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ABSTRACT

The purpose of this study is to give a Taylor matrix method for approximately solving the high-order linear complex
differential equations with variable coefficients under the mixed conditions in a circular domain. The method is
based on first taking the truncated Taylor expansions of the expressions in equation and then substituting their
matrix forms into the given equation. Hence the differential equation and conditions are transformed to the matrix
equations. The solution of these equations yields the unknown Taylor coefficients of the solution function. To
illustrate the pertinent features of the method, examples are presented and results are compared.
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DEGISKEN KATSAYILI YUKSEK MERTEBEDEN LINEER COMPLEX
DIFERANSIYEL DENKLEMLERIN DAIRESEL BiR BOLGEDE POLINOM
COZUMLERI

OZET

Bu calismada dairesel bir bolgede karisik kosullar altinda degisken katsayili yiiksek mertebeden lineer complex
diferansiyel denklemlerin Taylor matris yontemi ile niimerik ¢éziimlerinin bulunmasi amaglanmistir. Belirtilen
yontem denklemdeki fonksiyonlarin kesilmis Taylor polinomlarmin matris formlarinin denklemde yerine konmasi
esasina dayanir. Boylece denklem ve kosullar matris denklemine doniistiiriiliir. Bu denklemlerin ¢oziimleri Taylor
polinomlarmin katsayilarmi olustururlar.Yontemin uygulamas: ¢esitli o6rneklerle aciklanmis ve sonuglar
tartigilmagtir.

Anahtar Kelimeler: Taylor yaklasimlari, Complex diferansiyel denklemler, Taylor matris yontemi.
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1.INTRODUCTION

A Taylor-expansion approach for solving integral equations has been presented by Kanwal and
Liu [1] and then this method has been extended by Sezer to Volterra integral equations [2] and
second order linear differential equations [3], and by Nas,Yal¢inbas and Sezer to high order
linear Fredholm integro-differential equations [4]. On the other hand, the method has been
developed by Giilsu and Sezer [5,6,7] for solving high order linear difference equations and
Fredholm integro-difference equations with mixed argument. In this paper, these methods are
modified and developed to solve an m-th order linear complex differential equation with variable

coefficients, which is extended to the linear complex differential equations [8-13],
2B (2)=g(2) (1)
k=0

under the mixed conditions

R

> S E)=A (G=0Lm=]) ”
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Il
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where the coefficients F,(z) and the right-hand member g(z) are single-valued analytic
functions in the disc D = {z eC: |z - zO| <p, 0<p<oo }; ¢, and A, are appropriate complex

constants; and z,,& € D.

We assume that the aproximate solution of the equation (1) under the mixed condition (2) is

expressed in the form

F@ =3~ ) z-2)" 2 €D 3)

n=0 n'

which is a Taylor polynomial of degree N at z=z,, where f"(z,), n=0,l,..,N, are the

Taylor coefficients to be determined.
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The rest of this paper is organized as follows. Fundamental relations for high-order linear
complex differential equation with variable coefficients are presented in section 2. The new
scheme is based on the Taylor matrix method. The method of finding approximate solution is
described in section 3. To support our findings, we present numerical experiments in section 4.

Section 5 concludes this article with a brief summary.

2. FUNDAMENTAL MATRIX RELATIONS

Let us consider the linear complex differential equation with variable coefficients (1) and find
the truncated Taylor series expansions of each term in this equation at z =z, and their matrix
representations. We first consider the desired solution f(z) of the problem, defined by the series

(3). Then we can put series (3) in the matrix form

[f(2)]=ZM,F 4)
where
Z=[1 (z-2z)) (z—z)" . . . (Z—ZO)N:'
L 0 0 0_
0!
1y 0
1
0 0 L 0
M, = 2
0 0 0 L
i N
F=[/"G) /@) . . . @)

Now we consider the expression P,(z)f*(z) of equation (1). we can write it as the truncated

series expansion of degree N at z =z, in the form
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US| (n) 0

HOVAOED Y RHOTANCISNCEEDE (5)
n=0 It- 0

By the Leibniz’s rule we evaluate

[R@r0@]" =3 R e @)

zZ=Zj =0

and substitute it in expression (5). Thus the expression (5) becomes

PSP =YY L Priz) £ ()2 - 2,)" ©)

N
0 im0 (n— D!

and its matrix form

k
[B@/(@)]= ZPF (7)
where
_ o _
0 0 L(ZO) 0 0 0 0
010!
(1) (0)
P (z) P (z)
0 0 k7 k7 0 0 0
110! 011!
(2) 1) (0)
P (zp) P (zy) P (zq)
0 0 0
0 ... 0 k k k 0 0
210! 1 012!
(N - k) (N —k-1) (N-k-2) (0] (0)
Pk= o o Pk (Zo) Pk (Zo) Pk (Zo) Pk (Zo) Pk (Zo)
(N=k)10! (N—k=-D1! (N-k-2)12! 1N(N—k=1) 0! (N —k)!
(N-k+1) (N —k) (N—k-1) (2) (1)
. . P (zO) Pk (zO) Pk (zo) Pk (zO) Pk (zO)
(N-k+1)10! (N—k)!11 (N—k-1)12! 20(N —k-1)! 11(N = k)!
(N -1) (N-2) (N -3) (k) (k=1)
o o Pk (Zo) Pk (20) Pk (20) Pk (Zo) Pk (20)
(N-1)10! (N-2)!'1! (N -3)12! KV(N=k=1)! (k=11 (N—-k)!
(N) (N -1) (N -2) (k+1) (k)
o o Pk (20) Pk (20) P (zo) Pk (Zo) f}( (20)
L N10! (N-1)11! (N-2)121 k+DV(N=k=1!  kV(N—-k)!
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Let the function g(z) be approximated by a truncated Taylor series at z = z,

2= L g )z 2)"

n=0 n'

Then we can put this series in the matrix form

[¢()]= ZMiG., ®)
where
G=[g"Gy) &"G) - - - 8VG)]

Substituting the matrix forms (7) and (8) corresponding to the functions P, (z) f*’(z) and g(z),

into equation (1), and then simplifying the resulting equation, we have the matrix equation

$p F-MG Q)

k=0

The matrix equation (9) is a fundamental relation for the m-th order linear differential equations

with variable coefficients (1).

Next, let us form the matrix representations for the conditions (2) as follows. The derivatives of

expression (3) can be written in the form

=3 —

(n k)'f(n)(zo)(z_zo)n_k’ k=0’15"')m_1
n=k - .

and the corresponding matrix equations
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[fP@)]= ZMF, k=0,1,...m-1 (10)
where
0 0 l 0 0
0!
0 0 0 l 0
1!
M, - 1
0 0 0 0
(N =k)!
0 0 0 0 0
10 0 0 0 0 |

The matrix equations (10) for z =&, become

[fP(E)|=MZEIMF, k=0.1...m-1;7=0,,..R, (11)
where
2E)=[1 &-z) E-z) . . . (&E-z)"]

Substituting quantities (11) into expression (2) and then simplifying, we obtain the matrix forms

corresponding to the mixed conditions (2) as

UF=[4 ], j=01...,m-1 (12)
where

m—1 R
U= c;kZ(ér)MkE[ujO Uy - ”jzv}

k=0 r=0

and the complex constants u,,n=0,1...,N;j=0,1,...,m—1 are related to the coefficients c;k

and & .
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3. METHOD OF SOLUTION
The fundamental matrix equation (9) for high-order linear complex differential equation (1)

corresponds to a system of (N+1) algebraic equations for the (N+1) unknown complex
coefficients f”(z,), " (z,),..., ™ (z,) . Briefly we can write Eq.(9) in the form

WF=M,G or [W;M, G] (13)

so that

W= [wpq] = kZi;Pk ; p,q=0,1,...,N.

We can write the matrix equations (12) for the conditions (2) in the augmented matrix forms
[U_/;/’tj] or [u_/o U, - u_/.N;/l_/], j=0,1,....m—1. (14)

To obtain the approximate solution of Eq(1) under the conditions (2) in the terms of Taylor
polynomials, by replacing the m row matrices (14) by last m rows of augmented matrix (13), we

have new augmented matrix

(0) T
. 8 (=)
Woo Won > Y
1
" " g"(z,)
10 IN 1| (1 5)
. ;
[W*’G*J _ ) g(AV7/”)(Z(])
Wyomo - Wyomn 5
(N—-m)!
Uy Upy n
Uy Uy 4
u/nfl,() umfl N > //i’m—] B

If rank W' = rank [W*;G*]: N +1, then we have
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F=(W)'G" (16)
so that
Woo Woi Won [ ¢9(z) |
0
W Wi Win 0!
. 1
g( )(Zo)
1!
W* _ WN—m,O WN—m,l WN—m,N :
Uy Uy, Uyy G =|g"™"(z,)
Uy Uy Uy (N —m)!
. ﬂ/o
4
| U0 U Upyn | :
L ﬂ’m—l _

Thus the coefficients 1 (z,), n=0,1,..., N are uniquely determined by Eq.(16).Therefore the

solution of Eq.(1) with conditions (2) is obtained by the truncated Taylor series (3).
We can easily check the accuracy of this solution as follows [4] :

Since the Taylor polynomial (3) is an approximate solution of Eq.(1), when the solution f(z)

and its derivatives are substituted in Eq.(1), the resulting equation must be satisfied

approximately; that is, for z=z, € D
E(z) =2 P(z)f " (z)~g(z)=0
k=0
or
E(z,)< 107% | (k; is any positive integer).

If max 107 (k is any positive integer) is prescribed, then the truncation limit N is increased until

the values E(z;) at each of the points z; becomes smaller than the prescribed 107 .
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4. EXAMPLES
Example 1.
Let us illustrate our method by the second order complex differential equation with variable

coefficients
f =222 +10z° f =(1+10z"> - 2z2%)e’
with the conditions

f(O)=1, f(0)=2

and approximate the solution f(z) by the polynomial
- f70)
f=Y—2z,
n=0 n.

where N=6, P,(z) =10z>, P,(z) = -27°, P,(z) =1, g(z) = (1+10z° —2z°)e” . We first reduce this

equation, from Eq.(9), to the matrix form
2
Q. P)F=M,G
k=0

The quantities in the equation are computed as

000 0 0 00 00 0 0 0 00
0 0 0 0 00 00 0 0 0 00
10 0 0 0 00 00 0 0 0 00
P,=[0 100 0 0 00| P=0-20 0 0 0 0]
005 0 0 00 00 -2 0 0 00
0 0 053 0 00 00 0 -1 0 00
0 0 0 0 5/12 0 0 0 0 0 0 —1/3 0 0]




W=P,+P +P, =

w
8]
Il
S O O O O O O

M. Sezer et. al., / Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi 25 (1-2) 374 - 389 (2009)

S O O O O o O

S O O O O o =

oS O O O o = O

S O o O

S O O v O O O
S O NN O O O

and the augmented matrix is

[W;G]

The augmented matrix based on the conditions f(0)=1, f'(0) =2 is obtained as

[w

;G

oS O

= el o=

S O O v O O O

-_ o O v O O O

S O N O O O -

S O O O o =

S ~ O O O = O

S O O O O = O

S
1
21/2
G=| 49/6 |
73/24
81/120
161/720 ]
0 0 |
0 0 0
1/72 0 0
0 1/6 0
0 1/24
0 0 0
1/4 0 0

1/24 73/24

N

1/

oS O

0

0

0 .

0  49/6
2

0

0

1
1
21/2

- 81/120
- 61/720]

1
2172
L 49/6
4:73/24
1
2

383
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Solving this system, the Taylor coefficients are obtained as

A Polynomial Approach for Solving High-Order Linear Complex Differential Equations

[P0 =1 fP0)=2, /20 =1, fP0) =1, fPO)=1, [*0)=-47, /(0)=25

and thereby the polynomial solution becomes

f(2)=1+22+1/22°+1/62°+1/242"-47/1202°+5/1442°

Taking N=6 the obtained solution are compared with the exact solution f(z) = z - %zs +exp(z)

in Table 1.
Table 1. The absolute error for Example 1.( /=y=7 )

V4 Exact  Solution Present Met(z,=0) N.=6
-0.5-0.51  -0.0177083333 - 0.8407986000 1  -0.0177083330 - 0.84496528001  0.41666667000e-2
-0.4-0.41  0.2010239999 - 0.6774215111 1 0.2010239990 - 0.6785137778 1  0.10922667000e-2
-0.3-0.31  0.4038430000 - 0.52281510001  0.4038430000 - 0.52300950001  0.19440000000e-3
-0.2-0.21  0.6018986667 - 0.3631687111 1  0.6018986670 - 0.3631857778 1 ~ 0.17066700000e-4
-0.1-0.1T  0.8003009999 - 0.1903490111 T  0.8003009990 - 0.1903492778 1  0.26670000000e-6
0.0-0.0I  0.0000000000 + 0.000000000 I 0.0000000000 + 0.000000000 I 0.00000000000
0.1+0.11 1.1996656670 + 0.2103489889 1  1.1996656670 + 0.21034872221  0.26670000000e-6
0.2+0.21 1.3975679990 + 0.4431672889 1  1.3975679990 + 0.44315022221 0.17066700000e-4
0.3+0.31 1.5934570000 + 0.7027989000 I  1.5934570000 + 0.7026045000 1  0.19400000000¢-6
0.4+0.41 1.7904426670 + 0.9973304889 1  1.7904426670 + 0.99623822221  0.10922667000e-2
0.5+0.51 1.9968749990 + 1.3404513890 1  1.9968749990 + 1.33628472201 0.41666670000e-2

Example 2 : [9, Example 2]

Let us consider the equation

I = f + (8% —12¢% —30e* —19¢ —9¢*) [ =0

The exact solution of this equation is f(z) = exp(e® + ¢>*) and the Taylor
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expansion of f(z) about z=0 gives

385

f(z) = 7.389056099 + 22.16716830z + 51.72339269z> +99.75225734z" +169.6404129z"
+262.68094437° +377.69365502° +---

The solution obtained using the matrix method for N=6 is

fapprox

+262.68094437° +377.6554273z°.

which is the first six terms of the Taylor expansion of the exact solution at z=0. The obtained

polynomial solution is compared with the exact solution in Table 2.

Table 2. The absolute error for Example 2.( /=y-1 )

(2) = 7.389056099 + 22.16716830z + 51.72339269z2> +99.75225734z" +169.6404129z"

z

Exact  Solution

Present Met(z,=0)

Ne=6

-04-041
-03-031
-02-021
-0.1-0.11
-0.05-0.051
0.0-00I
0.05+0.051
0.1+0.11
02+021
03+031
04+041

4.6787109160 - 6.699272158I
3.1824369060 -2.3757893741
3.8021915230 - 1.7487263321
5.3144948570 - 1.3742674961
6.3017230900 - 0.8743983711
7.3890560990 + 0.0000000001
8.4679070880 + 1.3915378841
9.3279050110 + 3.4371607171
8.8045233900 + 9.6377500071
0.6029765340 + 16.591237841
-24.64295528 + 15.052217401

4.6787109160 - 6.7005248031
3.1824369060 -2.376012318I
3.8021915230 - 1.7487459041
5.3144948570 - 1.3742678021
6.3017230900 - 0.8743983761
7.3890560990 -+ 0.0000000001
8.4679070880 + 1.3915378801
9.3279050110 + 3.4371604111
8.8045233900 + 9.6377304341
0.6029765340 + 16.591014901
-24.64295528 + 15.050964751

0.1252645000e-2
0.2229440000e-3
0.1957200000e-4
0.3060000000e-6
0.4500000000e-8
0.0000000000

0.4000000000e-8
0.3060000000e-6
0.1957300000e-4
0.2229400000e-3
0.1252650000e-2

Example 3: Let us consider second order linear complex differential equation

f =22 f +10z°f =0

with the condition
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f0)=0, f(0)=1

For N=6, the matrix form of the problem is defined by

(22: P)F=M,G

k=0

After the augmented matrices of the equation and conditions are computed, we obtain the Taylor

coefficients matrix
F=[0 1000 -48 0]."
Therefore, by the present method, we are able to find the exact solution

f(Z)zZ—%ZS.

Example 4: [12, p.304]

Our last example is the second order linear complex differential equation
(1-z*)f"(z)=2zf"(2) +6f =(2° +5)sinz—2z" cos z

with the condition

O =2, /) =1.

. . . 1 . .
This equation has the axact solution f(z) = Y + %zz +sin z whose Taylor expansion is

1 3, 1, 1
Z)=——+z+—Z ——Z +——Z +...
J@==5 27 67 120
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After the augmented matrices of the system and conditions are computed, for N=5, we obtain the

Taylor coefficients matrix
F=[-12 13 -10 15]"

Therefore, we find the exact solution

fapprox(z) :_%+Z+%Zz —123 +£ZS.

The obtained polynomial solution is compared with the exact solution

f(2) =—%+%zz +sinz in Table 3 .

Table 3. The absolute error for Example 4.( /=y=1 )

z

Exact Solution

Present Met(z,=0)

N=5

-0.5-0.51 -1.026041667 + 0.3072916661 -1.0406250000 + 0.29270833341 0.206239475¢-1
-0.4 - 0.41 -0.916213333 +0.1064533331 -0.9209920000 + 0.10167466661 0.675805525¢-2
-0.3-0.31 -0.807785000 - 0.019785000i -0.8089190000 - 0.02091900001 0.160371818e-2
-0.2-0.21 -0.702506667 - 0.0771733331 -0.7026560000 -0.07732266671 0.211189199%¢-3
-0. 1- 0.11 -0.600328333 - 0.0696616671 -0.6003330000 - 0.06966633401 0.659968921e-5
-0.05-.051 -0.550041510 - 0.0424581771 -0.5500416560 - 0.0424583229i 0.206284267e-6
0.0 +0.01 -0.500000000 + 0.000000000i -0.5000000000 + 0.00000000001 0.000000000

0.05+.051 -0.449958489 + 0.0574581771 -0.4499583437 + 0.0574583220i 0.206284267e-6
0.1 +0.11 -0.399671667 + 0.1296616661 -0.3996670000 + 0.1296663334i 0.659971043e-5
0.2+0.21 -0.297493333 +0.3171733331 -0.2973440000 + 0.31732266661 0.211189178e-3
0.3+0.31 -0.192215000 + 0.5597850001 -0.1910810000 + 0.56091900001 0.160371818e-2
0.4 +0.41 -0.083786666 + 0.8535466671 -0.0790079999 + 0.8583253340i 0.675805524¢-2
0.5+0.51 0.026041668 + 1.192708330i 0.04062500001 +1.2072916660i 0.206239476e-1

5. CONCLUSIONS
High-order linear complex differential equations are usually difficult to solve analyticaly. Then it
is required to obtain approximate solutions. For this reason, the present method has been

proposed for approximate solution and also analytical solution.
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The method presented in this study is a method for computing the coefficients in the Taylor

expansion of the solution of a linear complex differential equations, and is valid when the

functions Px(z) and g(z) are defined in the disc D ={z e C: |z - zo| < p}

The Taylor method is an effective method for the cases that the known functions have the
Taylor series expansion at z=z,. In this case, the Taylor polynomial solution f(z) and the values

f(zj), z; € D can be easily evaluated at low-computation effort. To get the best approximating

solution of the equation, the truncation limit N must be chosen large enough. For computational
efficiency, some estimate for N, the degree of the approximating polynomial (the truncation limit
of Taylor series) to f(z), should be available. Because the choice of N determines the precision of
the solution f(z). If N is chosen too large, unnecessary labour may be done; but if N is taken a
small value, the solution will not be sufficiently accurate. Therefore N must be chosen
sufficiently large to get a reasonable approximation. For example, an interesting feature, this
method finds the analytical solutions if the equation has an exact solution that is a polynomial of

degree N or less than N.

The method can also be extended to the system of linear complex equations with variable

coefficients, but some modifications are required.
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