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ABSTRACT

This paper presents a numerical method for the approximate
solution of mth-order linear differential difference equations with
variable coefficients under the mixed conditions in terms of
Laguerre polynomials. The technique we have used is an improved
Laguerre collocation method. In addition, examples that illustrate
the pertinent features of the method are presented and the results of
study are discussed.

Diferansiyel fark denklemlerinin Laguerre siralama yontemi ile

Anahtar Kelimeler
Laguerre polinomlari ve
serileri,
Laguerre polinom
¢Oziimleri,
diferansiyel fark
denklemleri,
Laguerre siralama
yontemi

ndmerik ¢oztmleri

OZET

Bu calisgmada m.mertebeden degisken katsayili lineer diferansiyel
fark denklemlerinin karisik kosullar altinda Laguerre polinomlari ile
numerik ¢ozlimleri verilmistir. Burada Onerilen yontem Laguerre
siralama yonteminin genellestirilmis halidir. Y6ntemin hassasiyetini
belirtmek i¢in 6rnekler verilmis ve bulunan sonuglar tartigilmastir.
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1. Introduction

In recent years, the differential-
difference equations, treated as models
of some physical phenomena, have been
received considerable attention. When a
mathematical model is developed for a
physical system, it is usually assumed
that all of the independent variables,
such as space and time, are continuous.
Usually, this assumption leads to a
realistic and justified approximation of
the real wvariables of the system.
However, some of the physical systems
for which, this continuous variable
assumptions cannot be made. Since
then, differential difference equations
have played an important role in
modeling problems that appear in
various branches of science, e.g.,
mechanical engineering, condensed
matter,  biophysics, = mathematical
statistics and control theory.
Differential—difference equations occur
whenever discrete phenomena are
studied or differential equations are
discretized. In this paper, we are
concerned with the use of Laguerre
polynomials to solve difference
difference equations. In recent years,
the studies of differential difference
equations are developed very rapidly
and intensively. It is well known that
linear differential difference equations
have been considered by many
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authors[1-11]. The past couple decades
have seen a dramatic increase in the
application of difference models to

problems in biology, physics and
engineering[12-15]. In the field of
differential difference equation the

computation of its solution has been a
great challenge and has been of great
importance due to the versatility of such
equations in the mathematical modeling
of processes in various application
fields, where they provide the best
simulation of observed phenomena and
hence the numerical approximation of
such equations has been growing more
and more. Based on the obtained
method, we shall give sufficient
approximate solution of the linear
differential difference Eq.(1). The
results can extend and improve the
recent works. An example is given to
demonstrate the effectiveness of the
results. In recent years, Taylor and
Chebyshev approximation = methods
have been given to find polynomial
solutions of differential equations by
Sezer et al. [16-22].

In this study, the basic ideas of the
above studies are developed and applied
to the mth-order linear differential-
difference equation with variable
coefficients

(1)

with the conditions

m-1

[ y“(0)+ by y“(b)] = H;

k=0

where P, (t) and f(t)
ay by and g,

are analytical

functions; are real or

0<t<bh, i=0,12,.,m-1

)

complex constants. The aim of this
study is to get solution as truncated
Laguerre series defined by



yO=YaLl®. L= Z%(

where L, (t) denotes the  Laguerre
polynomials, a, (0<n<N) are
unknown Laguerre polynomial

coefficients and N is chosen any positive
integer such that N >m.
Here P (t), Q;(t) and f(t) are

functions defined on 0<t<b, the real
coefficients @, and 4, are appropriate

constants.

The rest of this paper 1is organized as
follows. We describe the formulation of
Laguerre polynomials required for our
subsequent development in section 2.
Higher-order linear differential difference
equation with variable coefficients and
fundamental relations are presented in
Section 3. The new scheme are based on
Laguerre collocation method. The
method of finding approximate solution
1s described in Section 4. To support our
findings, we present result of numerical
experiments in Section 5. Section 6
concludes this article with a brief
summary. Finally some references are
introduced at the end.

2. Properties of the Laguerre
polynomials

A total orthonormal sequence in
L*(—o0,b] or L’[a,+o0) can be obtained
from such a sequence in L’[0,+0) by
transformations  t=b-s t=s+a,
respectively. We consider L’[0,400).

Applying the Gram-Schmidt process to
the sequence defined by

eft/Z’ teft/Z’ tzeft/Z"“

and

We can obtain an orthonormal sequence
(e,). It can be shown that (e,)1is total in

L*[0,+0) and is given by
e,(t)=e"’L, (t),n=0,1,2,...
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n

3)

Jtr, 0<t<l1
r

where the Laguerre polynomial of order n
is defined by

et d"
L (t)=1, L (tH)=— t"e™),
oD 2 (0 n!dt”( )
n=1,2,3,... (4)
That is
n _lf n ;
Ln(t)zZu[ jt 5)
= r\r

Explicit expressions for the first few
Laguerre polynomials are

L,(t) =1, L(t)=1-t,

Lz(t):1—2t+%t2,

30 15
L(t)=1-3t+=>t> ——t
(D) YU %

The Laguerre polynomials L, (t) are

solutions of the Laguerre differential
equation

tL (t) + (1-t)L! (t)+nL, (t) = 0[24] (6)
In the present application, an approximate
solution in terms of linear combination of

Laguerre polynomial is assumed of the
following form:

N
yt)=>aL,(t), 0<n<N
n=0

3.Fundamental relations

Let us consider the mth-order linear
differential-difference =~ equation  with
variable coefficients (1) and find the
matrix forms of each term in the equation.
First we can convert the solution Y(t)

defined by a truncated Laguerre series (3)
and its derivative y®(t) to matrix forms

yt) =LA, y“ 1) =LY DA
where

(7)
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L(t):[LO(t) L,t) L, LN(t)] By using the expression (5) and taking
_ T n=0,1,...,N we find the corresponding
A=[a, a,..ay] X )
N matrix relation as follows
X(@t)=[1t...t"] (8) (L))" = H(X(@)" 9)
where
- -
D70 0 0 0
o (0
0 1
D’ (1) D' @ 0 0
o (0 1 1 (10)
i GV TG Vi G 3 R
o \0 I 1 2
D" (N} D' (N) P (N) (D (N
Lo lo) 11 2 N (N
Then, by taking into account(9) we obtain X(t+j)=X(1)B,; (15)

L(t) = X(t)H'
and

(L™ =X“tyH", k=0,12,..

To obtain the matrix X®(t) in terms of the
matrix X(t), we can use the following

(11)

relation:

XP ()= X(t)B'
X@(t)=X"®B" =X(®)(B")?
XD () =X ()BT =X)(B")’

X©t) =X BT =X®)(BN (12)
where
0 0 0 0]
1 0 0 0
B=(0 2 0 0 (13)
0 0 0 N 0]

Consequently, by substituting the matrix
forms (11) and (12) into (7) we have the
matrix relation

y® =X®B*HTA (14)
To obtain the matrix X(t + J) in terms of
the matrix X(t), we can use the following
relation:

Where
X(t+ )=+ +j’ ...+ "]

2 cee N -N_
) o

[g]@“ @(j)‘

2
0
0 @af 2y - [N}j)m
1 1 1
oo (]
2 2
0 0 0

Consequently, by substituting the matrix
forms (11) and (12) into (7), we have the
matrix relation of solution

yt+ ) =Lt+ DA=Xt+ HH'A (17)
and by means of (15), the matrix relation
1s

y(t+j)=X(t)BTjHTA (18)



3. Method of Solution

In this section, we consider high order
linear differential-difference equation in
(1) and approximate to solution by
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coefficients, that is the matrix A . For
this purpose, substituting the matrix
relations (14) and (18) into Eq.(1) and

means of finite Laguerre series defined then simplifying, we obtain the
in (3). The aim is to find Laguerre fundamental matrix equation
D2 POXMOBH) HT A+ Q (OXM(B) H A= f(1) (19)
k=0 j=1
By using in Eq. (19) collocation points t; defined by
.
t=—,1=01...,N (20
TN (20)
we get the system of matrix equations
2 PXE)BH HT A+ Q (t)X(E)(B ) H' A= f(t), i=0L..N 21
k=0 i=1
or briefly the fundamental matrix equation
> POXHBH H A+ Q;(X(t)B;) H'A=F (22)
k=0 j=1
where
P.(t,) O 0 .. 0 ] Qt,) 0 0 .. 0 ]
0 P@&) 0 ... 0 0 Q) 0 0
P.=| © 0 PJ(t,) 0 |Q; 0 0 Q) 0
| 0 0 0 P (ty) i 0 0 0 Qj(tN)_
Cf(t,)] X)) | 1o, ot t,"]
f(t,) Xt | |1t t t,"
F= X= -
Lt (X)) 6" |

Hence, the fundamental matrix equation (22) corresponding to Eq. (1) can be written in
the form

WA =F or [W;F], W=[w,;],i,j=0,1...,N

where

W = Zm: P, ('[)X('[)(BT )k HT + ZH:QJA(t)X(t)(Bj)T HT
k=0 j=1

(23)

(24)
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Here, Eq. (23) corresponds to a system
of (N +1) linear algebraic equations

with unknown Laguerre coefficients
a,,4,,...,a, . We can obtain the

Y [,y (0) + by y® (0)] = 14

On the other hand, the matrix form for conditions can be written as

corresponding matrix forms for the
conditions (2), by means of the relation

(14),

0<t<b, i=0,12,.,m-1

UA=[g]or [Uj;e]i=012,.m-1 (25)
where
m-1
U, = [a, X(0)+ b, X(D)HT, i=0,]l,....,m-1 (26)
k=0
and
U, =[u, U, Uj,...uy ], 1=012,..m-1 (27)
To obtain the solution of Eq. (1) under matrix (25), we have the new
conditions (2), by replacing the row augmented matrix,
matrices (26) by the last m rows of the
Woo Wo Won ;o ()
Wi, Wi Win 5 f(t)
~ o~ W W w S A (o
[W ’ F ]: N-m,0 N-m,1 N-m,N ( N ) (28)
Ugo Uo, Uon > Hy
ulO ull ulN ’ lLll
L um—l,O um—l 1 um—l N > /Um—l N

If rankW = rank[W;F]= N +1 , then
we can write

A = (W)_l iz (29)

Thus the matrix A (thereby the
coefficients a,,a,,...,a,) 1s uniquely
determined. Also the Eq.(1) with
conditions (2) has a unique solution.

This solution is given by truncated
Laguerre series (3).

E(t,) =‘Z P.OYY O+ QMY+ - (020

and E(t,) < 107 (k, positive integer).

If max 107 =107 (k positive integer)
is prescribed, then the truncation limit

We can easily check the accuracy
of the method. Since the truncated
Laguerre series (3) is an approximate
solution of Eq.(1), when the solution
yy (1) and its derivatives are substituted
in Eq.(1), the resulting equation must be
satisfied approximately; that is, for
t=t, €[0,1], g=0,.2,..

(30)

N is increased until the difference
E(t,) at each of the points becomes

smaller than the prescribed 107 . On the



other hand, the error can be estimated

81

by the function

Ey ()= Zm:Pk Oy + Zn:Q,-(t)Y(t +)-f1t) G
k=0 j=1

If E,(t) >0, when N is sufficiently large enough, then the error decreases.

4.1lustrative examples

In this section, several numerical
examples are given to illustrate the
accuracy and effectiveness properties of
the method and all of them were
performed on the computer using a
program written in Maple 9. The

absolute errors in Tables are the values
of |y(x) - Yy (X)| at selected points.

Examplel. Let us first consider the

second order linear  differential
difference equation with variable
coefficients

YV'O -y ) +etyO) +yt+ D)+ yt+2)=1+e" +e'?

with

y(0)=1y'(0)=1
and seek the solution Yy(t) as a truncated Laguerre series

y(t) = ZanLna)

Sothat P,(t)=e™", PR(t)=-1, P,(t)=1, Q) =1, Q,(t) =1, f(t) =1+e™ +e".
Then, for N=5, the collocation points are
t0=0, t;=1/5, t,=2/5, t3=3/5, t4=4/5, ts=1
and the fundamental matrix equation of the problem is defined by

{P,XH +P,XBH + P,XB>H + Q,XB,H + Q,XB,H}A = F

where P,,P,,P,,Q,, Q,,X are matrices of order (6x6) defined by

1 0 0 0 0 0

N U S N O

5 25 125 625 3125

[ 24 8 16 3

X = 5 25 125 625 3125
T, 39 27 8 243
5 25 125 625 3125

[ 4 16 64 25 1024

5 25 125 625 3124
R R T T T

10 0 0 0 0
0 e 0 0 0 0
0 0 e 0 0 0
0 0 0 e’ 0 0
0 0 0 0 e 0
0 0 0 0 0 e
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- [1 0 0 0 0 0] I ]
10 0 0 0 0 010000
O -1 0 0 0 0 010000 002000
P_O0_1000’P2=001000’B:000300
0 0 0 0 -1 0 000 O0T1UPO 000 0 O0S
0 0 0 0 0 -1 00000 1 00 000 0
[ T S R B 11 111 1]
0 -1 -2 -3 -4 -5 01 23 4 5
1 3
0 0 5 3 3 5 ; |00 1 3 6 10
» Bl =
H=lo o o -1 -2 _3 0001 410
6 3 3
1 5 000O0T1 5
0 0 0 0o — —
2 00000 1|
0 0 O 0 0o -——
L 120
(1 2 4 8 16 32] (1 0 0 0 0 O] 1 0 0 0 0 O]
01 4 12 32 80 01 00 O0O0 01 0000
BT—00162480’Q—001000’ 001 000
*“looo 1 8 40 2 looo1o0o0 ©0001 00
000 0 1 10 000 O0T1O0 000010
000 0 0 1| 0000 0 1] 0000 0 1]
If these matrices are substituted in (22), Laguerre collocation method discussed
it is obtained linear algebraic in Section 3 and also the exact values of
system.This  system  yields the y =exp(t)are shown in Tablel.
approximate solution of the problem.
The result with N=6,8,10 using the
Table 1
Error analysis of Example 1 for the t value
t Exact Present Method
Solution  N=6 N=6 N=8 N8 N=10 N=10
0.0 1.000000 1.000000 0.100E-8 0.999999  0.580E-7 0.999999  0.866E-7
0.1 1.105171 1.105194 0.228E-4 1.105171 0271E-6 1.105167 0.367E-5
02 1221403 1221493 0.907E-4 1221403 0.270E-6 1221389 0.140E-4
0.3 1349859 1350058 0.199E-3 1349862 0.363E-5 1349829 0.297E-4
04 1491825 1492161 0.337E-3 1491837 0.121E-4 1491776 0.486E-4
0.5 1.648721 1.649206 0.485E-3 1.648749 0.278E-4 1.648654 0.671E-4
0.6 1.822119 1822755 0.620E-3 1822171 0.527E-4 1.822037 0.810E-4
0.7 2013753 2.014466 0.713E-3 2.013841 0.878E-4 2.013667 0.857E-4
0.8 2225541 2226273 0.732E-3 2225674 0.133E-3  2.225645 0.760E-4
0.9 2459603 2460251 0.647E-3 2459603 0.188E-3 2.459556 0.475E-4
1.0 2718282 2.718715 0.433E-3 2718282 0.250E-3 2.718285 0.357E-5
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28— T T T T T ) : — :
261 N=6 7\77\77\777\77\77\ - | | | | | | |
6 nes | T | | T | I S R R R R N
aal |~ = N0 i | | | | — Ng=s [ ] | | T | | T
: —+  Exact Solution : : 6l | — — = N=10 L : : ‘ : : n
2.2 I | - === [ T E‘ | 77\777\77 | 77\777\77 | B
| | | | | | | | | | |
2F — I 5 — == =4 ——t+ - -~~~ R e e I S
| | | | | | | | | |
R e obeb
R e PP P e O S A S S I MR
| | | | | | | | | | | |
e | | [ 2777\77\77\77\777\77\77\777\77\:”
12f -~ - : R
| | | | | | | | | | | |
= —t — bk — A= — = =~ = — 4 — — | — S i B Gttt iy et i iy B
| | | | | | | | | | | [ N [T
0.8 | 1 | 1 | 1 | 1 1 0 -4 - "+ T L | 1 1 =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig.1.Numerical and exact solution Fig.2.Error function of Examplel for
of the Examplel for N=6,8,10 various N.
Fig.1 shows the resulting graph of and the exact solution isy=t>—t.

solution of Examplel for N = 6,8,10
and it is compared with exact solution.
In Fig.2 we plot error function for
Examplel. This plot clearly indicates
that when we increase the truncation

limit N, we have less error. Example3. Let us find the Laguerre
series solution of the following second
order linear difference equation

Using the procedure in Section 3, we
find the approximate solution of this
equation which is the same with the
exact solution.

Example2. Let us find the Laguerre
series solution of first order linear
differential difference equation SY'(t)— Ty (t)+ 3y(t +2) =—Ssint)— Ttcost) +3sinf +2)
V'O +yt)+yt+1)—yt+2)=t>-t-3

with y(0) =3, y'(0)=0. The exact

with conditions solution of this problem is y(t) =t +3.

y(0)=0
Table 3
Error analysis of Example 3 for the t value
t Exact Present Method
Solution N=7 N=7 N=8 N8 N=9 N=9

0.0  0.000000  -0.45E-8 0.45000E-8 0.110E-8 0.11000E-8 0.110E-8 0.11000E-8
0.1  0.099833 0.099835 0.17356E-5 0.099833 0.58038E-6 0.099833 0.36465E-6
0.2 0.198669  0.198676 0.70480E-5 0.198717 0.24398E-5 0.198670 0.16127E-5
0.3  0.295520  0.295536 0.15888E-4 0.295552 0.57201E-5 0.295524  0.39567E-5
0.4  0.389418 0.389446 0.27898E-4 0.389428 0.10473E-4 0.389425 0.75683E-5
0.5  0.479425 0.479467 0.42308E-4 0.479442 0.16625E-4 0.479438 0.12543E-4
0.6 0.564642  0.564700 0.57863E-4 0.564666 0.23929E-4 0.564661 0.18864E-4
0.7  0.644217  0.644290 0.72777E-4 0.644249 0.31934E-4 0.644244  0.26361E-4
0.8 0.717356  0.717440 0.84756E-4 0.717396 0.39959E-4 0.717390 0.34669E-4
09 0.783326  0.783417 0.91085E-4 0.783374  0.47091E-4 0.783370 0.43208E-4
1.0 0.841470  0.841559 0.88801E-4 0.841523 0.52214E-4 0.841522 0.51173E-4
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0.9 . . . . . . . . . 1xlo"’
| | | | | | l I I I I I I I T
I Rl [T T AT i R B R e e
L I B e i ) R 2
0.6 ‘—F "Numeri‘caISOIl‘nion,L,,, ,‘,,,‘,,,:77, 0‘7,,,:,,,:,,***'\%:9 L77:77 \77477\k77
05f — - - - R S N S S SR S SO B S
oal — o ”P”i’”i”%’” O S N S R N4 N S B
AT JUIN T O O S N %
D E EEE el Tl s R 03- - -- - - - q- -5~ ‘r——l—/%—:—?/——‘rw
01 ! e R R, R R /S N % I
2 S I IR g S S N
| | | | | | | | | | ///7:}/,’T | | | | |
-0'10 0‘.1 0.‘2 0.‘3 0.‘4 0.‘5 0‘6 0‘.7 0‘.8 0‘9 1 O0 0.1 - ;.2 0.‘3 0‘4 0‘5 0‘6 0.‘7 0‘8 U‘.Q 1
Fig.3.Numerical and exact solution Fig.4.Error function of Example3 for
of the Example3 for N=7,8,9 various N.
The solution of the second order linear Example4. Let us find the Laguerre
differential difference equation is polynomial solution of the following
obtained for N=7,8,9. For numerical linear differential-difference equation
results, see Table 3. We display a plot
of Laguerre collocation method and YO+ Y () =2yt) + y(t+1)=e""
Exact solution for N=7,8,9 in Fig.3. It withy(0) =1, y'(0)=1. The exact

seems that the solutions almost identical
and we compare error functions for
various N with each others in Fig. 4.

solution of this problem is y(t) = €'.

Table4
Error analysis of Example 4 for the t value
t Exact Present Method
Solution N=6 N=6 N=8 N=8 N=10 N.=10

0.0 1.000000 1.000000 0.100E-8 1.000000 0.300E-8 1.000000 0.140E-8
0.1 0.995004 0.994978 0.252E-4 0.995002 0.201E-5 0.995004 0.101E-6
0.2 0.980065 0979978 0.881E-4 0.980059 0.672E-5 0.980066 0.459E-6
0.3 0.955336 0.955168 0.167E-3 0.955324 0.121E-4 0.955336 0.272E-5
0.4 0921060 0.920816 0.244E-3 0921044 0.164E-4 0.921060 0.734E-5
0.5 0.877582 0.877282 0.299E-3 0.877564 0.182E-4 0.877582 0.145E-4
0.6 0.825335 0.825014 0.321E-3 0.825319 0.164E-4 0.825335 0.240E-4
0.7 0.764842 0.764542 0.300E-3 0.764831 0.104E-4 0.764842 0.354E-4
0.8 0.696706 0.696473 0.233E-3 0.696706 0.484E-6 0.696706 0.476E-4
0.9 0.621609 0.621148 0.123E-3  0.621622 0.129E-4  0.621609 0.598E-4
1.0 0.540302 0.540323 0.208E-4 0.540331 0.288E-4 0.540302 0.708E-4
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1 T : : x 10
l l l N=6 =7 T T T T T = T
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. S R S - E—— T S ) 7 T R
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| | | | 2 i A e e B e A AN AR
075 — 4 Lo N1 | | | | | | | | | |
| | | | | | | | | | | |
R RE EEL LR BN L EENSIEE
| | | | | | | | | | | |
065 — === -~ 7~ -7 -~~~ [l Bt i | /2 T v Sy
| | | | | | | | | | | | | | |
06 ——1——4—-——t-——r—-——F——1—— - i | | | | | | | | X
| | | | | | | 05 — —I—/ 4 b oo b L= A
055 — —l— — A4 — — 4 — =k — = — —|— — -+ | | | | | [ |
| | | | | | | | | | \/KJAT\/—/:Y\J\:/://
08 04‘1 0‘2 0‘3 0‘4 0‘5 0.‘6 0‘,7 04‘8 0‘,9 1 00 ELf 7/(;27 70#3~ 0‘4 0‘5 0‘6 0‘7 0.8 0.9 1
Fig.5.Numerical and exact solution Fig.6.Error function of Example4 for
of the Example4 for N=6,8,10 various N.
Example5. Let us find the Laguerre 10y"' (t) +10y(t) + 100y (t +2) =100 cos(t + 2)
series solution of the following second
order linear  differential-difference with  y(0)=1, y'(0)=0. The exact
equation solution  of  this  problem is
y(t) = cos(t).
Table 5
Error analysis of Example 5 for the t value
t Exact Present Method
Solution N=6 N.=6 N=8 N.=8 N=10 N.=10
0.0 1.000000 1.000000 0.100E-8 1.000000 0.300E-8 1.000000 0.140E-8
0.1 0.995004 0.994978 0.252E-4 0.995002 0.201E-5 0.995004 0.101E-6
0.2 0.980065 0.979978 0.881E-4 0.980059 0.672E-5 0.980066 0.459E-6
0.3 0955336 0.955168 0.167E-3 0.955324 0.121E-4 0.955336 0.272E-5
0.4 0921060 0.920816 0.244E-3 0.921044 0.164E-4 0.921060 0.734E-5
0.5 0.877582 0.877282 0.299E-3 0.877564 0.182E-4 0.877582 0.145E-4
0.6 0.825335 0.825014 0.321E-3 0.825319 0.164E-4 0.825335 0.240E-4
0.7 0.764842 0.764542 0.300E-3 0.764831 0.104E-4 0.764842 0.354E-4
0.8 0.696706 0.696473 0.233E-3 0.696706 0.484E-6 0.696706 0.476E-4
0.9 0.621609 0.621148 0.123E-3  0.621622 0.129E-4 0.621609 0.598E-4
1.0 0.540302 0.540323 0.208E-4 0.540331 0.288E-4 0.540302 0.708E-4
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Fig.7 Numerical and exact solution Fig.8.Error function of Example5 for

of the Example5 for N=6,8,10 various N.



We display the resulting graph of
solution of Example5 for N = 6,8,10
and it is compared with exact solution
in Fig.7. We plot error function for
Example5 in Fig.8. This plot clearly
indicates that when we increase the
truncation limit N, we have less error.
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Example6. Let us find the Laguerre
series solution of the following second
order linear  differential-difference
equation

y'O) -y O+ yt)-yt+1)+ yt+2)=—cos(t) —sin(t +1) + sin(t + 2)

with y(0) =1,y'(0) =1. The exact solution of this problem is y(t) = cost.

Table6

Error analysis of Example 6 for the t value
t Exact Present Method

Solution N=8 N.=8 N=9 N.=9 N=10 N=10

0.0 1.000000 0.999999 0.500E-8 0.999999 0.130E-8 1.000000 0.200E-8
0.1 0.995004 0.996889 0.188E-2 0.996889 0.188E-2 0.996889 0.188E-2
0.2 0.980067 0.987099 0.703E-2  0.987099 0.703E-2 0.987010 0.703E-2
0.3 0955336 0.969976 0.146E-1 0.969975 0.146E-1 0.969973 0.146E-1
0.4 0921061 0.944915 0.239E-1 0.944913 0.239E-1 0.944907 0.238E-1
0.5 0.877583 0.911365 0.338E-1 0.911363 0.338E-1 0.911353 0.338E-1
0.6 0.825336 0.868440 0.435E-1 0.868841 0.435E-1 0.868826 0.435E-1
0.7 0.764842 0.816941 0.521E-1 0.816937 0.521E-1 0.816915 0.521E-1
0.8 0.696707 0.755324 0.586E-1 0.755320 0.586E-1 0.755290 0.586E-1
09 0.621610 0.683375 0.621E-1 0.683746 0.621E-1 0.683707 0.621E-1
1.0 0.540302 0.602067 0.618E-1 0.602063 0.618E-1 0.602014 0.617E-1

Using the procedure in Section 3 and
taking N=8,9 and 10 the matrices in
Eq.(22) are computed. Hence linear
algebraic system is gained. This system
is approximately solved using the
Maple9. The solution of the linear
differential difference equation is
obtained for N=8,9,10. For numerical
results, see Table 6.

5. Conclusion

In recent years, the studies of high order
linear differential-difference equation
have attracted the attention of many
mathematicians and physicists. The
Laguerre collocation methods are used
to solve the high order linear diferential-
difference equation numerically. A

considerable advantage of the method is
that the  Laguerre  polynomial
coefficients of the solution are found
very easily by using computer
programs. Shorter computation time and
lower operation count results in
reduction of cumulative truncation
errors and improvement of overall
accuracy. Illustrative examples are
included to demonstrate the validity and
applicability of the technique and
performed on the computer using a
program written in Maple9. To get the
best approximating solution of the
equation, we take more forms from the
Laguerre expansion of functions, that is
, the truncation limit N must be chosen
large enough. In addition, an interesting
feature of this method is to find the



1

8.

9.

analytical solutions if the equation has
an exact solution that is a polynomial
functions. Illustrative examples with the
satisfactory results are used to
demonstrate the application of this
method.  Suggested approximations
make this method very attractive and
contributed to the good agreement
between approximate and exact values
in the numerical example.

As a result, the power of the employed
method is confirmed. We assured the
correctness of the obtained solutions by
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