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1. INTRODUCTION 
 

 

Camera calibration is an important step in many 
fields such as computer vision and image processing. 
The main idea in the camera calibration is to 
determine the camera transformation parameters from 
2D image points to the corresponding 3D space 
points. Thus, camera calibration is especially used to 
extract metric information from 2D images [1]. The 
number of camera parameters can change depending 
to the type of camera calibration approach. 
 
Basically there are two types of camera parameters: 
(i) internal parameters that create mathematically the 
inner geometry of a camera when the image exposed, 
they are principal point coordinates, effective focal 
length and distortions, (ii) external parameters that 
define the angular attitudes in terms of roll, pitch and 
yaw angles and the positional displacements with 
respect to an object coordinate system. Although 
these two types of parameters can be computed 
through the redundant measurements during the 
calibration, it is the main purpose to determine the 
internal parameters for a calibration process. In the 
close range and the industrial photogrammetric 
computer vision applications, depending on the 
widely usage of the digital cameras, internal and 
external parameters are generally determined together 
in a multi-view geometry in a kind of self calibration. 
 
The calibration mathematical models can be 
assembled as linear or nonlinear models [2]. 
Although the linear calibration algorithms such as 
Direct Linear Transformation [3] are easy to apply to 
the problem, the mathematical model does not 
represent the real physical model because of ignoring 
some parameters like lens distortions. Thus, the 
solution becomes lack of stability and accuracy. So, 
these models can be only approximate solutions. The 
parameters of the linear models can be easily 
estimated by a least squares method. In addition to 
the parameters of linear models, nonlinear calibration 
models take into account the lens distortions as radial 
and tangential, aspect ratio as well. Although the 
nonlinear solutions are more realistic and robust 
physical models with additional parameters, they 
require iterative optimization algorithms for 
parameter estimation. So, the computational 
complexity of nonlinear models is higher than the 
linear systems. The most widely used method for 
solution of these systems is the Levenberg-Marquardt 
(LM) algorithm. In order to converge a solution, very 
good initial values of parameters are required in LM. 
 

Many calibration methods have been developed so 
far [1, 3-6]. They differ from each other based on 
which parameters are taken into account. Although 
there are different approaches to the calibration 
problem, the underlying mathematical model 
generally used is the colinearity principle, i.e. the 
colinearity equation is the basic equation on which 
the most of the calibration methods depend. It can be 
defined the object point, projection center and the 
corresponding image point must be collinear. The 
colinearity equation sets the physical model of a light 
ray from the object space coordinates to the 
corresponding image coordinates in terms of the 
camera lens system. 
 
Another calibration method (LL) considered in this 
study was introduced by Luca Lucchese [5]. In this 
method, the way of homography is from the image 
frame to reference image frame whereas it is usually 
from space to image coordinates at many methods. 
Another difference comes up with using calibration 
board. 3D object coordinates are not used in LL. The 
coordinates of the virtual reference image are derived 
from 3D coordinates of calibration board with the 
constant distance. 
 
In this study, Artificial Bee Colony (ABC), 
Differential Evolution (DE), Genetic Algorithm (GA) 
and Particle Swarm (PSO) Algorithms are used to 
calibrate LL model in comparison with Levenberg-
Marquardt method. Besides ABC algorithm is the 
first time being used in a camera calibration problem 
DE, GA and PSO that have been used for other 
calibration models such as Tsai [7-9] are the first 
time being used for LL model. ABC and PSO are the 
member of population based swarm intelligence 
algorithms [10, 11] while DE and GA are population 
based evolutionary algorithms [12, 13]. All of them 
are heuristic and iterative algorithms [11, 14-16]. 
 
Artificial bee colony algorithm 
 
ABC algorithm is inspired by the behavior of the bee 
colonies to find out food sources. All of the bees are 
represented with their positions and by changing 
parameters of positions they try to find optimal 
solution. ABC works iteratively and iterations 
continue until minimum objective value equal or 
smaller then the goal. There are three types of bee in 
ABC: (i) employed bee that is going to the food 
source visited by itself previously, (ii) onlooker bee 
that waits on the dance area for making decision to 
choose a food source and (iii) scout bee that carries 
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out random search [14]. Half of the colony consists of 
employed bees and the other part of the colony 
consists of onlooker bees. In each food source there is 
only one employed bee. During the iterations 
positions of food sources are changed by bees. At the 
beginning of the algorithm employed bees go to their 
starting positions randomly and measure fitness of 
positions. After that onlooker bee chooses its starting 
point by fitness of food source of employed bee. The 
food source of the most convenient fitness value has 
a higher probability of choosing by onlooker. Bees 
start search from this initial point for iteration.  
 
Although in a food source there is only one employed 
bee number of onlooker bees can change because 
onlooker bees don’t have ownership of food source. 
In other words, the number of employed bees is equal 
to the number of food sources around the hive. In 
search process, randomly chosen parameters of the 
position of randomly chosen food source is 
subtracting from own parameters. Results are 
multiplied by a number produced in [-1,1] interval 
and the products are added to the parameters. If 
fitness value of new position produced with this way 
is more convenient than previous food source is 
chanced. At each iteration searching new position of 
a food source is executed by bees at this food source. 
The employed bee whose food source is exhausted by 
the employed and onlooker bees becomes a scout. 
Limit and colony size values are the parameters of 
ABC to be tuned. The main steps of the algorithm 
can be given like this: 
 
(i) Initialize. 

 
(ii) REPEAT. 
 

(a) Place the employed bees on the food sources 
in the memory; 
 

(b) Place the onlooker bees on the food sources 
in the memory; 

 
(c) Send the scouts to the search area for 

discovering new food sources. 
 
(iii) UNTIL (requirements are met). 
 
In standard ABC for a food source just one position 
parameter is changed. But it is seen that this approach 
is not sufficient for the calibration problem. 
Therefore additionally a perturbation rate parameter 
is employed [17]. This parameter determines the 
change probability for each parameter. 

 

2. METHODOLOGY 
 
a. Images 
 
Bouguet’s images available on the internet were 
employed [4]. Images contain black-and-white 
checkerboard of high contrast with a size of 3cm. 
Thanks to this feature control points can be 
determined on the images by using Harris Corner 
Detector [18-20]. 
 
b. Camera Parameters 
 
Internal parameters define where a light ray that came 
into the camera falls onto the image plane. The 
contact point of the optical axis of lens to the image 
plane are called principal point and quantized with xp 
and yp image coordinate pairs. Because of the 
imperfection of the optical system of a real digital 
camera, principal point very seldom coincides with 
actual physical center of its image plane [5, 21]. 
According to the perspective projection, a 3D point is 
mapped into 2D image point as Eq 1. 
 

Z
Y

yfy

Z
X

xfx

=

=
 (1) 

 
In perspective projection fx and fy are also internal 
parameters. Effective focal length f is the distance 
between image plane and the optical center of lens 
and described as f=fxw and f=fyh where w and h is 
width and height of a pixel respectively. Also fx/fy 
ratio defines aspect ratio[5, 21-23]. 
 
The lens distortions are separated into two types as 
radial and tangential distortions. The former one 
arises because of the deficient curvature of the lens 
surface and the latter one is caused by misalignment 
of lens center. So, tangential distortion has two 
components along the directions of x and y. However 
the radial distortion is mainly affected by the radial 
distance from the principal point. Because of the 
distortions, pixel coordinates of the control points do 
not coincide with the correct places. Therefore a 
straight line can be seen as a bending line. Radial and 
tangential distortions are expressed Eq. 2 and Eq. 3, 
respectively. 
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In the above equations, k1, k2 and k3 are the radial distortion coefficients, p1, p2 and p3 are the tangential 
distortion parameters and xd and yd define image coordinate have distortions. r and q parameters are 
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External parameters determine the position and the orientation of a camera according to a specific coordinate 

system. Roll, pitch and yaw angles are three of external parameters with that rotation matrix R 
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Translation elements along x, y, and z directions are other external parameters showed as a vector 
 

]T,T,T[T zyx=  (6) 

 
c. Luca Lucchese Method 
 
Calibration method introduced by Lucchese looks 
like Tsai or Zhang methods. The main difference 
comes from the calibration pallet used. This model 
uses an imaginer reference image as a calibration 
pallet rather than a real pallet. It is assumed that the 
reference image is generated by an ideal pinhole 
camera (Cr) having parallel CCD axes to pallet and 
having orthogonal optical axis to pallet intersected at 
center [5]. This ideal camera located at a distance L+f 
from the pallet. The L distance is chosen arbitrary 
with a condition of comprising whole imaginary 
pallet. This ideal camera does not have any 
distortions and its focal length is the same as the real 
camera. 
 
As seen in Figure 1, image Ir acquired by ideal 
camera Cr placed with L distance from pallet P and in 
O`X`Y`Z` object coordinates. On the other hand 

image Id is generated by Cd camera at different place 
from Cr. in OXYZ coordinate system. In LL method, 
images are generated from different positions and 
orientations. In Figure 1, o´x´y´ is the coordinate 
system of reference image and y~x~o~  is the coordinate 
system of real images. Because of imperfection of 
lens, real image center of oxy coordinate system is 
not coincide with center of y~x~o~  coordinate system. 
 
Camera parameters are obtained via perspective 
projection of all images to reference image. 
Transformation between O`X`Y`Z` and OXYZ is 
considered as a two stages process (Figure 2). Image 
Id obtained by Cd has warp and distortions. At the 
first stage, lens distortions are corrected and Iu image 
is generated by radial and tangential distortion 
equations. 
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Figure 4. LM homographies of image 2. 
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The specific algorithm parameters of ABC, DE, PSO 
and GA algorithms were determined after many trial 
and error processes. The detailed explanations about 
these algorithm parameters can be found in many 
references. The values of some of them are given in 
Table 1. Population or colony size (N) for all 
algorithms was set 50 and all the algorithms were run 
for 2000 iterations. These model values should be 
tuned as precisely as possible for guarantying them to 
run effectively. 

 
Unlike LM which needs the initial values for the 
unknowns, ABC, DE, GA and PSO need only 
specific working intervals for the unknowns. These 
intervals must cover for all unknown values in order 
that search space would be too large to find a 
solution. But if they are too large, it makes the 
algorithm converge an acceptable solution very 
difficult. In order to obtain the optimal interval 
values, firstly each image is separately optimized. For 
the internal parameters, optimal intervals are obtained 

taking the minimum and maximum values coming 
from single frame solutions. For the external 
parameters, the optimal intervals are computed by 
adding and subtracting an adequate little value to the 
external parameters from single frame solutions. 
Consequently, the search space including the real 
values is made narrower. Thus, it is supposed to 
obtain more stable solutions. After more realistic 
interval values are computed from these individual 
operations, the main optimization process is done 
with these intervals for 160 unknowns for 15 parallel 
runs and the results with smallest RMSE values were 
chosen. Table 2 shows the optimized internal 
parameters comparing to LM with RMSE values. 
 
According to the RMSE values, none of the 
intelligent algorithms gave an comparable solution to 
LM. Among them, ABC and DE have the higher 
performances respectively. Homographies of image 2 
for ABC were computed and visualized in Figure 5 

 
 
Table 1. Parameters of ABC, DE, PSO and GA algorithms. 

ABC DE PSO GA 

Pertubation 
Rate 0.9 Crossover 

Rate 0.9 Ineteria 
Weights (0.9-0.6) CrosoverFunction Scattered 

Scale 
Factor 0.6 Scale 

Factor 0.6 Accelerator 
Weights (2.1-2.1) Selection Function StochasticUniform 

Limit (Nxp)/2     Mutation Function Gaussian 

      Crossover Rate 0.9 

 
Table 2. The optimized internal parameters from ABC, DE, GA, PSO. 

 ABC DE GA PSO LM 

xp 0.198 3.490 0.028 1.530 -16.517 
Yp 2.725 -5.550 14.700 2.740 -2.889 
k1 9.76x10-07 -7.89x10-06 1.15x10-06 7.26x10-07 2.97x10-07 
k2 3.45x10-11 1.55x10-10 -1.34x10-10 5.89x10-11 6.05x10-13 
k3 -5.11x10-16 -4.55x10-16 1.31x10-15 -8.97x10-16 -8.66x10-19 
p1 -5.14x10-06 -2.77x10-04 1.48x10-05 -2.73x10-05 4.79x10-05 
p2 -2.41x10-05 2.98x10-04 5.75x10-05 -4.46x10-05 -3.87x10-05 
p3 4.64x10-05 -6.69x10-06 -4.00x10-05 3.40x10-05 -5.31x10-06 
fx 633.89 261.41 596.59 602.00 656.64 
fy 654.35 278.19 833.49 615.66 657.85 

RMSE 15018 17166 27425 141987 249 
 
. 
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Figure 5. ABC homographies of image 2. 

 
4. CONCLUSIONS 
 
In this paper the usage possibilities of intelligent 
optimization algorithms, ABC, DE, GA and PSO 
have been examined with respect to the recently 
proposed camera calibration approach of LL. 
Especially as a novel method ABC has not been used 
in any calibration problem yet. Both the error values 
and the graphical homographies show that intelligent 

optimization methods do not give satisfactory results. 
For especially high dimensional problems, this 
situation is not surprising for DE, GA and PSO. But 
in recent literatures ABC has showed very good 
performances for different benchmark problems. 
Although there are some algorithm parameter 
combinations to be tuned for these algorithms it can 
be accurately concluded these algorithms are not as 
stable and robust as Levenberg-Marquardt. In spite of 
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the fact that it is very hard to explain these 
deficiencies because of the heuristic natures of these 
algorithms, the redundancies and scale differences 
among the internal parameter may cause the failure of 
these algorithms. The distortion parameters have 
relatively too small values and consequently very 
sensitive to little changes, as well. So, this situation 
may cause instabilities and increasing search time, 
i.e. finding global minimum is either impossible or 
very difficult. Another reason may be because of the 
fact that the physical reality of the digital imagery 
can be modeled mathematically well enough by 
nonlinear colinearity equations with distortions. 

Despite the numerical effectiveness of LM, since 
the camera calibration problem is nonlinear, LM 
needs very good initial values for convergent stable 
solutions. So, it can be concluded that ABC can be 
employed as an initializing tool for LM in the camera 
calibration problem in terms of LL model. 
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