AN APPLICATION OF DEGREE THEORY II

İlhan ÖZTÜRK

Erciyes University, Kayseri Vocational College, 38039, Kayseri, Turkey e-mail: ozturki@erciyes.edu.tr

Abstract: We calculate the degree of some functions.

DERECE TEORISININ UYGULAMASI II

Özet: Bazı fonksiyonların dereceleri hesaplanmıştır.

Introduction

Let $\Omega \subset R^n$ open and bounded in R^n and $f:\Omega \to R^m$. Recall that, f is said to smooth if there exists an open set $U \supset \Omega$ in R^n and a function $F:U \to R^m$ such that if $F = \left(F_1,F_2,...;F_m\right)$, then F_k has partial derivates of all orders for $i \le k \le m$ and $F|_{\Omega} = f$, where $F|_{\Omega}$ is the restriction of F to Ω [2]. Let $\overline{\Omega}$ and $\partial \Omega$ denote the closure and the boundary of Ω , respectively [2]. $B_r(x_0) = \left\{x \in R^n : \|x - x_0\| < r \right\}$ denotes open ball of center x_0 and radius r > 0, where $\|x\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$.

Definition 1. Let $f:\Omega\subseteq R^n\to R^m$ be smooth. Then $q\in R^m$ is called a regular value of f if $x\in f^{-1}(q)$ imlies that the matrix

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

has rank m ($(m \le n)$. (Otherwise, q is called a critical value of f) [2].

Note. If $q \in R^n$ is a regular value of f with $q \notin f(\partial \Omega)$, then $f^{-1}(q)$ is a finite set [1].

Definition 2. Let A be a finite set and card A denote the Cardinality of A.

$$f^{-1}(q)^+ = \left\{x \in f^{-1}(q) : \det DF(x) > 0 \right. \text{, and } f^{-1}(q)^- = \left\{x \in f^{-1}(q) : \det DF(x) < 0 \right\}. \text{ Then } d(f,\Omega,q) = \operatorname{Card} f^{-1}(q)^+ - \operatorname{Card} f^{-1}(q)^- \text{ is called the (Brouwer) degree of } f \text{ with respect to } \Omega \text{ and } q \text{ [1]}.$$

Theorem 1. (Special case of Homotopy Invariance Theorem). $H: \overline{U} \times [0,1] \subset \mathbb{R}^{n+1} \to \mathbb{R}^n$ be smooth and let $U \subseteq \mathbb{R}^n$ be open and bounded. Suppose that f(x) = H(x,0), $\forall x \in \overline{U}$ and g(x) = H(x,1), $\forall x \in \overline{U}$. Suppose that $q \in \mathbb{R}^n$ is a regular value for $H_{U \times [0,1]}$, f_U , and g_U and also that $q \notin H(\partial U \times [0,1])$. Then d(f,U,q) = d(g,U,q) [1].

It is well known (see [1]) that there is only one function

 $d: \left\{ (f, \Omega, y) : \Omega \subset R^n \text{ open and bounded, } f: \overline{\Omega} \to R^n \text{ continuous, } y \in R^n \setminus f(\partial \Omega) \right\} \to Z$ satisfying

- (1) $d(id, \Omega, y) = 1$ for $y \in \Omega$.
- (2) $d(f,\Omega,y) = d(f,\Omega_1,y) + d(f,\Omega_2,y)$, whenever Ω_1,Ω_2 are disjoint open subsets of Ω such that $y \notin f(\overline{\Omega}) \setminus (\Omega_1 \cup \Omega_2)$.
- (3) $d(h(t,\cdot),\Omega,y(t))$ is independent of $t\in J=[0,1]$ whenever $h:J\times\overline{\Omega}\to R^n$ is continuous, $y:J\to R^n$ is continuous and $y(t)\not\in h(t,\partial\Omega)$ for all $t\in J$.

 $\begin{aligned} & \text{Definition 3. Let } \Omega \subset R^n \text{ be open and bounded }, f \in \overline{C^1(\Omega)} \text{ and } & y \in R^n \setminus f(\partial \Omega \cup S_f) \text{ . Then we} \\ & \text{define } & d(f,\Omega,0) = \sum_{x \in f^{-1}(y)} sgn \det Df(x) \text{ [1]}. \end{aligned}$

 $\begin{aligned} & \text{Definition 4. If} \quad f: \overline{\Omega} \to R^n \text{ is smooth and} \quad q \not\in f(\partial \Omega) \text{, then} \quad d(f,\Omega,q) = d(f,\Omega,q_1) \end{aligned}$ where q_1 is any rugular value of $f_{|\Omega}$ such that $\left|q_1 - q\right| < \min \left|f(x) - q\right|$, $x \in \partial \Omega$ [1].

Note that, if A is a linear map with det $A \neq 0$, then $d(A, \Omega, 0) = \operatorname{sgn} \det A$, the sign of det A.

Results

Lemma 1. Let A be a real $n \times n$ matrix and $e^A = \sum_{m > 1} \frac{A^m}{m!}$. Then $\det e^A > 0$.

Proof. Let $M = \{B : B \text{ is } n \times n \text{ matrix}\}$, $\Omega = (0,1)$, and define $H : [0,1] \to M$ by $H(t) = e^{tA}$. Note that $H(0) = e^0 = id$, where id is the $n \times n$ matrix and $H(1) = e^A$. By property (3) of d,wehave $d(H(1),\Omega,0) = d(H(0),\Omega,0) = d(id,\Omega,0) = 1$. Hence, $1 = d(H(1),\Omega,0) = d(e^A,\Omega,0) = 1$.

Lemma 2. Let A be a real $n \times n$ matrix with det A > 0. Then there exists a continuous map H from [0,1] into the space of all $n \times n$ matrices such that H(0) = id, H(1) = A and $\det H(t) > 0$ for all $t \in [0,1]$.

Proof. Let $M = \{B : B \text{ is } n \times n \text{ matrix}\}$ and $\Omega = (0,1)$. Define $H : [0,1] \to M$, by H(t) = tA + (1-t)id. Note that H(0) = id, H(1) = A and H is continuous. H(t) is a linear map for all $t \in [0,1]$, $d(H(t), \Omega, 0) = \text{sign det } H(t)$. But H(1) = A, and by property (3) of d, sgn $\det H(t) = d(H(t), \Omega, 0) = d(H(1), \Omega, 0) = \text{sgn det } A = 1$ by assumption that $\det A > 0$. Therefore $\det H(t) > 0$.

Lemma 3. Let $\Omega \subset R$ be open interval with $0 \in \Omega$ and $f(x) = \alpha x^k$ with $\alpha \neq 0$. Then $d(f,\Omega,0) = \begin{cases} 0, & \text{if } k \text{ is even,} \\ \text{sgn } \alpha, & \text{if } k \text{ is odd.} \end{cases}$

Proof. $f'(x) = k\alpha x^{k-1} = 0$, x = 0 is a critical point. Choose $\epsilon > 0$ with

$$|\varepsilon - 0| \le \operatorname{dist}(0, \{f(a), f(b)\} = f(\partial \Omega)) = \min\{|f(a)|, |f(b)|\} = r.$$

Then ε is a regular value of f and by definitions 3 and 4, we have

$$d(f,\Omega,0) = d(f,\Omega,\epsilon) = \sum_{x \in f^{-1}(\epsilon)} \operatorname{sgn} \det Df(x)$$
.

Notice that $Df(\epsilon) = f'(\epsilon) = k\alpha \epsilon^{k-1} \neq 0$. Therefore

$$d(f,\Omega,0) = \sum_{x \in f^{-1}(\epsilon)} \operatorname{sgn} \det \mathrm{D}f(x) = \sum_{x \in f^{-1}(\epsilon)} \operatorname{sgn}(k\alpha\epsilon^{k-1}) = \begin{cases} 1-1=0, & \text{if } k \text{ is even,} \\ \operatorname{sgn}\alpha, & \text{if } k \text{ odd.} \end{cases}$$

Example 1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \to f(x,y) = (x^2 - y^2, 2xy)$$
 and $\Omega = B_r(0)$.

Show that $d(f,\Omega,(0,0)) = 2$.

Proof. Notice that
$$Df(x,y) = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$
. Hence,
$$\det Df(x,y) = \begin{vmatrix} 2x & -2y \\ 2y & 2x \end{vmatrix} = 4(x^2 + y^2) = 0$$

which shows that (0,0) is a critical point. Let p=(0,0) and $q=(\epsilon,0)$, where $0<\epsilon< r$. $\varepsilon=\left|f(x,y)-q\right|\leq \min\left\{\left|f(x,y)-p\right|\right\}\leq \min\left|f(x,y)\right|=r,\quad (x,y)\in\partial\Omega. \qquad \qquad f(x,y)=q=(\epsilon,0)\,. \text{ It follows that } x^2-y^2=\epsilon \text{ and } 2xy=0\,. \text{ Hence } y=0 \text{ and } x=\pm\sqrt{\epsilon}\,. \text{ So } q_1=(\sqrt{\epsilon},0) \text{ and } q_2=(-\sqrt{\epsilon},0) \text{ are regular points of } f. \text{ Since }$

$$\det \mathrm{Df}(q_1) = \begin{vmatrix} 2\sqrt{\varepsilon} & 0 \\ 0 & 2\sqrt{\varepsilon} \end{vmatrix} = 4\varepsilon > 0 \text{ and } \det \mathrm{Df}(q_2) = \begin{vmatrix} -2\sqrt{\varepsilon} & 0 \\ 0 & -2\sqrt{\varepsilon} \end{vmatrix} = 4\varepsilon > 0$$

we get $d(f,\Omega,p)=\sum_{(x,y)\in f^{-1}(q)}sgn\ det Df(x)=1+1=2$. Therefore , $d(f,\Omega,p)=2$.

Example 2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (e^x \cos y, e^x \sin y)$, $\Omega = (-a,a) \times (-b,b)$, where a,b>0 and p=(1,0). Show that $d(f,\Omega,(1,0))=2m+1$, where $m \in \mathbb{N}$.

Proof. Note that
$$Df(x, y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}$$
. We have

$$\det Df(x,y) = \begin{vmatrix} e^{x} \cos y & -e^{x} \sin y \\ e^{x} \sin y & e^{x} \cos y \end{vmatrix} = e^{2x} (\cos^{2} y + \sin^{2} y) = e^{2x} \neq 0.$$

Hence $\det \mathrm{D} f(x) > 0$. Let f(x,y) = p = (1,0). It follows from $e^x \cos y = 1$ and $e^x \sin y = 0$ that x = 0 and $y = \pm 2n\pi$, $n \in \mathbb{N}$. Let $2\pi m < b < 2\pi(m+1)$. Then $\det \mathrm{D} f(x,y) = \sum_{n=0}^{\infty} \sup_{n \in \mathbb{N}} \det \mathrm{D} f(x,y) = 2m+1$

$$d(f, \Omega, p) = \sum_{(x,y) \in f^{-1}(1,0)} \operatorname{sgn} \det Df(x,y) = 2m + 1,$$

since there are 2m+1 points in the interval (-b, b).

Theorem 2. Let $\Omega=(a,b)\subset R$ and $f:[a,b]\to R$ be a continuous map such that $f(a)f(b)\neq 0$. Then $d(f,\Omega,0)=\frac{1}{2}\big\{sgn\ f(b)-sgn\ f(a)$.

Proof. Let $f(a)f(b) \neq 0$ and g be a linear function between (a, f(a)) and (b, f(b)), i.e.,

$$g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$

Define a homotopy $H:[0,1]\times[a,b]\to R$, by $H(t,x)=t\;f(x)+(1-t)g(x)$. Hence

H(0,x) = g(x), H(1,x) = f(x). It follows easily that $H(t,a) \neq 0 \neq H(t,b)$ for all $t \in [0,1]$. We have

 $Dg(x) = g'(x) = \frac{f(b) - f(a)}{b - a}$. Note that 0 is a regular value of g, f and H. By Theorem 1.1, we get

Since $g'(x) = \frac{f(b) - f(a)}{b - a}$ and b - a > 0, we need to consider the sign of f(b) - f(a).

If
$$f(b)f(a) > 0$$
, then $\operatorname{sgn} f(b) - \operatorname{sgn} f(a) = 0$,
If $f(b)f(a) < 0$, then $\operatorname{sgn} f(b) - \operatorname{sgn} f(a) = \pm 2$.

Hence,

$$d(f,\Omega,0) = d(g,\Omega,0) = \begin{cases} 0, & \text{if } f(a)f(b) > 0, \\ 1, & \text{if } f(a)f(b) < 0 \text{ and } f(b) > 0, \\ -1, & \text{if } f(a)f(b) < 0 \text{ and } f(b) < 0, \end{cases}$$

which shows that $d(f, \Omega, 0) = \frac{1}{2} \{ sign f(b) - sign f(a) \}.$

References

- [1] N.G.Lloyd, Degree Theory, Cambridge University, 1978.
- [2] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969.