 3.0E-9 1.2E-6 5.5E-7 2.7E-5 9.5E-8 

0.8 8.7E-9 8.5E-5 2.6E-6 2.9E-5 1.0E-7 

0.9 1.0E-8 5.3E-5 1.1E-5 1.9E-5 1.0E-7 

1 8.6E-8 1.7E-5 3.9E-5 5.9E-13 2.6E-13 
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Fig.1 (a) shows the comparison of the exact solution 

versus the numerical solution obtained using the 

proposed Taylor method. It seems that the solutions 

almost identical. We also show the graphic of absolute 

error for N=20 in Fig. 1 (b). Table 1 shows that the 

numerical result of the example are better than the results 

in [15, 16]. 

 

Example 2.  In the second example, we solve (1)-(5) 

with T=1 and  

( ) cos( ), 0 1,f x x x    

( ) 0, 0 1,m x x    

( , ) 0, 0 1, 0 1,G x t t x      

( ) cos( ), 0 1,h t t t    

( ) 0, 0 1.k t t    

The exact solution of this problem is 

 
1

( , ) cos( ( )) cos( ( ))
2

u x t x t x t     [4, 15]. 

 

Table 2.  Absolute errors of Example 2 for 20N  . 
 

 Absolute error at ( ,1)u x  Absolute error at ( , 0.25)u x  

t Present method(N=20) Cubic B-Spline 

method(M=4) 

Present 

method(N=20) 

Legendre 

Tau(M=9) 

0.1 2.2E-11 1.9E-5 3.6E-22 3.0E-7 

0.2 2.5E-10 2.4E-5 7.1E-20 2.6E-7 

0.3 2.2E-9 1.8E-5 8.4E-17 1.9E-7 

0.4 1.4E-8 1.1E-6 5.9E-16 8.9E-8 

0.5 7.9E-8 0 1.8E-15 0 

0.6 3.6E-7 1.1E-5 1.0E-14 8.9E-8 

0.7 1.4E-6 1.8E-5 1.7E-13 1.9E-7 

0.8 4.5E-6 2.4E-6 1.1E-13 2.6E-7 

0.9 1.0E-6 1.9E-5 2.7E-12 3.0E-7 

1 5.0E-5 4.3E-5 1.8E-11 3.1E-7 

 

 

Fig. 2. Comparison between the exact solution and approximate solution for N = 20. 
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We solve the problem for N =20 and show the results in 

Table 2 and in Fig. 2. It is seen from Table 2 that the 

numerical results are better than the results in [4, 16]. 

6. Conclusion 

In this paper, a very simple but effective Taylor matrix 

method was proposed for the numerical solution of the 

second-order wave equation with given initial conditions 

and a boundary condition and an integral condition in place 

of the classical boundary condition. One of the advantages 

of this method that the solution is expressed as a 

truncated Taylor series then ( , )u x t  can be easily 

evaluated for arbitrary values of x and t by using the 

computer program without any computational effort. 

From the given illustrative examples, it can be seen that 

the Taylor series approach can obtain very accurate and 

satisfactory results. Although the approach is only 

illustrated here for one dimensional problem, its extension 

to similar two-dimensional problems is straightforward and 

requires only minor programming. We believe that our 

fundamental techniques can be applied or extended to a 

much larger class of problems. 

 

Kaynaklar 

 

1. M. Dehghan, On the solution of an initial-boundary 

value problem that combines Neumann and integral 

condition for the wave equation, Numer. Methods 

Partial Diff. Eq. 21 (2005) 24–40. 

2. A. Bouziani, On the solvability of parabolic and 

hyperbolic problems with a boundary integral condition, 

Internat. J. Math. & Math. Sci. 31 (2002), 201-213. 

3. A. Bouziani , M. S. Temsi, On a pseudohyperbolic 

equation with a nonlocal boundary condition, Kobe 

Journal of Mathematics, 21 (2004), no 1-2, 15-31. 

4. M. Dehghan, M. Lakestani, The use of cubic B-spline 

scaling functions for solving the one-dimensional 

hyperbolic equation with a nonlocal conservation 

condition, Numer. Methods Partial Diff. Eq. 23 

(2007) 1277–1289. 

 

5. N.I. Kavalloris, D.S. Tzanetis, Behaviour of critical 

solutions of a nonlocal hyperbolic problem in ohmic 

heating of foods, Appl. Math. E-Notes 2 (2002) 59–65. 

6. S. Mesloub, A. Bouziani, On a class of singular 

hyperbolic equation with a weighted integral condition, 

Internat. J. Math. Math. Sci. 22 (1999) 511–520. 

7. L.S. Pulkina, On solvability in L2 of nonlocal problem 

with integral conditions for hyperbolic equations, 

Differets. Uravn. VN 2 (2000) 1–6. 

8. S.A. Beilin, Existence of solutions for one-dimensional 

wave equations with nonlocal conditions, Electron. J. 

Diff.  Eq. 76 (2001) 1–8. 

9. A. Saadatmandi, M. Dehghan, Numerical solution of the 

one-dimensional wave equation with an integral 

condition, Numer. Methods Partial Diff. Eq. 23 (2007) 

282–292. 

10. W.T. Ang, A numerical method for the wave equation 

subject to a nonlocal conservation condition, Appl. 

Numer. Math. 56 (2006) 1054–1060. 

11. M. Ramezani, M. Dehghan, M. Razzaghi, Combined 

finite difference and spectral methods for the numerical 

solution of hyperbolic equation with an integral 

condition, Numer. Methods Partial Diff. Eq. 24 (2008) 

1–8. 

12. N. I. Kavalloris, D.S. Tzanetis, Behaviour of critical 

solutions of a nonlocal hyperbolic problem in ohmic 

heating of foods, Appl. Math. E-Notes 2 (2002) 59–65. 

13. M. Dehghan, On the solution of an initial-boundary 

value problem that combines Neumann and integral 

equation for the wave equation, Numer. Methods Partial 

Diff. 21 (2005) 24–40. 

14. F. Shakeri, M. Dehghan, The method of lines for 

solution of the one-dimensional wave equation, subject 

to an integral conservation condition Comput. Math. 

Appl.  56 (2008) 2175–2188. 

15. A. Saadatmandi, M. Dehghan, Numerical Solution of the 

One-dimensional Wave Equation with an Integral 

Condition, Numer. Methods Partial Diff. Eq. 23 (2006) 

282-292. 

16. S. Yalçinbaş, Taylor polynomial solutions of nonlinear 

Volterra-Fredholm integral equation, Appl. Math. 

Comput, 127 (2002), pp 196-206. 

 

 
17. M. Gülsu, M. Sezer, On the solution of the Riccati 

equation by the Taylor matrix method, Appl. Math. 

Comput. 188 (2007), pp 446-449. 

18. M. Sezer, Taylor polynomial solution of Volterra 

integral equations, Int. J. Math. Educ. Sci. Technol, 25 

(5) (1994), pp 625,633. 

19. N. Kurt, M. Sezer, Polynomial solution of high-order 

linear Fredholm inteqro-differential equations with 

constant coefficients, J. Franklin Ins. 345 (2008), pp 

839-850. 

20. N. Kurt, M. Çevik, Polynomial solution of the single 

degree of freedom system by Taylor matrix method, 

Mechanics Research Communications, 35(2008), pp 

530-536. 

21. S. Yalçinbaş, M. Sezer, The approximate solution of 

high-order linear Volterra-Fredholm integro-differential 

equations in terms of Taylor polynomials, Appl. Math. 

Comput. 112 (2000), pp 291-308. 

22. M. Sezer, A method for approximate solution of the 

second order linear differential equations in terms of 

Taylor polynomials, Int. J. Math. Educ. Sci. Technol. 27 

(6) (1996), pp 821-834. 

23. Ş. Nas, S. Yalçinbaş, M. Sezer, A method for 

approximate solution of the high-order linear Fredholm 

integro-differential equations, Int. J. Math. Educ. Sci. 

Technol. 27 (6) (1996), pp 821-834. 

24. Karamete, M. Sezer, A Taylor collocation method for the 

solution of linear integro-differential equations, Int. J. 

Comput. Math. 79 (9) (2002), pp 987-1000. 

25. M. Gülsu, M. Sezer, A method for the approximate 

solution of the high-order linear difference equations in 

terms of Taylor polynomials, Int. J. Comput. Math. 82 

(5) (2005), pp 629-642. 

26. M. Sezer, M. Gülsu, B. Tanay, A Matrix method  for 

solving high-order linear difference equations  with 

mixed argument using hybrid Legendre and Taylor 



422 
Bülbül ve Sezer, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(5):413-420 

 

polynomials,  J. Franklin Ins, 343 (2006), pp 647-659. 
 


