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ABSTRACT 
Without sufficient knowledge on temperature fields, one can not raise reliability, choose optimal technology of 
product making and operating conditions. Therefore the problems on heat distribution are of significant value in heat 
transfer processes to pass to higher operating parameters. 
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1. INTRODUCTION 

This work is denoted to the analytic theory of the heat distribution in the substance in the rest. In 

this work for a given semi-condicting sample the problem of the heat distribution is solved both 

analytically and numerically the distribution of the temperature is found. 

 

2. PROBLEM STATEMENT 

Find a solution of the equation 
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satisfying the initial conditions 
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and boundary conditions 
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on the domains 
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Here 0q,0a ≥>  are constants, ),(,4,1),(,)3,2,1()(0 txfktixu ki == ϕ  are the given functions, 

),( txuu =  is temperature, t  is time. ∑∑
==

+==
m

0k

k
k

n

0k

k
k tbxa)t,x(ff , γρ

ka =2  in thermal-

conductivity coefficient, k  is internal heat-conductivity coefficient, γ  is heat capacity, ρ  is 

density of the given material. 

 

In the paper we give application of the net method to the solution of problem (1)-(3), prove the 

maximum principle for appropriate difference problem and convergence of the method. 

 

First the solution of the problem is investigated in an analytical way and corresponding 

expressions are obtained for the solution on each domain, for example, on the domain 1D : 
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where [ ] [ ]310112102110 ,;0)(;;0;0)()(;,, llll ∈≡∈≡==== xxuTtttttxx ϕϕ   and 
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i.e.  1u  is the solution of the following equation under homogeneous conditions  
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Thus, on the rectangular domain 
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we choose a uniform net 
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and to problem (1)-(3) we assign the difference problem: 
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 Rewrite this problem in the following form: 

 

)1,...,2,1()(1)21( ,1,1
22

1
22 −==+−⋅+++− +−+ nifhaqha ijjijiijij ϑϑϑτϑτ                   (7) 

 ),....,1,0(,0 niFii ==ϑ ,                                                                                          (8) 

⎪⎩

⎪
⎨
⎧

==

=

),...,1,0(,

,

2

1

2

1

mjjj

jj

ϕϑ

ϕϑ

l

l
                                                                                                  (9) 

 

It is known that the maximum principle holds for the solution of the equation 
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By fulfilling the conditions 

0a >  and 0q ≥  the analogue of the maximum principle is proved for problem (7)-(9).     

 

Theorem 1 (Maximum principle) Let a grid function τhV  determined on ijϑ , satisfy problem 

(7)-(9) and   
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Then the solution ijϑ , differ from a constant may not take the greatest positive (the least 

negative) value in internal nodes of the net τhV . 

 

Proof. Let’s prove the first part of the theorem, i.e. prove that if 0,0,0 21 ≤≤≤ jjijf ϕϕ , the 

solution ijϑ  may not take the greatest positive value in the nodes of the net τhV .   

 

Let at some internal node of the net ijϑ  the function accept the greatest positive value τhV . 

Then, since constij ≠ϑ , there will be found a point )t,x(
0j0i

 at which   
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and even if at one of the neighboring points )t,x(
0j10i − , )t,x(

0j10i +  and )t,x( 10j0i −    the value of 

the function ijϑ  will be strongly less than M . 

 

Let 1ni1 0 −≤≤ . Then at the node )t,x(
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 we have: 
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i.е. 0
00
>jif , that contradicts the requirement 0

00
<jif . We can show in a similar way that ijϑ  

may not take the greatest positive value, i.e. the second part of the theorem is proved.      

 

Corollary 1.  If   

 

mjnifnif jjijjjij ,...,2,1),0,0,1,...,2,1,0(,0,0,1,...,2,1,0 2121 =≥≥−=≥≤≤−=≤ ϕϕϕϕ

and ( ) niii ,...,1,0,0,0 00 =≥≤ ϑϑ , the solution of problem (4)-(6) ijϑ  is non-positive (non-

negative): 
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( ) mjniijij ,...,1,0,,...,1,0,0,0 ==≥≤ ϑϑ . 

 

Corollary 2. For mjnif jjij ,....,10,0,1,...,2,1,0 21 ===−== ϕϕ  and 

( )nii ,0,00 ==ϑ  problem (4)-(6) has only a trivial solution: mjniij ,...,1,0,,...,1,0,0 ===ϑ  

and consequently, problem (4)-(6) is uniquely solvable for any ij2j1ij F,,,f ϕϕ . 

 

Before we investigate the solution of problem (1)-(3), we prove the following theorems:  

 

Theorem 2. (Comparison theorem)   Let ijϑ  be a solution of problem (4)-(6), and ijϑ  be a 

solution of the problem which is obtained when replacing the functions ij2j1ij F,,,f ϕϕ  by  

jjijf 21 ,, ϕϕ  and iF , respectively, in problem (4)-(6). Then, if 
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then the inequality: 

 

m,...,1,0j,n,...,1,0i,ijij ==ϑ≤ϑ  

holds. 

 

This theorem is easily proved and by virtue of this theorem we get the validity of the following 

statement: 

 

Theorem 3. Let  
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then for the solution of problem (4)-(6) it holds the inequality: 

m,...,1,0j,n,...,1,0i,eK 1T
ij ==⋅≤ϑ . 

 

Convergence. Let iju  be the value of the exact solution of problem (1)-(3) at the nodes, ijϑ  be a 

solution of problem (4)-(6). Let’s determine the function 

 

ijijij uz −=ϑ . 

 

If we substitute ijijij zu +=ϑ  in (4)-(6), we get: 
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By theorem 2 the following statement is true. 
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Theorem 4. If the solution of problem (1)-(3) is )(),( 1
2 DCtxu ∈ , the solution of problem (4)-

(6) converges to the solution of problem (1)-(3) with velocity )h(O τ+ . And it holds the 

estimation:   

 

( ) ),(2 1 heLu T
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where L  and σ  are determined, by equalities (10).  

 

Numerical solution of the problem is obtained by applying the net method. 
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