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Abstract
We discuss in this paper the robust equivariant nonparametric regression estimators for
ergodic data with the k Nearst Neighbour (kNN) method. We consider a new robust
regression estimator when the scale parameter is unknown. The principal aim is to prove
the almost complete convergence (with rate) for the proposed estimator. Furthermore, a
comparison study based on simulated data is also provided to illustrate the finite sample
performances and the usefulness of the kNN approach and to prove the highly sensitive of
the kNN approach to the presence of even a small proportion of outliers in the data.
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1. Introduction
It is very well recognized that robust regression in statistics is an attractive research

method. It is used to overcome some of the weaknesses of classical regression, namely
when outliers contain heteroscedastic data.

The study of the connection between a random variable W and a set of covariates Z is
a common problem in statistics. In the literature, these variables are generally known as
functional variables. Remember that the robustification method is an old statistical issue,
This latter was investigated first by [29] who studied an estimation of alocation parameter
(see also [18, 33]), for some results containing the multivariate time series case under a
mixing or an ergodic condition);

The robust model is an essential alternative regression model that allows overcoming
many drawbacks of the classical regression, such as the sensitivity to the outliers or the
heteroscedasticity phenomena. Indeed, it was initially proposed by [8] who demonstrated
the model’s almost-complete convergence in the independent and identically distributed
(i.i.d.) case. Several results on nonparametric robust functional regression have been ob-
tained since this study (for example, [5–7,12,16,20,27] and references therein).

∗Corresponding Author.
Email addresses: guenanisomia@gmail.com (S. Guenani), wahiba_bouab@yahoo.fr (W. Bouabsa),

attou_kadi@yahoo.fr (M.K. Attouch), fetitah-omar@hotmail.com (O. Fetitah)
Received: 14.05.2022; Accepted: 03.10.2022

https://orcid.org/0000-0003-0621-386X
https://orcid.org/0000-0002-8106-5038
https://orcid.org/0000-0002-2050-9184
https://orcid.org/0000-0002-9312-7080


kNN robustification equivariant nonparametric regression estimators 513

Furthermore, it is well known that the kNN method is better than the classical kernel
method, this famous method have attracted a lot of interest in the statistical literature
for evaluating multivariate data because of their flexibility and efficiency. Pushed by
its attractive features, the functional kNN smoothing approach has received a growing
consideration in the last years. The study of [28] is a thorough analysis of kNN estimators
in the finite dimensional context. Work in this area was started by [19], and a large number
of articles are now available in various estimating contexts, which including regression,
discrimination, density and mode estimation, and clustering analysis, we make reference
to [3, 4, 9, 15, 17, 21–23, 32, 35–37, 40, 45] and [1, 14, 30] for the most recent advances and
references. Note that, such a study has a great impact on practice. However, the difficulty
in the kNN smoothing is the fact that the bandwidth parameter is a random variable,
unlike the classical regression in which the smoothing parameter is a deterministic scalar.
So, the study of the asymptotic properties of our proposed estimator is complicated, and
it requires some additional tools and techniques.

All the results involved in the functional kNN estimation above were obtained under
i.i.d. case. While in many practical applications, some problems require taking into
account the dependence structure that may exist within the dataset. The strong mixing
dependence or α-mixing is one of the most general weak dependence modelization in the
literature. The research of Nadaraya Watson (NW) kernel method for this dependent
functional data analysis has been widely carried out, see, for instance [13, 25] and the
bibliographical surveys by [26] and [39]. However, for the kNN approach, the papers are,
as far as we know, written by [41] and [38] who studied the kNN estimator of the model
under α-mixing sample.

The ergodicity hypothesis is less restrictive than the mixing condition, so we consider in
this article the more global case when the scale parameter is unknown and data come from
an ergodic functional time series by the kNN method. The literature on ergodic functional
time series data is still restricted, with the few existing results due to [10, 27, 34] and
references therein. Inspired by all the results above, the purpose of this paper show us that
functional kNN approach can be used to further investigate the estimation of functional
nonparametric regression opera in the case of ergodics datasets. This is motivated by the
fact that the robust regression estimator has several advantages over the classical kernel
regression estimator. The main profit in using a robust regression is that it allows reducing
the effect of outlier data.

In NFDA, kNN robustification equivariant nonparametric regression estimators for er-
godic data is new. This researches’s primary goal is to provide generalizations, to the kNN
case, the results obtained by [2] in ergodic dependency case with the research of [38] and
[1]. More precisely, we establish the almost complete convergence with rates of the con-
structed estimator by combining the ideas of robustness with those of smoothed regression.
We point out that the main feature of our approach is to develop an alternative prediction
model to the classical regression that is not sensitive to outliers or heteroscedastic data,
taking into account the local data structure. The work has not yet been addressed in the
literature. We wish that this will be useful to readers who are interested in learning about
and comprehending the core idea of functional kNN methods with ergodic dependence
sample.

This paper’s structure is as follows. In Section 2, we find some fundamental concepts
and various assumptions. Then in Section 3 we give some technical tools as well as their
proofs. The main result is given in Section 4, then we provides all the proofs of the main
result in Section 5. Finally, simulation study is given in Section 6.
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2. Principal hypotheses and basic definitions
2.1. Kolmogorov’s entropy

The aim of this subsection is to emphasize the topological aspects of our study. In-
deed, all asymptotic conclusions in nonparametric statistics for functional variables are
intimately connected to the concentration properties of the probability measure of the
functional variable Z, as Ferraty and Vieu [25] indicated. We must also consider the
element of uniformity in this situation.

Definition 2.1. Let ε > 0 be given, and let T be a subset of a semi-metric space F, a finit

set of points z1, z2, ..., zn in F is called an ε-net for T if T ⊂
n⋃

ℓ=1
B(zℓ, ε). Kolmogorov’s

ε-entropy of the set T is defined as ΨTF(ε) = log(Nε(TF)), where Nε(TF) is the minimal
number of open balls in F with radius ε required to cover F .

This concept was introduced by [31] and it represents a measure of the complexity of
a set, in sense that, high entropy means that much information is needed to describe
an element with an accuracy ε. Therefore, the choice of the topological structure (with
other words, the choice of the semi-metric) will play a crucial role when one is looking at
uniform (over T) asymptotic results. More precisely, a good semi-metric can increase the
concentration of the probability measure of the functional variable Z as well as minimize
the ε-entropy of the subset TF.

2.2. kNN regression function model
Let Xi = (Zi, Wi)i=1,...,n be n pairs independent and identically distributed (i.i.d) as

(Z, W ) and is defined in F × R. We do not assume the existence of a density for the
functional random variable Z since (F, d) is a semi-metric space, F is not necessarily of
finite dimension. The functional nonparametric regression is defined as

W = r(Z) + ε with E[ε|Z] = 0.

The kNN kernel estimator can be written as for a fixed z ∈ F

r̂kNN (z) =

n∑
i=1

WiL(Tn,k(z)−1d(z, Zi))

n∑
i=1

L(Tn,k(z)−1d(z, Zi))
, (2.1)

where L is an asymmetrical kernel and Tn,k(z) is defined as follows:

Tn,k(z) = min
{

h ∈ R+/
n∑

i=1
IB(z,hL)(zi) = k

}
.

The functional version of the NW kernel type estimator of the nonparametric functional
regression is as follows:

r̂(z) =

n∑
i=1

WiL(h−1
L d(z, Zi))

n∑
i=1

L(h−1
L d(z, Zi))

, (2.2)

where z ∈ F is fixed, and hL denotes a non-random bandwidth.
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2.3. kNN conditional cumulative distribution function
The conditional cumulative distribution function of W given Z = z, for each z ∈ F and

for any w ∈ R can be written as

F (w|Z = z) = F W
Z (z, w) = P

(
W ≤ w|Z = z

)
= E

[
I(−∞,w](W)|Z = z

]
.

We call the following function the estimator of F (w|Z = z)

F̂ (w|Z = z) =
n∑

i=1
L(d(z, Zi)/Tn,k(z))

(
n∑

i=1
L(d(z, Zi)/Tn,k(z))

)−1

I(−∞,w](Wi). (2.3)

Several authors have studied the estimation of the conditional cumulative distribution
function in the real case (see for example [42,43]). Then, in the functional case [25] proved
the almost complete convergence of a double kernel estimator of the conditional cumulative
distribution function.

2.4. The kNN robust equivariant estimators and their functional relatives
function

In this section we define the function of our main problem, we consider estimating a
generalized regression function defined as follows:

µ(z, x, τ(z)) = E
[
Γz

(
Wi − x

τ(z)

)
/Zi = z

]
, (2.4)

where Γz is a real-valued function, we denoted by ϑ(z) the unique solution of
µ(z, x, t(z)) = 0, where t(z) is a robust measure of the conditional scale. The unique
solution of Eq. (2.4) is the so-called robust conditional location functional, where Γz is
a strictly increasing function (see [11]). The conditional scale measure is defined as the
conditional median of the absolute deviation from the conditional median, that is

t(z) = med(|W − M(z)|/Z = z) = madc(F z
W (.)), (2.5)

with M(z) = med(W/Z = z) is the median of the conditional distribution.
On the other hand, we note that t(z) which is a robust measure of the conditional scale,
always equals τ(z).
We insert an estimator of F z

W (z) into (2.3) to get ϑ(z) estimators, wich will betaken as
F̂ (w|Z = z). A robust estimator of the conditional scale is denoted by t̂(z), for example,
t̂(z) = madc(F̂ (.|Z = z), the scale measure given in (2.5) measured in F̂ (w|Z = z). The
solution ϑ̂(z) of µ̂(z, x, t̂(z)) = 0 gives the robust nonparametric estimator of ϑ(z) in this
notation, where

µ̂(z, x, t̂(z)) =

n∑
i=1

L(d(z, Zi)/hL)Γz

(Wi − x

t̂(z)

)
n∑

i=1
L(d(z, Zi)/hL)

. (2.6)

Hence the kNN estimator of µ(.) is written as

µ̂kNN (z, x, t̂(z)) =

n∑
i=1

L(d(z, Zi)/Tn,k(z))Γz

(Wi − x

t̂(z)

)
n∑

i=1
L(d(z, Zi)/Tn,k(z))

. (2.7)
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2.5. Hypotheses
In this part, we propose the following hypotheses to establish the uniform almost com-

plete convergence of µ̂ on some subset TF of F. To do that we denote by C and C ′ some
real generic constants supposed strictly positive and we suppose that

(A1) The processes (Zi, Wi) satisfies
(A1a) ∀hL > 0, φz(hL) =: P(Z ∈ B(z, hL)) > 0 where φz(.) is continuous in the

neighborhood of 0 and φz(0) = 0.
(A1b) ∀i = 1, n a deterministic function exists such that

∀hL > 0, 0 < Cφi(hL) < P(Zi ∈ B(z, hL)/Fi−1) ≤ C ′φi(hL) < ∞.

(A1c) For all hL > 0, 1
nφz(hL)

n∑
i=0

P(Zi ∈ B(z, hL)/Fi−1) → 1. a.co.

(A2) ∃ function ϕ(.) ≥ 0, a bounded function f(.) > 0, α > 0 and ρ > 0 such that
(A2a) ϕ(0) = 0 and lim

ε→∞
ϕ(ε) = 0,

(A2b) lim
ε→∞

(ϕ(uε)/ϕ(ε)) = uα with u > 0,
(A2c) sup

z∈TF

|φz(ε)/ϕ(ε) − f(z)| = O(ερ), as ε → 0.

(A3) The kernel L(.) is defined by
(A3a) is a nonnegative function with support [0, 1] such that

0 < CI[0,1](t) < L(t) < C ′I[0,1](t) < +∞.

(A3b) Its derivative L′(.) exists on the same support and −∞ < C < L′(t) < C ′ < 0.
(A4) ∀(x1, x2) ∈ [ϑ(z) − δ, ϑ(z) + δ] × [ϑ(z) − δ, ϑ(z) + δ], ∀(z1, z2) ∈ TF,

|µ(z1, x, t(z)) − µ(z2, x, t(z))| ≤ Cdβ(z1, z2), β > 0.

(A5) For each fixed x ∈ [ϑ(z) − δ, ϑ(z) + δ], ∀m ≥ 2 we have that

E[Γz

(Wi − x

t(z)

)
/z = Z] < δ(z) < C < ∞, with δ(.) continuous on TF.

(A6) The functions φz and ΨTF are such that
∃C > 0, ∃η0 > 0, ∀η < η0, φ′

z(η) < C and if L(1) = 0 we can seen that

∃C > 0, ∃η0 > 0, ∀0 < η < η0,

∫ η

0
φ(u)du > Cηφz(η),

if in addition k/n → 0 as n → ∞, log2 n/k < ΨTF(log n/n) < k/ log n and
0 < C < k/ log n < C ′ < ∞ for n large enough.

(A7) Kolmogorov’s ε-entropy of the set TF satisfies, for some ϖ > 1
∞∑

n=1
exp{(1 − ϖ)ΨTF(log(n)/n)} < ∞.

(A8) Consider that TF is a compact set of F such that
(A8a) The function F (w|Z = z) is uniformly continuous of z in a neighborhood of

TF for each z fixed.
(A8b) The equicontinuity condition that follows hold

∀ε > 0, ∃δ > 0 : |λ − ν| < δ =⇒ sup
z∈TF

|F (λ|Z = z) − F (ν|Z = z)| < ε.

Remark 2.2. Comments on the hypotheses
Our hypotheses are quite light in the context of nonparametric statistics in functional time
series.

The latter is exploited together with condition (A1) which is less restrictive than the
conditions imposed by [34] because the concentration function P(Zi ∈ B(z, r)) and the
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conditional concentration function P(Zi ∈ B(z, r)/Fi−1) do not need to be written as
products of two independent nonnegative functions of the center and radius.

Hypotheses(A3) contains two types of kernels which have been utilized in practice box
and continuous kernels.

(A2), (A4) and (A5) are the usual conditions in the nonparametric setting.
About condition (A6) we can say because the derivative of φ is limited around zero, it

can be considered a Lipschitzian function.
Assumption (A7) acts on Kolmogorov’s ε-entropy of TF.
Assumption (A8) means that there ∃a, b ∈ R such that for every z ∈ TF,

F (b|Z = z)| > 1 − ε and F (a|Z = z)| < ε which will be used to prove that
t(z) = madc(F z

W (.)) is bounded away from 0 for all z ∈ TF.

3. Technical tools and their proofs
The first difficulty comes because Tn,k(z) is random. To resolve this problem, the idea

is to frame sensibly Tn,k(z) by two non-random windows. More generally, these technical
tools could be useful as long as one has to deal with random bandwidths. So we propose
in this part the preliminary Lemma and their proof that is necessary to prove our main
result. Following the notations in [15] or [32].

Let (Ai, Bi)1≤i≤n be n random pairs valued in (Ω×R,A×B(R)), where (Ω,A) is a general
measurable space. Let TΩ be a fixed subset of Ω, we observe that G : R× (TΩ × Ω) → R+

a function such that, ∀z ∈ TΩ, G(., (z, .)) measurable function such that ∀t, t′ ∈ R,
(K0) : t ≤ t′ =⇒ G(t, d) ≤ G(t′, d) for ∀d ∈ TΩ × Ω. Let c(.) : TΩ → R be a non random
function such that sup

z∈TΩ

|c(z)| < ∞. Moreover, for all z ∈ TΩ and n ∈ N∗.

So,

cn,z(t) =

n∑
i=1

Γz

(
Bi − x

t̂(z)

)
G(t, (z, Ai))

n∑
i=1

G(t, (z, Ai))
.

Lemma 3.1. Let {Jn(z)}n∈N∗ be a sequence of r.r.v. and let (vn)n≥1 be a decreasing
positive sequence with lim

n→∞
vn = 0. If for all increasing sequence γn ∈ (0, 1) with

γn − 1 = O(vn), there exist two sequences of real random variable (r.r.v.) (J−
n (γn, z))n∈N∗

and (J+
n (γn, z))n∈N∗ such that

(K1) ∀n ∈ N∗, ∀z ∈ TΩ, J−
n (γn, z) ≤ J+

n (γn, z),
(K2) I{J−

n (γn,z)≤Jn(z)≤J+
n (γn,z), ∀z∈TΩ} −→ 1, a.co. as n → ∞,

(K3) sup
z∈TΩ

∣∣∣∣
n∑

i=1
G
(
J−

n (γn, z), (z, Ai)
)

n∑
i=1

G
(
J+

n (γn, z), (z, Ai)
) − γn

∣∣∣∣ = Oa.co.(vn),

(K4) sup
z∈TΩ

|cn,z(J−
n (γn, z)) − c(z)| = Oa.co(vn),

(K5) sup
z∈TΩ

|cn,z(J+
n (γn, z)) − c(z)| = Oa.co(vn).

Then,

sup
z∈TΩ

|cn,z(Jn(z)) − c(z)| = Oa.co(vn). (3.1)
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Proof. The result for any real valued (r.v.) can be deduced by taking Bi = B+
i − B−

i

where B+
i = max(Bi, 0) and B−

i = − min(Bi, 0) and for i=1,...,n, we consider the quanti-

ties Γi
z(t) = Γz

(
Bi−x

t̂(z)

)
.

Under the definition of the r.v J(n), we put J−
n ≤ Jn ≤ J+

n .

It’s clear that

G (J−
n (γn, z) , (z, Ai)) , 6 G (Jn (γn, z) , (z, Ai)) 6 G

(
J+

n (γn, z) , (z, Ai)
)

,
n∑

i=1
G
(
J−

n (γn, z) , (z, Ai)
)
6

n∑
i=1

G (Jn (γn, z) , (z, Ai)) 6
n∑

i=1
G
(
J+

n (γn, z) , (z, Ai)
)

.

So,

1
n∑

i=1
G
(
J+

n (γn, z) , (z, Ai)
) 6 1

n∑
i=1

G (Jn (γn, z) , (z, Ai))
6 1

n∑
i=1

G
(
J−

n (γn, z) , (z, Ai)
) .

Under the hypotheses (A1) − (A5) , we have
n∑

i=1

G
(
J−

n (γn, z) , (z, Ai)
)

Γi
z(t)

n∑
i=1

G
(
J+

n (γn, z) , (z, Ai)
)

︸ ︷︷ ︸
c+

n,z(γn)

6

n∑
i=1

G (Jn (γn, z) , (z, Ai))

n∑
i=1

G (Jn (γn, z) , (z, Ai))︸ ︷︷ ︸
cn,z(γn)

6

n∑
i=1

G
(
J+

n (γn, z) , (z, Ai)
)

Γi
z(t)

n∑
i=1

G
(
J−

n (γn, z) , (z, Ai)
)

︸ ︷︷ ︸
c−

n,z(γn)

.

In the other hand, we can express the r.r.v: c−
n,z(γn) and c+

n,z(γn), in the following way:

c−
n,z(γn) = cn,z(γn) ×

n∑
i=1

G
(
J−

n (γn, z), (z, Ai)
)

n∑
i=1

G(J+
n (γn, z), (z, Ai))

and

c+
n,z(γn) = cn,z(γn) ×

n∑
i=1

G
(
J+

n (γn, z), (z, Ai)
)

n∑
i=1

G(J−
n (γn, z), (z, Ai))

.

So under (K2) and (K3), we have

c−
n,z(γn) a.co.−−−→ γn c(z), and c+

n,z(γn) a.co.−−−→ c(z)/γn. (3.2)
For all sequence γn ∈ (0, 1) with γn − 1 = O(vn), (K3), (K4) and (K5) give

sup
z∈TΩ

|c−
n,z(γn) − c(z)| ≤ sup

z∈TΩ

|c−
n,z(γn) − γnc(z)| + |c(z)||γn − 1| = Oa.co.(vn) (3.3)

and
sup
z∈TΩ

|c+
n,z(γn) − c(z)| = Oa.co.(vn). (3.4)

For ε > 0 we note

Tn(ε) =
{

sup
z∈TΩ

|cn,z(Jn(z)) − c(z)| ≤ εvn

}
,

and for all sequence γn ∈ (0, 1) with γn − 1 = O(vn),

S−
n (ε, γn) =

{
sup
z∈TΩ

|c−
n,z(γn) − c(z)| ≤ εvn

}
,
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S+
n (ε, γn) =

{
sup
z∈TΩ

|c+
n,z(γn) − c(z)| ≤ εvn

}
,

Sn(γn) =
{

c−
n,z(γn) ≤ cn,z(Jn(z)) ≤ c+

n,z(γn), ∀z ∈ TΩ
}

.

It is evident that, for all γn ∈ (0, 1) with γn − 1 = O(vn),
∀ε > 0, S−

n (ε, γn) ∩ S+
n (ε, γn) ∩ Sn(γn) ⊂ Tn(ε). (3.5)

Let Gn(γn) =
{
J−

n (γn, z) ≤ Jn(z) ≤ J+
n (γn, z), ∀z ∈ TΩ

}
, then (K0) implies that

Gn(γn) ⊂ Sn(γn) and from (3.5), we obtain

∀ε > 0, Tn(ε)c ⊂ S−
n (γn)c ∪ S+

n (γn)c ∪ Gn(γn)c,

and consequently

P
(

sup
z∈TΩ

|cn,z(Jn(z)) − c(z)| > εvn

)
≤ P

(
sup
z∈TΩ

|c−
n,z(γn, ε) − c(z)| > εvn

)
+ P

(
sup
z∈TΩ

|c+
n,z(γn, ε) − c(z)| > εvn

)
+ P

(
I{J−

n (γn,z)≤Jn(z)≤J+
n (γn,z), ∀z∈TΩ} = 0

)
.

Then, for some ε0 > 0
∞∑

n=1
P
(

sup
z∈TΩ

∣∣∣cn,z(Jn(z)) − c(z)
∣∣∣ > ε0vn

)
< ∞. (3.6)

�
Remark 3.2. We wish to present two results, similar to Lemma 3.1, and that could be
interesting for further purposes.

(i): Under the same conditions, the result stated in Lemma 3.1 holds by changing
all the almost complete convergence into convergence in probability.

(ii): Under the same conditions, the result stated in Lemma 3.1 holds by changing
all the Oa.co. into oa.co. .

The proof of (i) is the same as the one of Lemma 3.1, changing (3.2) into the fact that the
sequence involved in () tends to zero. The proof of (ii) is similar.

4. Main result
We start by reminding the uniform asymptotic properties of µ̂(z, x, t̂(z)) defined in (2.6).

The Theorem 4.1 defined bellow was proved by [2] in the special case when hL(z) = hL for
all z ∈ TF, but their proof can be followed line by line under (4.2)). This general condition
(4.2) will be a crucial preliminary tool for us.

Theorem 4.1. Under assumptions (A1)-(A8), if in addition, hL(z) in ( (2.6)) satisfies
lim

n→∞
(φz(Tn,k(z)) − φz(hL(z))) = 0, a.co. (4.1)

and
0 < ChL ≤ inf

z∈TF
hL(z) ≤ sup

z∈TF

hL(z) ≤ C ′hL < ∞, (4.2)

where hL → 0 (n → ∞) such that, for n large enough,
log2 n

nϕ(hL)
< ΨTF

( log n

n

)
<

nϕ(hL)
log n

, (4.3)
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and

0 < C <
nφ(hL)
log2 n

< C ′ < +∞. (4.4)

Then, we have

sup
z∈TF

∣∣∣µ̂(z, x, t̂(z)) − µ(z, x, t̂(z))
∣∣∣ = O(hβ

L) + Oa.co

(√√√√ΨTF( log n
n )

nϕ(hL)

)
. (4.5)

We can now state our main result, whose proof will be presented in Section 5.

Theorem 4.2. Under the assumptions (A1)-(A9), and for n large enough, we have

sup
z∈TF

∣∣∣µ̂kNN (z, x, t̂(z)) − µ(z, x, t̂(z))
∣∣∣ = O

(
φ−1

(
k

n

)β
)

+ Oa.co

(√
ΨTF( log n

n )
k

)
.

Remark 4.3. On the rates of convergence. First of all it is worth noting that, by taking
k of order nϕ(hL), the kNN estimate reaches the same rate of convergence as the kernel
estimate does (see Theorem 4.1). More importantly, to attest the quality of these rates,
it suffices to look at the case F = Rq to see that they are exactly matching the rate
(log n/n)b/(2b+q) which is optimal for q-dimensional functions (see [44]). Note also that,
for the exponential-type processes described before the rate of convergence may look quite
slow for unfamiliar people (of order (log n)−α for some α > 0) but this is true only when
using as "d" a standard norm; other kinds of d can be used to improve strongly these rates,
as discussed in ([25], Lemma 13.6).

5. Proofs of main result
Proof. Similar to the proof of ([32], Theorem 2), we must to investigate the conditions of
Lemma 3.1.
For that, we denote: TΩ = TF, Ai = Zi, Bi = Wi, G(t, (z, Ai)) = L(d(z, Ai)/t),
Jn(z) = Tn,k(z), cn,z(Tn,k(z)) = µ̂kNN (z, x, t̂(z)) and c(z) = µ(z, x, t̂(z)). We begin
by recalling that the estimate

µ̂N (z) = 1
nEL

(
h−1

L d (z, Z1)
) n∑

i=1
L
(
h−1

L d (z, Zi)
)

,

satisfies under the conditions of ([2], p. 11, Lemma A.1.)

sup
z∈TF

|µ̂1
N (z) − 1| = Oa.co

(√√√√ΨTF( log n
n )

nϕ(hL)

)
. (5.1)

Let γn ∈ (0, 1) be an increasing sequence such that γn − 1 = O(vn), where

vn = ϕ−1
(k

n

)β
+

√
ΨTF( log n

n )
k

.

Let hL = ϕ−1
(

k
n

)β
, we choose J−

n (γn, z) and J+
n (γn, z) such that

φz
(
J−

n (γn, z)
)

= φz(hL(z))γ1/2
n (5.2)

and
φz
(
J+

n (γn, z)
)

= φz(hL(z))γ−(1/2)
n . (5.3)
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Checking (K4) and (K5): we note that the local bandwidth J−
n (γn, z) satisfies (4.1), (4.2)

and (4.4), we have now

sup
z∈TF

|cn,z(J−
n (γn, z)) − c(z)| = Oa.co

(
ϕ−1

(k

n

)β
+

√
ΨTF( log n

n )
k

)
= Oa.co(vn).

Consequently, (K4) in Lemma 3.1 is valid. We use the same steps for J+
n (γn, z), we obtain

sup
z∈TF

|cn,z(J+
n (γn, z)) − c(z)| = Oa.co(vn).

Therefore (K5) is also correct.

We check (K1) and (K2): with (5.2) and (5.3), we have
φz(J−

n (γn, z)) ≤ φz(hL(z)) ≤ φz(J+
n (γn, z)). Thus, with (4.1) and the property of φz(.),

we have as a result

J−
n (γn, z) ≤ Tn,k(z) ≤ J+

n (γn, z), a.co.

and

I{J−
n (γn,z)≤Jn(z)≤J+

n (γn,z),∀z∈TΩ} → 1, a.co. as n → ∞.

Consequently, (K1) and (K2) in Lemma 3.1 are valid.

Checking (K3): Same as [32], ∀z ∈ TF, indicate

f∗(z, hL(z)) =: E
[
L
(d(z, z1)

hL(z)

)]
, H1 =: f∗(z, J−

n (γn, z))
f∗(z, J+

n (γn, z))
,

H2 =: µ̂1
N (z, J−

n (γn, z))
µ̂1

N (z, J+
n (γn, z))

− 1, H3 =: f∗(z, J−
n (γn, z))

f∗(z, J+
n (γn, z))

γn − 1.

After that, we come at

∣∣∣∣∣
n∑

i=1
L
( d(z, zi)

J−
n (γn, z)

)
n∑

i=1
L
( d(z, zi)

J+
n (γn, z)

) − γn

∣∣∣∣∣ ≤ |H1||H2| + |H1||H3|. (5.4)

With (A3), we get
sup
z∈TF

|H1| ≤ C. (5.5)

In addition, with (5.1), we have that

sup
z∈TF

|H2| ≤
sup
z∈TF

|µ̂1
N (z, J−

n (γn, z)) − 1| + sup
z∈TF

|µ̂1
N (z, J+

n (γn, z)) − 1|

inf
z∈TF

|µ̂1
N (z, J+

n (γn, z))|

= Oa.co

(√
ΨTF( log n

n )
k

)
.

(5.6)

Then, we use ([24], Lemma 1, p. 10) with (A2), and also the fact that

φz(J−
n (γn, z))/φz(J+

n (γn, z)) = γn,
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we get

sup
z∈TF

|H3| = O(ϕ(hL)hβ
L) = O

((√
γnϕ−1

(k

n

))β
)

. (5.7)

So, (K3) is checked because γn → 1 and because (5.4)-(5.5) and (5.6) imply that

sup
z∈TF

∣∣∣∣∣
n∑

i=1
L
( d(z, zi)

J−
n (γn, z)

)
n∑

i=1
L
( d(z, zi)

J+
n (γn, z)

) − γn

∣∣∣∣∣ = Oa.co(vn).

Note that (K0) is obviously satisfied because of (A3a), and that (K1) is also easily
satisfied by construction of J−

n (γn, z) and J+
n (γn, z). So, one can apply Lemma 3.1, and

(3.1) is precisely the result of Theorem 4.2. �

6. Simulated data application
This section aims to show the efficiency of the proposed estimator in terms of consis-

tency. The first direct use of the Theorem 4.2 is to predicting a functional time series
processes.

Let (Xt)t∈[0,b[ be a continuous-time real-valued random process. From the process Zt,

we may construct N functional random variables (Zi)i=1,...,N defined by
∀t ∈ [0, b] , Zi (t) = XN−1((i−1)b+c).

The predictor estimator of W is defined by Ŵ = µ̂kNN (z, x, t̂(z)) (ZN ) .
To do that, we consider the following functional nonparametric model

Wi = r (Zi) + εi for i = 1, . . . , n,

where the εi’s are generated independently according to a normal distribution with mean
0.

Let us now describe how our functional ergodic data are generated. Firstly, We use the
R-routine simul.far of far package in R software to generate the functional explanatory
variables (Zi)i=1,...,n . This routine simulates a functional autoregressive process white
Wiener noise.

For this simulation experiments, we have considered sinusoidal basis, with five functional
axis, of the continuous functions from [0, 1] to R. Recall that, it is shown in [34] that this
kind of process satisfies the ergodicity condition. The curves Zi’s are discretized in the
same grid composed by 100 points and are plotted in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

t

X
(t

)

Figure 1. A sample of 100 curves, for dρ = (0.45, 0.90, 0.34, 0.45).
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Secondly, the scalar response Wi is computed by considering the following operator

r (z) =
∫ 1

0

10
(1 + |z (t) |)

dt.

Our main goal is to compare our estimator (Robust Equivariant Estimator REE) θ̂(z)
with Robust Kernel Estimator (RKE) θ̃(z) introduced by [8], and the Classical Kernel
Estimator (CKE) presented by [25], where θ̂(z), θ̃(z) and m̂ (z) are define as following:

θ̂(z) is the zero with respect to x of

n∑
i=1

L

(
d (z, Zi)
Tn,k(z)

)
Γz

(
Wi − w

t̂ (z)

)
n∑

i=1
L

(
d (z, Zi)
Tn,k(z)

) = 0,

θ̃(z) is tknhe zero with respect to x of

n∑
i=1

L

(
d (z, Zi)
Tn,k(z)

)
Γz (Wi − w)

n∑
i=1

L

(
d (z, Zi)
Tn,k(z)

) = 0,

and m̂ (z) =
∑n

i=1 WiL
(

d(z,Zi)
Tn,k(z)

)
n∑

i=1
L

(
d (z, Zi)
Tn,k(z)

) .

The efficiency of the predictors is evaluated by the empirical Mean Squared Error (MSE)

MSE
θ̂

= n−1
n∑

i=1
(µ (Zi) − µ̂ (Zi))2 , MSEθ̃ = n−1

n∑
i=1

(
θ (Zi) − θ̃ (Zi)

)2

and

MSEm̂ = n−1
n∑

i=1
(θ (Zi) − m̂ (Zi))2 .

Through this simulation study, we chose the quadratic kernel L defined as
L(u) = 3

4
(
1 − u2) 1I[0,1](u). The used semi-metric is the first derivative of sample curves,

given by

d (Zi, Zj) =
√∫ (

Z ′
i(t) − Z ′

j(t)
)2

dt.
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Figure 2. Predictions of the three models.
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For this comparison study, we treat three estimators in the same conditions. The first
illustration concerns the MSE of θ̂ (z). Further we see from Figure 2 that the REE kNN
estimator is much more better than the CKE kNN and the RKE estimators. Moreover,
looking at both Figures, it appears clearly the MSE of REE kNN has dramatically changed
compared to the classical and robust kernel estimators. So REE kNN is much more
performance than the others. Furthermore, when the MSE error is taken into account,
the superiority of this model becomes even more apparent.

Now, we carry out 100 independent replication with n− samples(n = 200) of the same
datas for MSE and to display their distribution by means of a boxplot. Figure 3 shows
the boxplots of the MSE of the prediction values.

●
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0.6
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MSE comparision

Figure 3. MSE of the three models.

Thus, the MSE comparison for the three methods illustrated in Figure 3 prove that the
forecasting of REE kNN estimator is more accurate than the other methods.

Now, we will compare between kNN method and cross validation (CV) procedures in
the presence of the outlier. In what follows, we randomly split the 200-sample into two
parts: one is a training sample (Zi, Wi)100

i=1 which is used to model, and the other is a
testing sample (Zj , Wj)200

j=101 which is used to verify the prediction effect. On the one
hand, by the training sample, we can select the optimal parameter kopt for kNN kernel
and robust estimator, and the optimal parameter hopt for CV classical kernel and robust
estimator by the following CV procedures, respectively.

Concretely, we select kopt = arg mink CV1(k), where CV1(k) =
n∑

i=1

(
Wi − m̂(−i)(Zi)

)2
,

and

m̂(−i)(Z) =

n∑
j=1,j ̸=i

WjL

(
d (Zj , Z)
Tn,k(Z)

)
n∑

j=1,j ̸=i

L

(
d(Zj ; Z)
Tn,k(Z)

) ,

and the robust kNN one by kopt = arg mink CV2(k), where CV2(k) =
n∑

i=1

(
Wi − θ̂(−i)(Zi)

)2
,

and

θ̂(−i)(Z) = arg min
t

n∑
j=1,j ̸=i

Γz

(
Wi − w

t̂(z)

)
L

(
d (Zj , Z)
Tn,k(Z)

)
n∑

j=1,j ̸=i

L

(
d(Zj , Z)
Tn,k(Z)

) .
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Then the robust kernel estimator by kopt = arg mink CV3(k), where

CV3(k) =
n∑

i=1

(
Wi − θ̃(−i)(Zi)

)2
, and

θ̃(−i)(Z) = arg min
t

n∑
j=1,j ̸=i

Γz (Wi − x) L

(
d (Zj , Z)
Tn,k(Z)

)
n∑

j=1,j ̸=i

L

(
d(Zj , Z)
Tn,k(Z)

) .

Similarly, We adopt the selection rule, proposed by [25] where hopt = arg min
hL

CV (hL),

where CV (hL) =
∑n

i=1

(
Wi − m̂kernel

(−i) (Zi)
)2

, and

m̂kernel
(−i) (Z) =

n∑
j=1,j ̸=i

WjL

(
d (Zj , Z)

hL

)
∑n

j=1,j ̸=i L
(

d(Zj ,Z)
hL

)
with m̂kernel

(−i) (.) is the leave-one-out cross-validation (values of the estimator θ̂ (.) calculate
at Zi) (see [25] for more details).

The main feature of our approach is illustrated in the second case when we perturb
the data by introducing some outliers as indicated bellow. In this part, we simulated
data with three values of the multiplier MC = 0 or 5 or 20 (MC is the number of the
perturbed observations). In all six cases, we arrived at the same conclusion, usually, in the
presence of outliers, the robust regression shows better behavior than that of the classical
method. Even if the MSE of the both methods increases substantially with the number of
perturbed points and with value of multiplicative coefficient MC, it remains very low for
the robust kNN method. The results obtained in the Table 1 which shows the superiority
of the kNN method to that of the CV method, and the good behavior of our functional
forecasting procedure for the robust kNN method in presence of outliers.

Table 1. Comparison between the six methods in the presence of outliers.

MC CKE CV CKE kNN RKE CV RKE kNN REE CV REE kNN

0 0.3133 0.1856 0.3424 0.2585 0.1733 0.1251
5 1697.3769 2021.4049 247.2289 0.4144 147.8625 0.1350
20 20854.6054 23712.1086 775.2927 156.8678 271.5004 0.1758

7. Conclusion
The uniform kNN reliability approach is a smoothing alternative that allows for the

development of an adaptive estimator for a variety of statistical problems, including band-
width choice.

In our situation, furthermore, uniform consistency is not a straightforward extension of
the pointwise approach, as it necessitates the use of additional methods and techniques.
The assumption that the bandwidth parameter in the kNN method is a random variable
adds to the complexity of this problem.

In the situation of equivariant robustification results, the key innovation of this approach
is to estimate the regression function by mixing two essential statistical techniques: the
regression estimators for ergodic data when the scale parameter is unknown with the kNN
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method. This strategy allowed for the development of a new estimator that combines the
benefits of both methods.

Another unanswered concern is how to treat a more general case in which data are
generated from a functional alpha-mixing dependency and the scale parameter is unknown.
Precisely, we can obtain the uniform almost complete convergence of the same constructed
estimator under standard conditions allowing us to explore different structural axes of the
topic. We emphasize that, contrary to the usual case when the scale parameter is fixed, it
must be estimated, which makes it more difficult to establish the uniform almost complete
convergence of the estimator.

To summarize, the behavior of the developed estimator is unaffected by the number of
outliers in the data collection. In comparison to the classical kernel method, the mixture of
the kNN algorithm and the robust method allows for a reduction in the impact of outliers
in results.

Acknowledgment. The authors would like to thank the referee for his constructive
suggestions that have led to improve the presentation of this paper.
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