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HEAT DISTRIBUTION ANALYSIS FOR A SEMI-CONDUCTING SAMPLE
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ABSTRACT

Without sufficient knowledge on temperature fields, one can not raise reliability, choose optimal technology of
product making and operating conditions. Therefore the problems on heat distribution are of significant value in heat
transfer processes to pass to higher operating parameters.
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1. INTRODUCTION
This work is denoted to the analytic theory of the heat distribution in the substance in the rest. In
this work for a given semi-condicting sample the problem of the heat distribution is solved both

analytically and numerically the distribution of the temperature is found.

2. PROBLEM STATEMENT
Find a solution of the equation

u, = azuxx —qu +f » XE (gjagjﬂ)ﬂt € (ijlaTj)aj = 153 (1)
satisfying the initial conditions

u(x,0) =1y (x) ,x €[0,,0,]
u(xaﬂ):uOZ(x)’xe[£27£3]a (2)
u(x,7y) =ug(x), x € [53,54],

and boundary conditions

u(l,,0)=@,(1) .t €[0,7;]
u(ly,0) =0, (1) ,t (0,7, ]
u(l3,0) = 5(1) 1 €[, T3]
u(ly,0) = 4(0) 1 € [T, T}

3)

on the domains

D, ={,<x</,,0<t<T},
D,={/,<x</, T <t<T,},
D,={(,<x</,, T,<t<T,}
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Here a >0, q>0 are constants, u,(x) (i =1,2,3),¢,(¢),k = 1,4, f(x,t) are the given functions,

u=u(x,t) is temperature, ¢ is time. f=f(X,t)=Zaka +Z:bktk , a’ =%p in thermal-
k=0 k=0

conductivity coefficient, k is internal heat-conductivity coefficient, ¥ is heat capacity, o is

density of the given material.

In the paper we give application of the net method to the solution of problem (1)-(3), prove the

maximum principle for appropriate difference problem and convergence of the method.

First the solution of the problem is investigated in an analytical way and corresponding

expressions are obtained for the solution on each domain, for example, on the domain D, :

00X]( o _ _
u, = : J‘J.{Ze(_ql_azk“)(t_”-sin mn(x XO)-sin (G XO)}fl(C,T)dCdt ;

Xy 7 X0 0xqn=l X=X X=Xy

where x, = £, ,x, =0, ,t, =t; p,(t) = @, (1) = 0; t € [0; T Juy, (x)=0; xe[¢,,¢,] and

i.e. u, is the solution of the following equation under homogeneous conditions

ut = alzu,wc - qlu + fl (x’ t)
Thus, on the rectangular domain
D, ={f{,<x</(,,0<t<T}

we choose a uniform net
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v, = {(xl. =0, +ih; t;=j7),i=0L..n,j=0L...m nh="~0,;mt=T ,r =O'/’12}

and to problem (1)-(3) we assign the difference problem:

(G =9 [t =0*(9,, ~29,+9_ ) /h* —q8,+ f,  (i=12,,n-1) (4)
90 =F, , (i=0,1,...n), (5)
(6)

941]’ :¢l(tj):¢1,
'952/ :¢2(tj): =0, 9(] :0,1,...,}’}’1)

Rewrite this problem in the following form:

(~Yr +2a° [ + )8, +1/t- 9y —a* /W (9 ; + 8y )= f; ((=12.n=1) (7)

o =F, , (i=0,,..,n), (8)

S =P | ©)
‘942_;' =Py (j=0.1,..,m)

It is known that the maximum principle holds for the solution of the equation

a_p o

a

By fulfilling the conditions

a>0 and q=0 the analogue of the maximum principle is proved for problem (7)-(9).

Theorem 1 (Maximum principle) Let a grid function V/,  determined on 191.1. , satisfy problem

(7)-(9) and

Ji 20, i=12,.,n=1,0,;<0,9,; <0
(]Flj > 0’ = 1,2’___’1’1—1, (Dlj 2 Oa ¢2j > 0), ] = 0,1,....,]’}1 .



350 Heat Distribution Analysis for A Semi-Conducting Sample of Concretely Given Configuration

Then the solution ‘917’ differ from a constant may not take the greatest positive (the least

negative) value in internal nodes of the net V.

Proof. Let’s prove the first part of the theorem, i.e. prove that if f;; <0,¢,; <0, ¢,; <0, the

solution 191.1. may not take the greatest positive value in the nodes of the net V, .

Let at some internal node of the net 917 the function accept the greatest positive value V, .

Then, since 191.]. # const , there will be found a point (x, ,t, ) at which
Siio = (r)lgliegt]z(Sij =M>0,
0<j<m

and even if at one of the neighboring points (x;,,t; ), (X, ,;,t;) and (x;,t; ;) the value of

the function 191.1. will be strongly less than M.

Let 1<i, <n-1. Then at the node (x ) we have:

io’tjo

[y =Y +2d R+ )8, +1/t- 8, —a’[h* (9., +3I

io+1jo io—1Jo

> (=l +2a> [ + M —Vr-M —(2a* /> M =gM >0 ,

) >

ie. f, > 0, that contradicts the requirement f, . < 0. We can show in a similar way that 19[].
0/0

0Jo

may not take the greatest positive value, i.e. the second part of the theorem is proved.

Corollary 1. If

»]Fl] S 0, i=1,2,...,n_1 ’¢1j S 0, ¢2] S 0, (»]Fl] Z 0,i=1,2,...,n_1, ¢1j Z 0, ¢2/ 2 0 ), ] = 1,2,...,m

and 9 < 0,(3,-0 > O), i=0,,...,n, the solution of problem (4)-(6) 191.]. is non-positive (non-

negative):
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9;<0,(8;20)i=0L.,n, j=0L....m.

Corollary 2. For f;=0,i=12,..,n-1, ¢,=0,0,, =0 j=1..m and

19,-0 =0, (i = O,n) problem (4)-(6) has only a trivial solution: 3,-j =0,i=0,l..,n j=0,.L..m

and consequently, problem (4)-(6) is uniquely solvable for any f;,o,;, @,;,F,
Before we investigate the solution of problem (1)-(3), we prove the following theorems:

Theorem 2. (Comparison theorem) Let 3y be a solution of problem (4)-(6), and E be a

solution of the problem which is obtained when replacing the functions f,9,;, ¢0,;,F; by
TU,(D_U,E and F, , respectively, in problem (4)-(6). Then, if

I <f;.i=12,..n-1,
0| <0y, (k=12), j=12...m

and [F|<F,i=0,Ll..n
then the inequality:

[9,/<9; . i=0..n,j=01..m

1)

holds.

This theorem is easily proved and by virtue of this theorem we get the validity of the following

statement:

Theorem 3. Let
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(1Sx<ly

K = max{max|f(x, t) ,Max|Q, (t)|, max F(x)|} ;
Dy <t<
k=1,2

then for the solution of problem (4)-(6) it holds the inequality:
‘SU‘ S K-eTl , 1 = O,l,...,n’ j = 0,1,“',m .

Convergence. Let 1, be the value of the exact solution of problem (1)-(3) at the nodes, 191.1. be a

solution of problem (4)-(6). Let’s determine the function

If we substitute &, =u,, + z,, in (4)-(6), we get:

-z +2a*/h* +q)z, + Yz -z, —a* /W (z, +2.,)=R, (i=12,..,n-1)

z,=0, i=0l..,n

10
z, . =R, .
BV BV

z,,;, =R, j=L2,...m

where

<(L/2Xz +oh), i=0,,..n, j=0,l,.,m.

R;

L:max{ %Z&%,%a3g§,§§g§},G:max(Za/3)>0. (10)

By theorem 2 the following statement is true.
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Theorem 4. If the solution of problem (1)-(3) is u(x,t) e C 2(31) , the solution of problem (4)-

(6) converges to the solution of problem (1)-(3) with velocity O(h+1t). And it holds the

estimation:

<(L/2)-e" (z + oh),

]91" _ul'j

where L and o are determined, by equalities (10).

Numerical solution of the problem is obtained by applying the net method.
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