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A  STUDY  ON  A  LOD  METHODS  FOR  TWO-DIMENSIONAL  DIFFUSION  
EQUATION 
 
Mustafa  GÜLSU 

Department  of  Mathematics, University of  Muğla , MUĞLA 
Abstract: Finite-difference  techniques  based  on  Noye-Hayman formula  and  3-point  backward time  
centered  space (BTCS)  method  for  one  dimensional  diffusion  are  used  to  solve  the  two-dimensional  
time  dependent diffusion equation with  boundary  condition. In  these  cases  locally  one-dimensional 
(LOD)  techniques   are  used  to  extend  the  one-dimensional  techniques  to  solve  the  two-dimensional 
problem. The  results  of  numerical  testing  shows  that  these  schemes  uses  less  central  processor (CPU)  
time  than  the  fully  implicit  schemes. 
Key words: Finite difference, LOD, Noye-Hayman, BTCS. 

İKİ  BOYUTLU  DİFFUZYON  DENKLEMİ  İÇİN  LOD  METODU  ÜZERİNE  BİR  
ÇALIŞMA 

 
Özet: Bu  çalışmada   bir  boyutlu diffuzyon   denklemi  için    3-Nokta  Geri fark   yöntemi  ve  Noye-
Hayman yöntemini  temel  alan  sonlu  fark  teknikleri ,  iki  boyutlu  zaman  bağımlı   diffuzyon  denklemini  
çözmek  için  kullanıldı. Yerel bir  boyut(LOD)  yöntemi  iki  boyutlu  diffuzyon  denklemini  çözmek için  
genişletildi. Nümerik sonuçlar  ile  bu  yöntemin kapalı yöntemlere  göre  daha  az  zaman (CPU)  harcadığı  
gösterildi. 
Anahtar Kelimeler: Sonlu farklar,Yerel bir boyut yöntemi, Geri fark  yöntemi, Noye-Hayman 
yöntemi.   

1. Introduction 
The  constant-coefficient   two-dimensional  diffusion  equation, namely 
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1.1                                                                               
 where   xα    and  yα    are  the  coefficients  of  diffusion  in  the  x  and  y  directions  

respectively,  has  many  applications  to  practical  problems, including  the  flow  of  
groundwater, and  the  diffusion  of  heat  through  solids. For  many  years  the  standart  explicit  
two-level  finite  difference  method  for  solving  (1.1)  was  the  classical  explicit  forward-time  
centred-space   method  described  in  Noye,B.J.,  Hayman,K.J.[1] 
Recent  improvements  include  the  efficient  alternating  group  explicit  method  of  Dehghan M. 
[2]. The  present  article  investigate   the  development  of  a   fourth-order  accurate  two-level  
explicit  finite difference  method  for  solving (1.1)  subject  to  Drichlet  boundary  condition. In  
particular  locally  one  dimensional  (LOD)  methods  and  backward  time  centered  space  
methods  are  investigated. 
For  convenience,  a  method  which  uses  a  computational  molecule  that  involves  m1  grid  
points  from  time  level (n+1)  and  m2  grid  points  from  time  level  n  is  denoted  as  an  
(m1,m2)  methods. Also,  the  grid  point  (i∆x,j∆y,n∆t)  i=0,1,2,...I, j=0,1,2,...,J,  n=0,1,2,...K  
where   ∆x=M/I,  ∆y=N/J,  ∆t=T/K,  is  referred  to  as  the  (i,j,n) grid  point. At  this  point  the  
partial  differential  equation (PDE)  (1.1)  is  discretised  to  give  the  aproximating  finite  
difference  equation (FDE) 
 

∑∑ ++
+ =

l m

n
mjliml

n
ji uau ,,

1
,                                                                   (1.2) 

The  coefficient  al,m  are  functions  of  the  non dimensional  diffusion  numbers 
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Theoratical  comparisons  of  the  order  of  convergence  of  various  finite-difference  methods  
are  based  on  the  leading  error  terms  in  their  modified  equivalent  partial  differential  
equations (MEPDE)  which  have  the  general  form   
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 where  the  Cp,q  are  coefficients  of  errors  term. Given  that  (1.2)  is  consistent  with  the  two-
dimensional  diffusion  equation (1.1)  which  requires  that 

0,0,, =→∆∆∆ qptyx CLim        for   p 0≥ ,                                                                   (1.4) 

the  error  coefficient  Cp,q  in  the  MEPDE  can  be  written  in  the  form; 
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(1.5)                    
It  can  be  seen  from  (1.3)  that  the  error  term  associated  with  the  coefficients  Cp,q  are  of  
the  order (p-2)  in   ∆x  and  ∆y. The  order  of  accuracy  of  an  FDE  which  approximately  
solves (1.1)  is  the  smallest  order  of  any  error  term  present  in  the  corresponding  MEPDE. 
Hence  if  the  leading  error  term  in  the  MEPDE  is  CP,q  for  any  q=0,1,2,...,P  then  the  FDE  
is  order  (P-2)  accurate. 
 
In  the  following  the  time-stepping  stability  of  the  FDE (1.2)  is  established  by  means  of  
the  von Neumann  method. 
In  order  to  verify  theoretical  predictions, numerical  test  were  carried  out  on  a  two  
dimensional  time-dependent  diffusion  equation: 
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u(x,y,0)=f(x) =  exp(x+y) ,        1,0 ≤≤ yx                                                           
u(0,y,t)=g0(y,t)= exp(y+2t) ,      0 10, ≤≤≤≤ yTt  
u(1,y,t)= g1(y,t)= exp(1+y+2t),  0 10, ≤≤≤≤ yTt  (1.7) 
u(x,1,t)= h1(x,t)= exp(1+x+2t),  0 10, ≤≤≤≤ xTt  
u(x,0,t)= h0(x,t)= exp(x+2t),      0 10, ≤≤≤≤ xTt  

2. Lod  Methods 
Partial Differential  Equation  (1.1)  can  be  solved  by  splitting  it  into  two  one-dimensional  
equation 
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rather   than  discretising  the  complete  two-dimensional  diffusion  equation  to  give  an  
approximating  finite-difference  equation  based  on  a  two-dimensional  computational  
molecule. Each  of  these  equations  is  then  solved  over  half  of  the  time  step  used  for  the  
complete  two-dimensional  equation  using  techniques  for   the  one dimensional  problems. This  
is  advantageous  since  accurate  and  stable  techniques  for  one  -dimensional  diffusion  are  
much  easier  to  develop  and  use  than  single  step  methods  for  two-dimensional  diffusion  
equation. 
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Commencing  with  the  initial  condition  for  each  n=0,1,2,...,K  the  process  of  stepping  from  
time  tn  to  tn+1  is  carried  out  in  two  stages. In  the  first  stage , in  advancing  from  tn=nk  to  

the  time  )
2
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is  solved  numerically  at  the  spatial  points (xi,yj) , i=1,2,...,I-1  for  each  j=0,1,...,J. 
Commencing  with  previously  computed  values  n

jiu ,   i,j=1,2,...,M-1  and  boundary  values: 
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is  solved  numericaly  at  the  spatial  points (xi,yj) , commencing  with  initial  values   
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i=1,2,...,I-1. Not  that  the  boundary  conditions  (1.7)  are  not  used  at  the  intermediate  time  

2
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t . This  is  because  in  the  time  interval  tn  to  

2
1

+n
t  ,  the  process  of  diffusion  in  the  x-

direction  has  been  applied  with  a  diffusion  coefficient  which  is  twice  that  in  the  original  
equation  (1.1)  as  can  be  seen  by  rearranging  in  the  form                                               
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Not  that  the  values  of  2
1

,
+n

jiu    i=1,2,...,I , j=1,2,...,J  are  not  approximate  solutions  to  the  

original  problem. 
Let’s  running  the  LOD  process  using  Noye-Hayman  formula  for  which the  correct  two-
stage  procedure  is: 
At  the  half-time  level  it  is  necessary  to  compute  values  at  grid  points  next  to  the  
boundary  and  on  the  boundary  using  the  one-dimensional  diffusion  procedure  with  the  
appropriate  diffusion  coefficient. The  values  for  the  two-dimensional  diffusion   problem  
should  not  be  used  at  the  grid  points  on  the  boundary  at  intermediate  times. 
With  x –sweeps  of  this  formula  used  to  solve  (2.1)  in  the  first  half  time  step  when  
proceeding  from  the  time  tn  to  tn+1  the  formula  used  with  i=2,3,...,I-2  is 
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for  each  j=0,1,..,J. 

The  problem  of  finding  values  of   2
1

,1
+n

ju     and  2
1

,1
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−
n

jIu    which  can  not  be  found  using  
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(2.6)  can  be  find  by  using  a  re-arrangement  of  the  unconditionally  stable  inverted  version  
of  (2.6)  namely 
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which  is  obtained  by  setting  -∆t  for  ∆t  in  (2.6). Putting  i=3  and  re-arranging  gives 
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This  gives  values  of  2
1

,1
+n

ju    for  all  j=0,1,...,J  because  all  the  values  on  its  right  hand  

side  are  knownn. The  values  of   2
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jIu    may  be  calculated  using  a  similar  formula  

obtained  by  setting  i=I-3  in  (2.7).  
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When  computing  values  of  1
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jiu    from  the  values  of  2
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jiu   in  the  y-sweep  used  in  

the  second  stage ,  the  formula  used  with  j=2,3,...,J-2   is: 
                     

))(32(
3

2
))(16(

12
2
1

1,2
1

1,2
1

2,2
1

2,
1

,
+

+
+

−
+

+
+

−
+ +−++−= n

ji
n

jiy
yn

ji
n

jiy
yn

ji uur
r

uur
r

u  

                                 2
1

,
2 )652(

2
1 ++−+ n

jiyy urr                               (2.10)   

for  each  i=1,2,...,I-1. As  in  the  first  sweep ,  values  at  gridpoints  adjacent  to  the  boundaries  
y=0,1  are  not  found and  supplementary  equations  must  be  used. The  inverted  formula  
corresponding  to  (2.9)  is  again  used  which , with  j=2  gives  on  re-arrangement  
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for  each  j=1,2,...,J-1. All  the  values  on  the  right  hand  side  of  (2.10)  are  known  and  
include  the  known  boundary  values  1

0,
+n

iu    which  apply  at  the  end  of  the  complete  

procedure  which  involves  diffusion  in  both  x  and  y  directions. The  values  of  1
1,

+
−

n
Jiu   are  

found  using  a  similar  formula. 
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Because  known  boundary   values  at  the  end  of  a  fractional  step    can  be  used  only  for  the  
second  half-time  step , whereas  at  the  intermediate  level  they  must  be  computed  using  an  
approximating  finite-difference  formula, the  order  of  x-  and  y-  sweeps  is  reversed  for  
alternate  time  steps. 
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This  procedure  is  stable,  in 

 
   
 
The  numerical  results  obtain
Figure1. The  slopes  of  the l
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procedure  is  unconditionally  von  Neumann  stable  and  solvable. 
In  the  x-sweep  the  following  formula  is  used , with  i=1,2,...,I-1  for  each  j=1,2,...,J-1: 
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The  resulting  system  is  diagonally  dominant , which  guarantees  that  it  is  solvable. In  
Table1  the  results  are  shown  for  n

jiu ,    with  ∆x=∆y=h=0.05  and  r=1/2  at  T=1.0  using  3-

point  BTCS  and  the  Noye-Hayman formula with  given  boundary  values  everywhere.  
When the  absolute  value  of  the  error; 
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at  the  point (0.5,0.5) at  time  T=1.0  was  graphed  against  h  on  a  logarithmic  scale  for  
various  of  r  it  was  found  that  the  slope  of  lines  was  always  close  to  2  for  3-point  BTCS  
formula. These  results  illustrate  the  theoretical  orders  of  accuracy  evident  from  the  

modified  equivalent  
equation. 
The  numerical  results  
obtained  with  the  fourth-
order  one dimensional 
equation  are  shown  in  
Figure1. The  slopes  of  the  
lines  of  best  fit  to  the  
results  are  very  close  to  4  
for  each  r. These  results  
indicate  that  this  fourth-
order  technique  is  much  
more  accurate  then  the  
second-order  LOD  method  
based  on  the  BTCS  
formula. For  example  with  
r=1/2  and  ∆x=0.5  the  
error  produced  by  the  

second –order  method  was  about   10-4   while  that  produced  by  the  fourth-order  technique  
was  about  10-7. 
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Figure1. Relation between  error  u  and  gridspacing for Noye-Hayman Method
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Figure 2.  Relation  between  error  u  and  gridspacing  for  3-point  
BTCS method 
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Table1.  Results  for  u  with  T=1.0 , h=0.05, r=1/2 

x y NH-Method BTCS  Method NH-  Error  BTCS -Error Analitical 
Solutions 

0.1 0.1 9.025012169 9.0248130 0.00000133 0.00020 9.025013499 
0.2 0.2 11.02317240 11.022476 0.00000398 0.00070 11.02317638 

0.3 0.3 13.46373102 13.461738 0.00000701 0.00100 13.46373804 

0.4 0.4 16.44463704 16.442647 0.00000973 0.00200 16.44464777 

0.5 0.5 20.08553577 20.093243 0.00000115 0.00200 20.08553692 

0.6 0.6 24.53252900 24.530530 0.00000120 0.00200 24.53253020 

0.7 0.7 29.96409897 29.962100 0.00000108 0.00200 29.96410005 

0.8 0.8 36.59822730 36.597234 0.00000714 0.00100 36.59823444 

0.9 0.9 44.70118088 44.700532 0.00000361 0.00050 44.70118449 

Overall, it  can  be  seen  that  LOD  techniques  provide  an  effective  solution  to  the  two-
dimensional  problem. However , it  must  be kept  in  mind  that  proper  treatment  is  required  
with  the  LOD  procedure  to  obtain  the  correct  values  to  be  used  on  the  boundary  at  
intermediate  time  levels. 
 
 

4. Conclusion 
In  this  paper time-split  finite  difference  method  have  been  used  to solve  the  two-
dimensional  constant  coefficient  diffusion  equation  with  given  boundary  values. Using  the  
Noye-Hayman   method  for  one-dimensional  diffusion  equation  in  a  LOD  procedure  with  
special  treatment  on  the  boundaries  at  the  intermediate  time  level  gave  fourth-order  
accuracy. Without  the  special  boundary  treatment  at  the  intermediate  time  levels high-order  
methods  used  at  interior  grid  points  in  an  LOD  procedure  only  produce  low-order  results. 
A comparison with the implicit  scheme  for  the  test  problem  clearly  demonstrates that  this  
technique are  computationally  superior. The numerical  test  obtained by  using these methods 
give acceptable results. Also  BTCS  procedure    produced  second-order  results. It  used  more  
CPU  time  than  the  fourth-order  LOD  procedure  to  get  results  of  the  same  accuracy. 
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