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Abstract: A linearized implicit finite-difference method is presented for numerical solutions of the one-dimensional
Burgers-like equations. The method has been used successfully to obtain accurate numerical solutions even for small vaiues of
viscosity term V. Results obtained by the present method using Gauss elimination technique for some values of V have been
compared with the exact one which are found to be in good agreement with each other.
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BURGERS TiPi DENKLEMLERIN NUMERIK COZUMLERI: LINEERLESTIRILMIS BIR KAPALI
SONLU FARK YONTEMI

Ozet: Bir-boyutlu Burgers tipi denklemlerin niimerik ¢8zumleri igin lineerlestirilmis bir kapal sonlu fark ydntemi sunuldu.
Yontem, viskosite term WV ’nin kilgitk degerleri igin de dofru nilmerik ¢dzimleri elde etmek icin basanli bir gekilde
kulanildi. Viskositenin baz1 degerleri i¢in Gauss eleme teknigi kullanilarak sunulan ydntem ile elde edilen sonuglar tam ¢oziimle
kargilagtinidi ve sonuglarin birbiri ile iyi uyustugu gbzlendi.

Anahtar Kelimeler: Burgers denklemi, lineerlestirilmis kapah sonfu fark.

Introduction

A study of properties of Burgers equation is great importance since it is used as a mathematical model in
turbulence problems and in the theory of shock waves. The one-dimensional Burgers equation, which was first

introduced by Bateman (1] and later treated by Burger [2],
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is one of a few well known non-linear partial differential equation which can be solved analytically for a restricted

O<x<lt>0, (N

set of initial conditions {3, 4].
Burgers equation has motivated considerable research into numerical methods by many authors {5-12] since the
parameter V>0 in Eq. (1), which is the so-calied viscosity term, plays an important role in determining the

behaviour of the solution. They have used a variety of numerical techniques specially based on finite difference,
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finite element and boundary element methods to solve Eq. (1) particularly for small values of V. Benton and
Platzman [13] surveyed exact solutions of the one-dimensional Burgers-like equations. In many cases, these
solutions involve infinite series which may converge very slowly for small values of viscosity v> O (see e.g., [8]).
Recently, Kutluay et al. [14] proposed the exact-explicit finite difference method to the Burgers-like problems to

obtain numerical solutions of adequate accuracy.
In this paper, we have applied a linearized implicit finite difference method to the Burgers equation with a set of

initial and boundary conditions to obtain its numerical solutions. To make a comparison of numerical solutions with

exact ones we have chosen two test problems given in the following section so that each of them has an exact

(Fourier) solution.
Statements of Problems

We consider the Burgers equation (1) with the boundary conditions
U@0f)=0,t>0
U()=0,¢>0
and with the following initial conditions.
Problem (aj : For this problem, the initial condition is
U(x,0) =sin(m), 0<x <1,

The {exact) Fourier series sclution of this problem given by Cole [3] is

Y a, exp(-n’z*v)nsin{nzx)
U(x,t) =27y —21— , @
a, + Y a, exp(-n’r’v)cos(nmx)

n=l

where

a, = I; exp[—(27w)“‘[1 - cos(;rx)]}dx,
a, =2 I:exp{—(?.;rv)"][l - cos(:zx)]} cos(nm)dx, (n=123,...).
Problem (b) : The initial condition for this problem is

Ux,0)=4x(1-x),0 <x <.

The exact solution of this problem is given by Eq. (2) with the coefficients

a, = _[:}exp{-—xz (3v)" (3-2x)}dkx,

a, =2 J-ﬂlexp{—x2 (3v) "' (3-2x)} cos(nmx)dx, (n=12,3,...).
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Method of Solution

The solution domain 0 £ x £ 1, ¢ > 0 is divided into intervals /# = Ax in the direction of the spatial variable

X and k = At in the direction of time # such that x, =ik, i=0)N (Nh=1); ¢, = jk, j=0(1)J and

U(x;,¢,) isdenoted by U, ;.

In the finite difference method, the dependent variable and its derivatives are approximated by the finite
difference approximation. This approximation will lead to either a single explicit equation or a sysfem of difference
equations. Applying the classical implicit finite-difference method to non-linear problems normally give non-linear

system of equations which cannot be solved directly.
In practice, usually a very specialised form of non-linear equation is considered rather than the more general
form of non-linear equation since the analysis of stability becomes more complicated. For example, Richtmyer and

Morton [15] considered the non linear problem of the form

& _ U
a &’
with # = 5 and Douglas [16] considered the quasi-linear parabolic equation
2'U
dcl

In a way, this specialised approach probably relaxes the complications or difficulties which may arise in the analysis

=f(X,t,U)%+g(x,t,U), 20

of convergence and stability. For non-linear problems, stability depends not only on the form of the finite difference

system but also generally upon the solution being obtained. In practice, in the case of conditionally stable difference
approximations it is necessary to alter the stability parameter 7 = k/ h? in order to restore the stability.

The symbol  is the central difference operator defined by & U iy = U -U i1 - Using the forward
difference approximation for SU/& , the weighted central difference approximation for &/ 2 / &k and the central

difference approximation for &°U / A* atthe point (i, j +1), ie.,

U _U,u-U,
a k '
A7t 1
& = E ( lii.j-#l - Uf‘z—l,j+l )+ (1 - 9)((]3"1./ - U’E'l‘f) *
and
AU 1
&’ = h—z(UHLJH —ZU‘-J'“ + Uf"ﬂ'“ )’

respectively. The Burgers equation (1) can be written as
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Using the above difference approximations, Eq. (3) yields the system of algebraic equations

o .o = .
-_ﬂ;‘-iﬁ” 4h (Ul+l J+l Ur-l J+1)+ (1 6)( ”'I Ulz“ )}
(4}
”hzzn(U""']'j*'] 2U i+ + U;-l j+1)

for i = ()N — and j = 0(1)J with a truncation error of O(k)+ O(h2 ). For =0, the scheme (4) gives a
linear system of equations in U, ,,, . For 0 < @ <1, the scheme is a non-linear system of equations in U/, ,, and

it needs to use an iteration technique to evaluate the solution. Caldwell and Smith [17] solved iteratively various
finite-difference schemes of Burgers-like equations by using the Gauss-Seidel method. However, in some cases a
linearization technique is also pessible.

By using the operator  the replacement (4) can be written as
U“‘ Y s {35( )J+(1-6)5,[U2)
JJ+| +(1-6)3, hi

- 2UF,J+I + Ui-l,j+1 )

[<

(U

i+, 5+l

2

=

By Taylor expansion of U f 1 about the point (i, j) we obtain
2

Ul,=Ul +k—"+

i,J+1

Hence to terms of order &, U;m "‘U,Z'J+2U (U, ., —U,,) endtaking

-U,, (5)

ij+l 1N

W, =U

Eq. (4), with some manipulations, leads to

(BrhU._ +2ur )W =200+ 2rv)W, + (2rv =6rhU ,, W,

(6)

(U y=2w (U, , ~2U,, +U,, ) i=1 N -1

H-IJ“ l'lj

a system of linear equations for /¥, where 0 < & <1l and r = k/ h® . This approximation is second order in both
space and time as regards truncation error. Obviously, the solution at the (j + Dth time level is obtained from (5)

al, ,=U +W,.

i, j+l
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Numerical Results and Conclusions

All calculations were performed in double precision arithmetic on a Pentium II processor using Microsoft
FORTRAN Compiler. A system of algebraic equations corresponding to the scheme (6) has been solved directly by

the Gauss elimination method.

In order to show how good the numerical solutions of the above problems (a) and (b) with the exact ones we

shall use the weighted 1-norm "e”l defined by

1 WU(x,.t,)-U, /| _ i
"” ZI U(xf,f) re“[el"'e,v—l]‘ (7

Table 1 illustrates results obtained by the replacement (6) of the problem (a) at various values of the weighted

factor for v = . It is clearly seen that numerical solutions are in good agreement with the exact one. So it is a

simple matter the choice of  satisfying the inequality 0 < 8 < 1.

Table 1. Comparison of results for v = 1, 4 =0.025 and k& = 0.00001 at various values of &

Numerical Exact
x ) =0 6=0.1 =0. =10
025 0.01 0.62903 0.62903 0.62903 (.62904 0.62904
0.05 0.41319 041319 0.41315 041315 0.41307
0.10 0.25374 0.25374 0.25374 0.25374 0.25364
0.15 0.15672 0.15672 0.15670 0.15670 0.15660
0.20 0.09654 0.09654 0.09653 0.09653 0.09644
0.25 0.05929 0.05929 0.05929 0.05929 0.05922
0.50 0.01 0.90568 0.90568 0.90568 0.90568 0.90571
0.05 0.60923 0.60923 0.60917 0.60917 0.60907
0.10 0.37173 0.37173 037173 0.37173 037158
0.15 0.22700 0.22700 0.22698 0.22698 0.22682
0.20 0.13862 0.13862 0.13860 0.13860 0.13847
0.25 0.08465 0.08465 0.08464 0.08464 0.08454
0.75 0.01 0.65237 0.65237 0.65237 0.65237 0.65244
0.05 (.45025 0.45025 0.45021 0.45021 0.45018
0.10 0.27269 0.27269 0.27269 0.27269 0.27258
0.15 0.16450 0.16450 0.16448 0.16448 0.16437
0.20 0.09954 0.09954 0.09953 0.09953 0.09944
0.25 0.06043 0.06043 0.06042 0.06042 0.06035

Table 2 displays the expected convergence as the grid size % is refined. Again, good agreement with the
analytic values is evident, as is convergence. In fact, applying Richardson’s extrapolation (see, e.g., [18, Section 2])
to the value of the weighted 1-norm error measure (given by (7)) shown in Table 2 yields convergence rates of,
approximately, 1.7121. This agrees with the theoretical expectation of O(h*).

Table 3 displays finite difference solutions of the probiem (a) for v =10. and v = 0.01 respectively, with
k =0.0001 at different values of / . It is observed that the numerical predictions are again in good agreement

with the analytic solution.
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In order to show how good the numerical predictions exhibit the cotrect physical behaviour of the problem, we
only give the graphs in Figures 1, 2 and 3. Both solutions of the problem are drawn on the same diagram, but curves

cannot be distinguishable since they are very close to each other.

Table 2. Comparison of results at £, = 0.1 for v =1,k = 0.00001 at various mesh sizes

Numerical Exact

x h=0, E=00 2=002 h=0012

0.1 0.10915 0.10959 0.10957 0.10955 0.10954
0.2 0.21020 0.21005 0.20987 0.20981 0.20979
03 0.29305 0.29233 0.20202 0.29192 0.29190
0.4 0.34964 0.34848 0.34807 0.34795 0.34792
0.5 0.37361 0.37219 037173 0.37161 037158
0.6 0.36109 0.35963 0.35919 0.35907 0.35905
0.7 0.31170 0.31041 0.31003 0.30993 0.30991
0.8 0.22913 0.22818 0.22791 022783 0.22782
0.9 0.12138 0.12088 0.12073 0.12069 0.12069
” e" 0.004281 0.001366 0.000370 0.000066

1

Table 3. Comparison of results for V = 0.1 and v = 0.01 with A= 0.0125, k =0.0001 and € = 0.5 at different
times

v =0.1 v =(.01
x ! Numerical Exact Numerical Exact
0.25 04 0.30890 0.30889 0.34189 0.34191
0.6 0.24075 0.24074 (.26890 0.26896
0.8 0.19569 0.19568 0.22139 0.22148
1.0 0.16258 0.16256 0.18810 0.18819
i0 0.02722 0.02720 0.07508 0.07511
0.50 .4 0.56969 0.56963 0.66078 0.66071
0.6 0.44726 0.44721 0.52946 0.52942
0.8 0.35928 0.35924 0.43916 0.43914
1.0 0.29146 0.29292 0.37442 0.37442
3.0 0.04023 0.04021 0.15015 0.15018
0.75 0.4 0.62539 0.62544 0.91051 0.91026
0.6 0.48723 048721 0.76738 0,76724
0.8 0.37356 0.37392 0.64747 0.64740
1.0 0.28752 0.28747 0.55610 0.55605

3.0 0.02979 0.02977 0.22481 0.22481
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Figure 1. Solutions at different times for v = 1.0, h = 0.0125, k = 0.001.
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Figure 2. Solutions at different times for v = 0.1, 1= 0.0125, k = 0.001.
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Figure 3. Solutions at different times for v = 0.01, A= 0.0125, k = 0.00 .



92

Table 4 shows the numerical solutions for viscosity coefficients from v = 0.005 to v = 0.0001 at times from

t,=00lt1?, = 0.25 which exhibit the correct physical behaviour of the problem. For these viscosity values it

is obvious that the exact solution fails [8] because of the slow convergence of Fourier series (2).

The numerical solutions of Burgers equation for problem (b) obtained by the present method have been
compared with the analytic solution in Tables 5-7 for various values of viscosity coefficient V. It can be seen that
numerical solutions are in good agreement with the analytic one. Table 5 shows that the accuracy of the numerical

solutions which improves rapidly as the mesh size is reduced. Again, good agreement with the exact values is

evident, as is convergence. The values of lell, shown in Table 5 indicate a rate of convergence of about .6957

which is reasonably in agreement with the theoretical expectation of o(h*).

Table 4. Numerical results for vatious values of v with A = 0.025, &k = 0.00001 and & = 0.5 at different times

Numerical
x ¢ v=0.00 v =(0.00 v=0.000 v =0.000
0.25 0.0 0.69111 .69137 0.69141 0.69143
0.05 0.63220 (.63319 0.63331 0.63341
0.10 0.56820 0.56962 0.56979 0.56994
0.15 0.51409 0.51565 0.51584 0.51600
025 0.42986 0.43133 0.43152 043166
0.50 0.01 0.99900 0.99940 0.99945 0.99949
0.05 0.98569 0.98755 0.98778 0.98797
0.10 0.95145 0.95461 0.95500 0.95532
0.15 0.90488 0.90865 0.90912 0.90950
0.25 0.80158 0.80531 0.80578 0.80615
0.75 0.01 0.72275 0.72305 0.72309 0.72312
0.05 0.78663 0.78853 0.78877 0.78896
0.10 0.86589 0.87068 0.87128 0.87176
0.15 0.93250 0.94035 094134 0.54212
0.25 0.98773 0.99776 (.95900 0.59999

Table 7 shows the numerical solutions of problem (b) for viscosity coefficients from v = 0.005 to

v =0.0001 at times from ¢, = 0.01 to #, = 0.25 which exhibit the correct physical behaviour of the problem.
It is noticed that as the viscosity value V decreases, there is no significant change in the values of U ;.; at mesh

points (x,,¢ J). It is also seen that the exact solution fails for these viscosity values since Fourier series (2)

converges very slowly.

Table 5. Comparison of resultsat {, = 0.1 for v =1, £ = 0.00001 and various mesh sizes

Numerical table5 Exact
x h=9. h=0.05 £2=0025 A=00125

0.1 0.11245 0.11294 0.11293 0.11250 0.11289
0.2 0.21662 0.21651 021634 0.21627 0.21625
0.3 0.30208 0.30140 0.30109 0.30099 0.30097
0.4 0.36056 0.35942 0.35901 0.35889 0.35886
0.5 0.38543 0.38404 0.38358 0.38345 0.38342
06 0.37270 0.37125 0.37081 0.37068 0.37066
0.7 0.32185 0.32057 0.32019 0.32009 0.32007
0.8 0.23668 0.23574 0.23546 0.23539 0.23537

0.12541 0.12491 0.12476 0.12473 0.12472

0.9
"e“ 0.004151 0.001339 0.000366 0.000066
i
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Table 6. Comparison of results for ¥ = 0.1 and v = 0.01 with 2 =0.0125, £ = 0.0001 and @ = 0.5 at different
times

v=0.1 v =0.01
x t s Numerical Exact Numerical Exact
0.25 0.4 0.31753 0.31752 0.36226 36226
0.6 0.24615 0.24614 0.28197 0.28204
0.8 0.19957 0.19956 0.23036 0.23045
1.0 0.16561 0.16560 0.19559 0.19469
3.0 0.02777 0.02776 0.07610 0.07613
0.50 04 0.58459 0.58454 0.68375 0.68368
0.6 0.45803 0.45798 0.54838 0.54832
0.8 0.36745 0.36740 0.45375 £0.45371
1.0 0.29839 (1.29834 0.38568 0.38568
3.0 0.04109 0.04107 0.15214 0.15218
0.75 0.4 0.64557 0.64562 0.92067 0.92050
0.6 0.50269 0.50268 0.78311 0.78299
0.8 0.38538 0.38534 0.66280 0.66272
1.0 0.29591 0.29586 0.56937 0.56932
3.0 0.03049 0.03044 0.22774 0.22774

Table 7. Numerical results for various values of v with 22 = 0.025, £ = 0.00001 and & = Q.5 at different times

Numerical
x t v=40.00 v=000 v =0.000 v =0.000
0.25 0.01 0.73456 0.73487 0.73491 0.73494
0.05 0.67609 0.67738 0.67754 0.67767
0.10 0.61003 0.61208 0,61234 0.61254
0.15 0.55250 0.55496 0.55526 (.55551
0.25 0.46081 0.46349 0.46382 0.46409
0.50 0.01 0.99919 0.99951 0.99955 0.99958
0.05 (0.98829 0.98983 0.99002 0.99017
0.10 0.95952 0.96223 (0.96263 0.96290
0.15 0.91887 0.92241 0.52285 0.92320
0.25 0.832346 0.82748 0.82798 0.82838
0.75 0.01 0.76479 0.76512 0.76516 0.76520
0.05 .82332 0.82522 0.82546 0.82565
0.10 0.89190 0.89612 0.89664 0.89707
0.15 0.94646 0.95282 0.95361 0.95424
0.25 0.99002 {.99815 0.99915 0.99996

The performance of the method has been examined by comparing all the numerical results with the exact ones,
It is concluded that the method is capable of solving the Burgers-like equations by a direct method since it produces

very accurate results, even for small values of viscosity (v < 0.G1).
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