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ABSTRACT  
This paper presents a numerical method for the approximate 
solution of mth-order linear differential difference equations with 
variable coefficients under the mixed conditions in terms of 
Laguerre polynomials. The technique we have used is an improved 
Laguerre collocation method. In addition, examples that illustrate 
the pertinent features of the method are presented and the results of 
study are discussed. 
 

 
Diferansiyel fark denklemlerinin Laguerre sıralama yöntemi  ile 

nümerik çözümleri 
 
 

Anahtar Kelimeler 
Laguerre polinomları ve 

serileri,  
Laguerre polinom 

çözümleri,  
diferansiyel fark 

denklemleri,  
Laguerre sıralama 

yöntemi 

 
 
ÖZET  
Bu çalışmada m.mertebeden değişken katsayılı lineer diferansiyel 
fark denklemlerinin karışık koşullar altında Laguerre polinomları ile 
numerik çözümleri verilmiştir. Burada önerilen yöntem Laguerre 
sıralama yönteminin genelleştirilmiş halidir. Yöntemin hassasiyetini 
belirtmek için örnekler verilmiş ve bulunan sonuçlar tartışılmıştır.  
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1. Introduction 
 
In recent years, the differential-
difference equations, treated as models 
of some physical phenomena, have been 
received considerable attention. When a 
mathematical model is developed for a 
physical system, it is usually assumed 
that all of the independent variables, 
such as space and time, are continuous. 
Usually, this assumption leads to a 
realistic and justified approximation of 
the real variables of the system. 
However, some of the physical systems 
for which, this continuous variable 
assumptions cannot be made. Since 
then, differential difference equations 
have played an important role in 
modeling problems that appear in 
various branches of science, e.g., 
mechanical engineering, condensed 
matter, biophysics, mathematical 
statistics and control theory. 
Differential–difference equations occur 
whenever discrete phenomena are 
studied or differential equations  are 
discretized. In this paper, we are 
concerned with the use of Laguerre 
polynomials to solve difference 
difference equations. In recent years, 
the studies of differential difference 
equations are developed very rapidly 
and intensively. It is well known that 
linear differential difference equations 
have been considered by many 

authors[1-11]. The past couple decades 
have seen a dramatic increase in the 
application of difference models to 
problems in biology, physics and 
engineering[12-15]. In the field of 
differential difference equation the 
computation of its solution has been a 
great challenge and has been of great 
importance due to the versatility of such 
equations in the mathematical modeling 
of processes in various application 
fields, where they provide the best 
simulation of observed phenomena and 
hence the numerical approximation of 
such equations has been growing more 
and more. Based on the obtained 
method, we shall give sufficient 
approximate solution of the linear 
differential difference Eq.(1). The 
results can extend and improve the 
recent works. An example is given to 
demonstrate the effectiveness of the 
results. In recent years, Taylor and 
Chebyshev approximation  methods 
have been given to find polynomial 
solutions of differential  equations by 
Sezer et al. [16-22]. 
In this study, the basic ideas of the 
above studies are developed and applied 
to the mth-order linear differential-
difference equation with variable 
coefficients           
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where )(tPk  and )(tf   are analytical 
functions;  iikik andba μ,    are real or 

complex constants. The aim of this 
study is to get solution as truncated 
Laguerre series defined by 
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where )(L tn  denotes the  Laguerre 
polynomials, )0( Nnan ≤≤   are 
unknown Laguerre polynomial 
coefficients and N is chosen any positive 
integer such that mN ≥ . 
Here )(Pk t , )(Q j t   and   )(tf  are 
functions defined on  0≤t≤b, the real 
coefficients  ika   and  iμ  are appropriate 
constants.  
The rest of this paper  is organized as 
follows. We describe the formulation of  
Laguerre polynomials required for our 
subsequent development in section 2. 
Higher-order linear differential difference 
equation with variable coefficients and 
fundamental relations are presented in  
Section 3. The new scheme are based on 
Laguerre collocation  method. The 
method of finding  approximate solution 
is described in Section 4. To support our 
findings, we present result of  numerical 
experiments in Section 5. Section 6 
concludes this article with a brief 
summary. Finally some references are 
introduced at the end. 
 
2. Properties of the Laguerre 

polynomials 
 
A total orthonormal sequence in  

],(L2 b−∞  or ),[L2 +∞a  can be obtained 
from such a sequence in  ),0[L2 +∞  by 
transformations t=b-s and t=s+a, 
respectively. We consider ),0[L2 +∞ . 
Applying the Gram-Schmidt process to 
the sequence defined by 

...,,, 2/22/2/ ttt ettee −−−  
 
We can obtain an orthonormal sequence 

)( ne . It can be shown that )( ne is total in 
),0[L2 +∞  and is given by 

)(L)( 2/ tete n
t

n
−= , n=0,1,2,… 

where the Laguerre polynomial of order n  
is defined by 
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Explicit expressions for the first few 
Laguerre polynomials are 
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The Laguerre polynomials )(L tn  are 
solutions of the Laguerre differential 
equation 

0)(L)(L)1()(L =+′−+′′ tntttt nnn [24] (6) 
In the present application, an approximate 
solution in terms of linear combination of 
Laguerre  polynomial is assumed of the 
following form: 
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3.Fundamental relations 
 
Let us consider the mth-order linear 
differential-difference equation with 
variable coefficients (1) and find the 
matrix forms of each term in the equation. 
First we can convert the solution )(ty   
defined by a truncated Laguerre series (3) 
and its derivative )()( ty k  to matrix forms 
 

AL )()( tty = ,  AL )()( )()( tty kk =   (7) 
where 
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By using the expression (5) and taking 
n=0,1,…,N we find the corresponding 
matrix relation as follows 

TT tt ))(())(( XHL =    (9) 
where  
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Then, by taking into account(9) we obtain 

Ttt HXL )()( =     (11) 
and  

Tkk tt ))(())(( )()( HXL =  ,  ,...2,1,0=k  
To obtain the matrix )(t(k)X  in terms of the 
matrix )(tX , we can use the following 
relation: 

Ttt BXX )()()1( =  
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kTT)(kk ttt ))(()()( 1)( BXBXX == −  (12) 
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Consequently, by substituting the matrix 
forms (11) and (12) into (7) we have the 
matrix relation 

AHBX Tkk ty )()( =      (14) 
To obtain the matrix )(X jt +  in terms of 
the matrix )(X t , we can use the following 
relation:  

jtjt BXX )()( =+     (15)  
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Consequently, by substituting the matrix 
forms (11) and (12) into (7), we have the 
matrix relation of solution 
 

AHXAL Tjtjtjty )()()( +=+=+  (17) 
and by means of (15),  the matrix relation 
is  

AHBX TT
jtjty )()( =+   (18)  
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3. Method of Solution 
 
In this section, we consider high order 
linear differential-difference equation in 
(1) and approximate to solution by 
means of finite Laguerre series defined 
in (3). The aim is to find Laguerre 

coefficients, that is  the matrix A . For 
this purpose, substituting the matrix 
relations (14) and (18) into Eq.(1) and 
then simplifying, we obtain the 
fundamental matrix equation 
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By using in Eq. (19) collocation points it  defined by 
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we get the system of matrix equations 
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or briefly the fundamental matrix equation 
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Hence, the fundamental matrix equation (22) corresponding to Eq. (1) can be written in 

the form 
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Here, Eq. (23) corresponds to a system 
of ( 1)N +  linear algebraic equations 
with unknown Laguerre coefficients  

Naaa ,...,, 10 . We can obtain the 

corresponding matrix forms for the 
conditions (2), by means of the relation 
(14),  
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On the other hand, the matrix form for conditions can be written as 
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To obtain the solution of Eq. (1) under 
conditions (2), by replacing the row 
matrices (26) by the last m  rows of the 

matrix (25), we have the new 
augmented matrix, 
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If  1]~;~[~ +== Nrankrank FWW  , then 
we can write 

FWA ~)~( 1−=    (29) 
Thus the matrix A  (thereby the 
coefficients 0 1, , , Na a aK ) is uniquely 
determined. Also the Eq.(1) with 
conditions (2) has a unique solution. 
This solution is given by truncated 
Laguerre series (3).   

 
   We can easily check the accuracy 
of the method. Since the truncated 
Laguerre series (3) is an approximate 
solution of Eq.(1), when the solution 

)(tyN  and its derivatives are substituted 
in Eq.(1), the resulting equation must be 
satisfied approximately; that is, for   
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and qk
qt

−≤ 10)(E   ( qk  positive integer). 

If max 10 10qk k− −=  ( k  positive integer) 
is prescribed, then the truncation limit 

N  is increased until the difference 
)(E qt  at each of the points becomes 

smaller than the prescribed 10 k− . On the 
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other hand, the error can be estimated by the function  
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If  0)(E →tN , when N  is sufficiently large enough, then the error decreases. 
 
4.Illustrative examples 
 
In this section, several numerical 
examples are given to illustrate the 
accuracy and effectiveness properties of 
the method and all of them were 
performed on the computer using a 
program written in Maple 9. The 

absolute errors in Tables are the values 
of )()( xyxy N−  at selected points. 
 
Example1. Let us first consider the  
second order linear differential 
difference equation with variable  
coefficients 
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and the fundamental matrix equation of the problem is defined by 
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where 0P , 1P , 2P , 1Q , 2Q , X  are matrices of order (6x6) defined by 
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000100
000010
000001

1Q ,  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
010000
001000
000100
000010
000001

2Q  

 
 
If these matrices are substituted in (22), 
it is obtained linear algebraic 
system.This system yields the 
approximate solution of the problem.  
The result with N=6,8,10 using the 

Laguerre collocation method discussed 
in Section 3 and also the exact values of 

)exp(ty = are shown in Table1. 

               
 
 

Table 1 
Error analysis of Example 1 for the t value 

 
 
 
 
 
 
 
 
 
 
 
 

t Exact 
Solution 

 
N=6 

 
Ne=6 

Present Method 
N=8         Ne=8 

 
N=10 

 
Ne=10 

0.0 1.000000 1.000000 0.100E-8 0.999999 0.580E-7 0.999999 0.866E-7 
0.1 1.105171 1.105194 0.228E-4 1.105171 0.271E-6 1.105167 0.367E-5 
0.2 1.221403 1.221493 0.907E-4 1.221403 0.270E-6 1.221389 0.140E-4 
0.3 1.349859 1.350058 0.199E-3 1.349862 0.363E-5 1.349829 0.297E-4 
0.4 1.491825 1.492161 0.337E-3 1.491837 0.121E-4 1.491776 0.486E-4 
0.5 1.648721 1.649206 0.485E-3 1.648749 0.278E-4 1.648654 0.671E-4 
0.6 1.822119 1.822755 0.620E-3 1.822171 0.527E-4 1.822037 0.810E-4 
0.7 2.013753 2.014466 0.713E-3 2.013841 0.878E-4 2.013667 0.857E-4 
0.8 2.225541 2.226273 0.732E-3 2.225674 0.133E-3 2.225645 0.760E-4 
0.9 2.459603 2.460251 0.647E-3 2.459603 0.188E-3 2.459556 0.475E-4 
1.0 2.718282 2.718715 0.433E-3 2.718282 0.250E-3 2.718285 0.357E-5 
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Fig.1.Numerical and exact solution                              Fig.2.Error function of Example1 for    
 of the Example1 for N=6,8,10                                        various N.   
 
Fig.1 shows the resulting graph of 
solution of Example1 for N = 6,8,10  
and  it is compared with  exact solution. 
In Fig.2 we plot error function for 
Example1. This plot clearly indicates 
that when we increase the truncation 
limit N, we have less error. 
 
Example2. Let us find the Laguerre 
series solution of first order linear 
differential difference equation                                                        

3)2()1()()(' 2 −−=+−+++ tttytytyty
 

with conditions 
0)0( =y  

and the exact solution is tty −= 2 . 
Using the procedure in Section 3, we 
find the approximate solution of this 
equation which is the same with the 
exact solution.  
 
Example3. Let us find the Laguerre 
series solution of  the following second 
order linear difference equation  
 

)2sin(3)cos(7)sin(5)2(3)(7)(5 ++−−=++′−′′ tttttytytty
 

with  0)0(',3)0( == yy . The exact 
solution of this problem is 3)( 2 += tty . 

   
Table 3 
Error analysis of Example 3 for the t value  

 

t  Exact 
Solution 

    
    N=7 

  
 Ne=7 

       Present Method 
     N=8        Ne=8 

 
N=9 

 
Ne=9 

0.0 0.000000 -0.45E-8 0.45000E-8 0.110E-8 0.11000E-8 0.110E-8 0.11000E-8 
0.1 0.099833 0.099835 0.17356E-5 0.099833 0.58038E-6 0.099833 0.36465E-6 
0.2 0.198669 0.198676 0.70480E-5 0.198717 0.24398E-5 0.198670 0.16127E-5 
0.3 0.295520 0.295536 0.15888E-4 0.295552 0.57201E-5 0.295524 0.39567E-5 
0.4 0.389418 0.389446 0.27898E-4 0.389428 0.10473E-4 0.389425 0.75683E-5 
0.5 0.479425 0.479467 0.42308E-4 0.479442 0.16625E-4 0.479438 0.12543E-4 
0.6 0.564642 0.564700 0.57863E-4 0.564666 0.23929E-4 0.564661 0.18864E-4 
0.7 0.644217 0.644290 0.72777E-4 0.644249 0.31934E-4 0.644244 0.26361E-4 
0.8 0.717356 0.717440 0.84756E-4 0.717396 0.39959E-4 0.717390 0.34669E-4 
0.9 0.783326 0.783417 0.91085E-4 0.783374 0.47091E-4 0.783370 0.43208E-4 
1.0 0.841470 0.841559 0.88801E-4 0.841523 0.52214E-4 0.841522 0.51173E-4 
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           Fig.3.Numerical and exact solution                            Fig.4.Error function of Example3 for  
           of the Example3 for N=7,8,9                                      various N.  
 
The solution of the second order linear 
differential difference equation is 
obtained for N=7,8,9. For numerical 
results, see Table 3. We display a plot 
of Laguerre collocation method and 
Exact solution for N=7,8,9 in Fig.3. It 
seems that the solutions almost identical 
and we compare error functions for 
various N with each others in Fig. 4.  
 

Example4. Let us find the Laguerre 
polynomial solution of the following 
linear differential-difference equation  
 

1)1()(2)()( +=++−′+′′ tetytytyty  
with 1)0(,1)0( =′= yy . The exact 
solution of this problem is tety =)( . 
 

                  Table4 
                  Error analysis of Example 4 for the t value  
 
 
 
 
 
 
 
 
 
 
 
 
 

t Exact 
Solution 

    
    N=6 

  
 Ne=6 

Present Method 
     N=8         Ne=8 

 
N=10 

 
Ne=10 

0.0 1.000000 1.000000 0.100E-8 1.000000 0.300E-8 1.000000 0.140E-8 
0.1 0.995004 0.994978 0.252E-4 0.995002 0.201E-5 0.995004 0.101E-6 
0.2 0.980065 0.979978 0.881E-4 0.980059 0.672E-5 0.980066 0.459E-6 
0.3 0.955336 0.955168 0.167E-3 0.955324 0.121E-4 0.955336 0.272E-5 
0.4 0.921060 0.920816 0.244E-3 0.921044 0.164E-4 0.921060 0.734E-5 
0.5 0.877582 0.877282 0.299E-3 0.877564 0.182E-4 0.877582 0.145E-4 
0.6 0.825335 0.825014 0.321E-3 0.825319 0.164E-4 0.825335 0.240E-4 
0.7 0.764842 0.764542 0.300E-3 0.764831 0.104E-4 0.764842 0.354E-4 
0.8 0.696706 0.696473 0.233E-3 0.696706 0.484E-6 0.696706 0.476E-4 
0.9 0.621609 0.621148 0.123E-3 0.621622 0.129E-4 0.621609 0.598E-4 
1.0 0.540302 0.540323 0.208E-4 0.540331 0.288E-4 0.540302 0.708E-4 
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           Fig.5.Numerical and exact solution                                  Fig.6.Error function of Example4 for  
           of the Example4 for N=6,8,10                                          various N.  
 
Example5. Let us find the Laguerre 
series solution of the following second 
order linear differential-difference 
equation  
 

)2cos(100)2(100)(10)(''10 +=+++ ttytyty
 

with 0)0(',1)0( == yy . The exact 
solution of this problem is 

).cos()( tty =  
 
                  Table 5 
                  Error analysis of Example 5 for the t value  
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           Fig.7.Numerical and exact solution                                  Fig.8.Error function of Example5 for  
           of the Example5 for N=6,8,10                                          various N.  

t Exact 
Solution 

 
N=6 

 
Ne=6 

Present Method 
N=8         Ne=8 

 
N=10 

 
Ne=10 

0.0 1.000000 1.000000 0.100E-8 1.000000 0.300E-8 1.000000 0.140E-8 
0.1 0.995004 0.994978 0.252E-4 0.995002 0.201E-5 0.995004 0.101E-6 
0.2 0.980065 0.979978 0.881E-4 0.980059 0.672E-5 0.980066 0.459E-6 
0.3 0.955336 0.955168 0.167E-3 0.955324 0.121E-4 0.955336 0.272E-5 
0.4 0.921060 0.920816 0.244E-3 0.921044 0.164E-4 0.921060 0.734E-5 
0.5 0.877582 0.877282 0.299E-3 0.877564 0.182E-4 0.877582 0.145E-4 
0.6 0.825335 0.825014 0.321E-3 0.825319 0.164E-4 0.825335 0.240E-4 
0.7 0.764842 0.764542 0.300E-3 0.764831 0.104E-4 0.764842 0.354E-4 
0.8 0.696706 0.696473 0.233E-3 0.696706 0.484E-6 0.696706 0.476E-4 
0.9 0.621609 0.621148 0.123E-3 0.621622 0.129E-4 0.621609 0.598E-4 
1.0 0.540302 0.540323 0.208E-4 0.540331 0.288E-4 0.540302 0.708E-4 
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We display the resulting graph of 
solution of Example5 for N = 6,8,10  
and  it is compared with  exact solution 
in Fig.7. We plot error function for 
Example5 in Fig.8. This plot clearly 
indicates that when we increase the 
truncation limit N, we have less error. 

 
Example6. Let us find the Laguerre 
series solution of the following second 
order linear differential-difference 
equation  

 
 

)2sin()1sin()cos()2()1()()(')('' +++−−=+++−+− ttttytytytyty  
 

with 1)0(,1)0( =′= yy . The exact solution of this problem is tty cos)( = . 
              
              Table6 
              Error analysis of Example 6 for the t value 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the procedure in Section 3  and 
taking N=8,9 and 10 the matrices in 
Eq.(22) are computed. Hence linear 
algebraic system is gained. This system 
is approximately solved using the 
Maple9. The solution of the linear 
differential difference equation is 
obtained for N=8,9,10. For numerical 
results, see Table 6. 
 
5. Conclusion 
 
In recent years, the studies of high order 
linear differential-difference equation 
have attracted the attention of many 
mathematicians and physicists. The 
Laguerre collocation methods are used 
to solve the high order linear diferential-
difference equation numerically. A 

considerable advantage of the method is 
that the Laguerre polynomial 
coefficients of the solution are found 
very easily by using computer 
programs. Shorter computation time and 
lower operation count results in 
reduction of cumulative truncation 
errors and improvement of overall 
accuracy. Illustrative examples are 
included to demonstrate the validity and 
applicability of the technique and 
performed on the computer using a 
program written in Maple9. To get the 
best approximating solution of the 
equation, we take more forms from the 
Laguerre expansion of functions, that is 
, the truncation limit  N must be chosen 
large enough. In addition, an interesting 
feature of this method is to find the 

t Exact 
Solution 

    
    N=8 

  
 Ne=8 

Present Method 
     N=9             Ne=9 

 
N=10 

 
Ne=10 

0.0 1.000000 0.999999 0.500E-8 0.999999 0.130E-8 1.000000 0.200E-8 
0.1 0.995004 0.996889 0.188E-2 0.996889 0.188E-2 0.996889 0.188E-2 
0.2 0.980067 0.987099 0.703E-2 0.987099 0.703E-2 0.987010 0.703E-2 
0.3 0.955336 0.969976 0.146E-1 0.969975 0.146E-1 0.969973 0.146E-1 
0.4 0.921061 0.944915 0.239E-1 0.944913 0.239E-1 0.944907 0.238E-1 
0.5 0.877583 0.911365 0.338E-1 0.911363 0.338E-1 0.911353 0.338E-1 
0.6 0.825336 0.868440 0.435E-1 0.868841 0.435E-1 0.868826 0.435E-1 
0.7 0.764842 0.816941 0.521E-1 0.816937 0.521E-1 0.816915 0.521E-1 
0.8 0.696707 0.755324 0.586E-1 0.755320 0.586E-1 0.755290 0.586E-1 
0.9 0.621610 0.683375 0.621E-1 0.683746 0.621E-1 0.683707 0.621E-1 
1.0 0.540302 0.602067 0.618E-1 0.602063 0.618E-1 0.602014 0.617E-1 
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analytical solutions if the equation has 
an exact solution that is a  polynomial 
functions. Illustrative examples with the 
satisfactory results are used to 
demonstrate the application of this 
method. Suggested approximations  
make this method very attractive and 
contributed to the good agreement 
between approximate and exact values 
in the numerical example. 
As a result, the power of the employed 
method is confirmed. We assured the 
correctness of the obtained solutions by 

putting them back into the original 
equation with the aid of Maple, it 
provides an extra measure of confidence 
in the results. We predict that the 
Laguerre expansion method will be a 
promising method for investigating 
exact analytic solutions to linear 
differential-difference equations.The 
method can also be extended to the 
system of linear  differential-difference 
equations with variable coefficients, but 
some modifications are required. 
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