SISTEMLERin MODELLENMESiNDE ARMA MODEL DERECESi
SEçiM KRiTERLERiNIN İNCELENMESi

Şaban Özer¹, Ahmet Kaplan²
1. Elektronik Mühendisliği Bölümü Ercies Üniversitesi, 38039 Kayseri, Türkiye; 2. Uçak Elektronği Bölümü
Sivil Havacılık MYO, Ercies Üniversitesi, 38039 Kayseri, Türkiye

Özet: ARMA modellemeye dayalı parametre tahmin yöntemlerinde sıkılaa gerek duyulan model derecesinin
tespiti konusunu incelenmiştir. AR model yapısına uygulanın model derecesi seçim kriterleri ARMA yapısına da
uygulanmış ve kriterlerin çeşitli derecelerdeki sistemler üzerindeki performansı test edilmiştir. Ayrıca kriter
fonksiyonlarında derecelerin toplam şeklinde uygulama yerine çarpım ifadesi kullanılmasının kriter
performanslarını artırdığı gözlemlenmiştir.

INVESTIGATION OF ARMA MODEL ORDER SELECTION CRITERIA FOR SYSTEM
IDENTIFICATION

Abstract: The estimation of the ARMA model order is discussed. The model order is a priori knowledge for most of the
ARMA parameter estimation algorithms. The model order selection criteria, used in the AR models, are applied to ARMA test
model structures and their performances are evaluated. Moreover, it is observed that the product of AR and MA orders in the
criteria functions gives better results than the sum of the orders.

Giriş

AR (AutoRegressive) modelleme teknikleri sadece kutuplara sahip olan sistemlerin modellenmesinde
kullanılır. Ancak, fiziksel sistemlerin çoğu hem kutuplara hem de sıfırlara sahip olduğundan dolayı AR modelleme
technikleri bu tür fiziksel sistemlerin modellenmesinde yetersiz kalır. Bu sebepten dolayı, kutup ve sıfırlara sahip
sistemlerin matematiksel modellenmesi için ARMA (AutoRegressive Moving Average) modelleme yöntemleri
geliştirilmiştir. Ancak, ARMA model parametrelerinin tahmin edilmesinde kullanılan literatürdeki metotların
çoğunun model derecesinin bilindiği kabul edilmiştir. Model derecesinin bilinmediği durumlarda, bu metotlar doğru
sonuç vermemektedirler [1]. Bu yüzden doğru model derecesi seçimi için çeşitli kriter formüllasyonları literatürde
sunulmuştur [2]. Bu çalışmada literatürde mevcut kriterlerden Akaike Bilgi Kriteri (Akaike Information Criteria,
AIC) [3], Nihai Öngörü Hatası (Final Prediction Error, FPE) [4], Minimum Tanımlama Uzunluğu, Minimum
derecelerinin toplam yerine bunların çarpımı kullanılmak suretiyle daha iyi sonuçlar elde edilmiştir.
Model Derecesi Seçim Kriterleri

ARMA modellemede, çıkış dizisi \(x[n] \) aşağıdaki şekilde ifade edilir:

\[
x[n] = -\sum_{k=1}^{p} a_k x[n-k] + \sum_{k=0}^{q} b_k u[n-k]
\] \((1) \)

Burada, \(u[n] \) giriş dizisi, \(p \) ve \(q \) sırasıyla, AR ve MA model derecesini belirter.

Eşitlik (1)'de verilen \(a_k \) ve \(b_k \) model parametrelerini bulmak için çeşitli yöntemler vardır [7]. Bu tahmin yöntemlerinin çoğu model derecesinin bilindiği varsayılmasızdır. ARMA model yapısı iki model derecesine sahip olduğundan, hem AR, hem de MA model derecelerinin en uygun değerlerinin elde edilmesi gerekmektedir [8]. Derece seçimi için çeşitli kriterler vardır ve bu kriterlerin tamamı, model derecesinin ve bu dereceye ait model varyansının bir fonksiyonudur. Bunlar,

Akaike Bilgi Kriteri:

\[
\text{AIC}(p,q) = N \log(\hat{\rho}_{p,q}) + 2(p+q)
\] \((2) \)

Nihai Öngörü Hatası:

\[
\text{FPE}(p,q) = \frac{N + (p+q) + 1}{N - (p+q) - 1} \hat{\rho}_{p,q}
\] \((3) \)

Minimum Tanımlama Uzunluğu:

\[
\text{MDL}(p,q) = N \log(\hat{\rho}_{p,q}) + (p+q) \log(p+q)
\] \((4) \)

Rissanen Kriteri:

\[
\text{RIS}(p,q) = N \log(\hat{\rho}_{p,q}) + (p+q) \log(N)
\] \((5) \)

şeklinde dir. Kriter fonksiyonlarında \(N \); verinin boyunu, \(p \); AR model derecesini, \(q \); MA model derecesini ve \(\hat{\rho}_{p,q} \) de \(p \). AR, \(q \). MA derecesine ait model varyansını gösterir.

Eğer sistem model derecesi bilinmiyorsa değişik model derecelerine ait model varyans değerleri bulunup yukarıdaki kriterlerden herhangi birine ait kriter fonksiyonu elde edilir ve bu fonksiyonun minimum değerindeki model derecesi seçilir.
Simülasyon

Kriterlerin performanslarını test etmek amacıyla üç farklı yapıda model üzerinde çalışılmıştır. Uygulanan test modellerine ait eşitlikler aşağıdaki verilmiştir.

a) ARMA test modeli \((p=5, q=2)\):

\[
x[n] = 0.1899x[n-1] + 0.1183x[n-2] - 0.0821x[n-3] + 0.4957x[n-4] + 0.1315x[n-5] + 1.4400u[n] + -0.4160u[n-1] + 1.0000u[n-2]
\]

\((6)\)

b) ARMA test modeli \((p=3, q=3)\):

\[
x[n] = 0.1350x[n-1] - 0.1560x[n-2] - 0.6780x[n-3] + 2.3543u[n] - 1.0706u[n-1] + 1.3100u[n-2] + 0.7590u[n-3]
\]

\((7)\)

c) ARMA test modeli \((p=4, q=6)\):

\[
x[n] = 0.7610x[n-1] - 0.6670x[n-2] - 0.5450x[n-3] + 0.1550x[n-4] + 2.4330u[n] + 0.2180u[n-1] - 0.8760u[n-2] + 0.5470u[n-3] - 0.2740u[n-4] + 0.4410u[n-5] + 0.1460u[n-6]
\]

\((8)\)

ARMA yöntemlerini test etmek amacıyla, her iki model derecesinin 1'den 10'a kadar değişen değerleri için her yöntemde ait model parametreleri bulunmaktadır. Modele giris olarak

\[
u(t) = PRBS[e(t)] = \begin{cases} 1 & e(t) > 0 \\ 0 & e(t) = 0 \\ -1 & e(t) < 0 \end{cases}
\]

\((9)\)

ile verilen Sözde Rasgele İkili Dizi (Pseudo Random Binary Sequence, PRBS) işaret uygulanmıştır. Burada, e(t) işaretsi sifir ortalama ve birim varyanslı beyaz gürültü işaretidir. 10 ayrı beyaz gürültü dizisi ve bunlardan üretilen PRBS kullanılarak, 10 farklı çıkış işaret üstü dizisi elde edilmiştir. Veri uzunluğunun performansa etkinini test etmek için, 100, 500 ve 1000 adet veri içeren çıkış işaretleri kullanılmıştır. Modellere ait kutup-sifir grafikleri Şekil 1'de gösterilmiştir. ARMA Model derecelerini tespit ederen iki boyutlu seçim kriterleri kullanılmıştır. Bu kriter formüllerinde model derecesinin çarpımı ve toplamı durumlarında farklı en uygun derece değerleri bulunmaktadır. Kriterlerin bulunduğu en uygun dereceleri gösterimi Çizelge 1'de verilmiştir. Çizelgeden de görülebileceği gibi, p,q kullanılarak elde edilen sonuçlar, p+q sonuçlarına göre gerçek model derecesine daha yakındır.
Şekil 1. ARMA Test modellerine ait kutup-sifir grafikleri: (a) 5. AR, 2. MA derecesi, (b) 3. AR, 3. MA derecesi, (c) 4. AR, 6. MA derecesi.
Çizelge 1. ARMA test sistemlerinin en uygun model derecesi seçimi sonuçları: (a) Model derecelerinin çarpımı (p.q) kullanılarak bulunan değerler, (b) Model derecelerinin toplamı (p+q) kullanılarak bulunan değerler.

<table>
<thead>
<tr>
<th>(p . q)</th>
<th>Kriter</th>
<th>AIC</th>
<th>MDL</th>
<th>FPE</th>
<th>RIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Veri boyu</td>
<td>100</td>
<td>500</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>ARMA 3,3</td>
<td>AR(p)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ARMA 4,6</td>
<td>AR(p)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>ARMA 5,2</td>
<td>AR(p)</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>(p+q)</th>
<th>Kriter</th>
<th>AIC</th>
<th>MDL</th>
<th>FPE</th>
<th>RIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Veri boyu</td>
<td>100</td>
<td>500</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>ARMA 3,3</td>
<td>AR(p)</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>ARMA 4,6</td>
<td>AR(p)</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>ARMA 5,2</td>
<td>AR(p)</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MA(q)</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

(b)

Sonuçlar

ARMA model derecesi seçim kriter formüllerindeki model derecesinin toplamı ifadesi, model derecesinin çarpımı olarak alındığında gerçek model dereceleri daha doğru elde edilmektedir. Bu durum, özellikle (p=3,q=3) dereceli testte, derece çarpımı (p.q) kullanan bütün kriterler doğru sonucu bulması ve veri boyu 1000 olarak seçilildiğinde bütün kriterlerin doğru dereceleri elde etmesiyle açıkça gözükümektedir. Sonuç olarak, model derecesi seçim kriter formüllerindeki model derecelerinin toplamı ifadesi çarpımı şekline dönüştüğünde sonuçlar daha iyi elde edilmektedir.

Kaynaklar

