Erc. Univ. Fen Bil. Enst. Derg., 16 (1-2): 77-83, 2000

GEOMETRY OF THE PEDAL OF A SURFACE
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Abstract: Some characteristic properties of the pedal of a surface with respect to an origin point in Euclidean space E ? have
been investigated. The results about the Weingarten mapping and fundamental forms of the pedal have been given.
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BiR YUZEYIN PEDALININ GEOMETRIS]

Ozet: Euclidean uzay E 3 de bir yiizeyin, bir orijine gbre pedalinin bazi karakteristik dzellikleri incelendi. Pedalin Weingarten
doniisim@ ve temel formlart hakkinda sonuglar verildi.

Anahtar Kelimeler: Pedal, pedal dontisimti, yizey pedali.

Introduction

Let M be a smooth immersed regular surface in E 3, which atso connected and oriented. We pick an origin O,

which does not lie on any tangent plane of M. Hasanis and Koutroufiotis {1] were given the pedal of M with respect to

the origin O by virtue of the smooth transformation 7: M — M » and obtained some characteristic properties of M
giving the condition of being a regular surface of M,,. They have also decomposed the transformation 7T as
m=agop,where and p are inversion and reciprocal transformations, respectively, and defined the optical system
{ M, O} calling the surface M to be a reflector and choosing the origin O as a light source. Further more, they defined,
at least locally, a2 smooth mapping t of some part of the unit sphere with centre ¢ into itself and called this T as the
characteristic mapping of { M, O} » and shown that if the characteristic mapping 1 of M is diffeomorphism then ' js the

characteristic mapping of a reflector M'. Hence by virtue of t it has been defined conjugate M of M and obtained the

relationship between the curvatures of the reflectors M and M.
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Recently, Georgiou et al [2] have gencralised some properties of the pedal of a surface in E toa pedal of a
hypersurface in E ™. They have also investigated the system {M" ; O} taking an ovaloid M" of E™" in place of the

hypersurface M.

Basic Concepts

Let A be a smooth immersed regular connected and oriented surface in E 3. Let (u1 ,uz) be a local coordinate

system on M and X = x{ul,uz) be the parametric representation of M, where x is a position vector of M. The unit

normal of M at a point P of M is defined as
HAE

N =202
lesz

where X, = i = 1,2. Differentiable distance and support functions can be defined as ¥ = |ad and f = —(x, N}

ox
ou'’
on M, respectively, where { , ) is the Euclidean inner product. Let V be the standard connection of E>, and V be the

induced connection on M. The equations of Gauss and Weingarten are

VXY=VXY+(AX,Y), VXN':—AX,

respectively, where X, Y are vector fields tangent to M and 4 is the Weingarten mapping or the shape operator of M,

Now, let T < IR be an open interval to be 0 € I. Let a I — M be a differentiable curve satisfiying the

a
condition o{0) = P and —Ei p = Xp. The shape operator 4 of M along a is defined as
d(Noa)
AX=——7"7
dt

(see for example, [3]). If X and Y are two vector fields on M, the first, second and third fundamental forms of M are

]( X, Y) =(X, Y}, "( X,Y) = (AX,Y) and m( X, Y) = (AX, AY), respectively. Let k;'s be the eigen values of 4,

1
then the Gauss and mean curvatures of M are K = k,k, and H = E(kl + kz), respectively.

Definition. The pedal M, with respect to the origin point O of a oriented surface Min E ? is the surface defined

by position vector X" = — f N with regard to O, and orientation of this surface is an orientation inherited from M
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through the pedal transformation 7: M — M, . As being P is a point in M, the point (P} is the foot of the
perpendicutar through O to the tangent plane of M at P. Thus M, is the locus of the points of intersection of tangent

planes of M and the perpendiculars through O to these planes [1].
Suppose now that there exists a point O with the property that it lies on no tangent plane of M. Such a point will
henceforth be called an admissible origin for M. If we choose such an O as origin, the corresponding support function

clearly never vanishes. In this study we choose an orientation of M to be f>0.

Proposition 1. M, is a regular surface if and only if the following two statements hold:
i) The Gauss curvature K of M is different from zero everywhere.
1) The origin O is admissible for M {1].

From now on, when we speak of the pedal M, , we shall tacitly assume that it is regular.

Proposition 2. The unit normal N™ of M, at the point 7 ( P) is given by
sgn K
N”:—grlw(x+2fN), (1)

where x, N ete. are computed at P [1].
The Shape Operator of the Pedal

Let A be a smooth regular, oriented and connected surface and O be an admissible origin for M. Ifaisa

differentiable curve on M, then & o« is a differentiable curve on Mﬂ.

Proposition 3. Let M be a smooth regular oriented and connected surface and O be an admissible origin for M. As

being M,, is the pedal of A with respect to O, the following two statements hold:

y de(X)=~(Xf)N+fAX, dn(X)ex(M,),

iy A™(dz(X)) Sg‘r‘K x—<x;zx> N7 —é?ﬂd:z()c),

where X is the vector field tangent to M, A and A" are shape operators of M and M_, respectively.
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da

Proof. (i) Let o be differentiable curve on M such that o(0) = P and _E = X,. Thus, we obtain

ar(X )= 5 #(a () )
2Ly, , - r) 2,

d t dN,
since ——"—_f(a( )) = a(”f and "

dt

g - e

we have
dn(X)=(Xf)N+ f AX.

(if) It is known that

z dN:{a(t))
A (d;r(X)):—T. (3)

Therefore, from (1) the unit normal vector of M at the point 77 (c(f)) is

N* (a(t)+2f(a(t)) alt))

l()l

In this case, the expression (3) is obtained as

dla(1)]

i 1 da(t) g 2 df{alf)
A (dﬂ( X)) =sgn fa(f)‘ dt - fa(t)lz a(t)+la(t}f dt Na{f)

(4)

N, 2 da(t)] |
| If(a(f ) dt la(t)lz dt f(a(ﬂ) Na{t) J

Here

da(t)] (), X)
at  Jele) 634

Since every points of M is on a parameter curve as being x is the position vector of M, we can take x in place of a( t) and

rin place of |af)|. Substitution of these with (5) in (4) leads to

A™{dr(X sgnl([ X-<x’X> %(Xf)N—%fAX—2<x X)

fN} (6)
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: : X 2 2 2
Using <er2;¢+ LSRN K%;?N”and S(X)N=7 F AX == dn(X) wetave

A (dn(X)) = 55‘:1( X - %zx) N" - 25%_« dn( X).

Corollary 1. If the position vector of a point P of M is in the direction of the unit normal at this point, the
following two statements hold:
y dr(X) = f AX,

-2fk

iy A"(dz(X))=sgnkK ___ﬁcf

where X is the principal vector and % is the principal curvature corresponding to X.

dr( X),

Proof. (i) Since the support function of M is f =—{x, N} and by hypothesis, it is clearly seen that X/=0.

Therefore, from Proposition 3 (i)

dn(X) = f AX.
(ii) If X is a principal vector and k is the principal curvature corresponding to X, then
AX = kX (7)
and from (7)
1
X == dz(X). 8
Tk dr( X) (8)

Using the hypothesis of the Corollary 1 and Proposition 3 (if), we obtain
sgn K X 2sgnK
r r

A"(dn(X)) = dn(X). (9)

Substitution of (8) in (9), (9) becomes
1-2fk
A™(dn(X)) =sgnK~ Fhr kf dn( X).

Thus, the proof is completed.

We conclude from Corollary 1 (ii) that the principal curvature k” corresponding to d7{ X) at the point 7{ P) of
M _is

3
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1
Corollary 2. Let us denote the third fundamental form of M by “ and i” the first fundamental form of M,

there is a relationship between these two forms as follows:
" (an(X).an(1)) = (xr)(17) + £ |(x.7),

where X and ¥ are vector field tangent to M.

Proof. It can be written
"(dn(X),dn(Y)) = (dn(X),dn{Y)).

Considering Proposition 3 (¢) with this the proof is clear.

Corollary 3. The second fundamental form of M can be written as a linear combination of the first and second

fundamental forms of M, .

Proof. The second fundamental form of M is

| *(dn( X),dn(¥)) = (A" (dn( X)), dn(Y)),

from Proposition 3

" (anx),an(n) = B (1, dnl) -

Sg“KfUXY 2SgnKl “(dnl X),dn(1)),

2L anl X))

with a small manipulation it is written as the following simplified form

1_2.x AP
f’=f| +SgnK};H

which completes the proof.

Theorem 1. The pedal transformation 7: M — M - Preserves the asymptotic vector X on M if and only if
dr{ X) is conjugate to each vector of TM (ﬂ'(P)) .
T

Proof. Let 7z preserve the asymptotic vector X on M, i.e., (AX, X) =0 implies (4" (df[(X)),th( X)=0.

In this case from Proposition 3 (i)
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%(dn(X),X)-sgnK%(dﬂ(X),dﬁ(XD=0- (10)

The first term on the left hand side of this equation is equal to zero, since (d7{ X'), X) = 0. So, from equation (10) we

obtain (d{X),dn(X))=0 which implics d7z(X)=0. Thus, A”(dir( X )) =0, As a result of this, we obtain

(A”(dlr(X)), dn(¥)) =0 for each element dz(¥) of TM (fr(P)) . This means that d7{_X) is conjugate to
Fia

each vector of T’ M, (II (P )) :

Conversely, let dn{X) be conjugate to each vector of TM (ﬂ‘(P)) ie., for each element dn{l) of
T

TMﬂ (” (P ))

(A™(dn(X)},dn()y=0. (11)
Equation (11) is also satisfied by taking d7{ X) in place of dz{¥’) . Thus, equation (11) becomes

(47 (dn'( X )), dn( X)) = 0 which is meant to be the asymptotic direction of d7{.X).
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