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Abstract : Two-dimensional Stokes floequation in a rectangular cavity with two free surfaces and two moving }ids is
considered as a bikarmonic boundary value problem which is solved analyticly for the streamfunction, i/, expressed as a series

of eigenfunctions. The series solution is shown to converge. In practice, the serics must be iurancated after ¥ terms, so it is
important to asses the number of terms required to achive a given accuracy in the streamfunction and velocity at any point in
different cavities. The accuracy and convergence rate of the eigenfunction serics are discussed. Furthermore, we study the
influence of the singularities on the corners with respect to the accuracy of the solution. The singularities result in a reduce
convergence of the eigenfunctions expansion in a small neighbourhood of the corners.

SERBEST YUZEYLI BiR OYUKTAKI STOKES DENKLEMININ COZUMUNUN SINGULERITELERI
VE YAKINSAKLIK ORANI

Ozet: ki serbest yiizeyli ve iki hareketli kapak arasindaki dikdértgen bir bolgede, iki boyuths Stokes denklemi biharmonik
smir deger problemi olarak gdz 6nine akindi. Bu problem eigen fonksiyonlarm bir serisi ile analitik olarak ¢ozuldn ve bu
¢bzimiin yakmsakhg gosterildi. Uygulamada, sonsuz bir seri belli bir terimden sonra kesilmesi gerektiginden. Bu kesmenin,
boyutlar) farkir bolgelerin herhangi bir noktasinda akis fonksiyonu ve tiirevinin yakinsaklik oranina etkisi tartisildr. Ayrica
kogselerdeki singtiler noktalarin ¢bzime etkisi incelendi. Singilerlik, koselerin kiciik komsulugundaki ¢bziimiin yakinsaklik
oranmim ditgtirdtgi belirlendi.

Introduction

Although Stokes equations have been investigated for nearly 150 years, analytic solutions have been obtained
only for special geometries. For a semi--bounded domain, Smith [1] established an algorithm for solving the
biharmonic equation. Smith also established conditions on the edge data sufficient to guarantee the convergence of
his analytical solution which is expressed as an infinite series of complex eigenfunctions (Papkovich-Faddle
functions). Smith's solution was then used by Joseph and Sturges [2] to analyse Stokes flow in a rectangnlar cavity
heated from its side. This work, together with that of Joseph [3] revealed that Smith's conditions on the edge data
were too estrictive for practical applications and showed that much iess restrictive ones suffice to guarantee
convergence of Smith's analytical solution.

Joseph and Sturges [4] examined numerically the convergence of an biorthogonal solution of Stokes flow in a
single-lid-driven cavity with tree solid walls to the boundary conditions. It was found that by taking n=20 terms of

the biorthogonal series solution the convergence of the streamfunctions and its normal derivatives to the boundary
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onditions on the moving lid are given correct to 4 and one decimal place, espectively. Giircan [5] investigated the
truncation error of the infinity series for this problem. It was found that the truncation errors decreases when more
terms in the series are taken, as expected. For the same problem Shankar {6] considered an analytic series expansion
but used a least squares method to determine the coefficient in the series. He examined the convergence of the least
squares solution on the moving lid, especially near to the corner at which there is a singularity. He concluded that
both coefficient determination methods are indistinquishable from one another. Stokes Flow in a rectangular cavity
with two free surfaces and two moving lids was proposed as a mode] for the flow in the bead of meniscus roll coater

[7-9]. Generally they investigated flow structure by considering the behaviour of streamfunction close to stagnation

points.
In this study, the series solution for this problem is considered. The convergence of the series solution is shown

by determining the dominat contribution to each term in the series. We also determine the number of terms, n, of the
series in order to ensure that the truncation error is acceptably small. The problem of interest exhibits comer
singularities due to the inadmissibility of the no-slip hypothesis near the junction between a moving lid and a free
surface [10]. The numerical study of flow singularities is very important since they typically increase computational
errors [11-13]. A local singular analytical solution of [10] is used to correct the numerical methods in [12-13]. Here

we investigate the influence of the singularities on the corners with respect to the accuracy of the series solution.
The Governing Equation and Boundary Conditions

Flow in a double-lid-driven cavity with 2 free surfaces and 2 moving lids, see figure 1, is governed by the

biharmonic equation,
Viy =0. (m
The analysis is simplified by introducing the following dimensionless variables,

u=UIV,, v=VIV,, x=X/L, y=Y/Land y=¥Y/V,L
S=V/V,,A=H,/L
where 21 is the bead width, V| the top lid velocity, V, the bottom lid velocity, S =V, /V, the speed ratio,

2 H , the separation of the lids and A = 2H /L the aspect ratio of the cavity.

For the lid-driven cavity with 2 free surfaces we assume that the liquid domain is closed and no liquid crosses

the boundaries. This implies that

W(lsy) = W(_l’ y) =0and W(xa A) - W(x’"—A) =0. (2)
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Figure 1: Dimensionless boundary value problem for rectangular cavity with two free surfaces.

a 0
Hence relations, ¥ = Y and v = 4 .

enable the no-slip conditions to be written in terms of derivatives of the
streamfunction.

9y

5 (x,4) =8, -‘%{(x,-,q) =1.

(3)

If 7 =(+1,0), £ =(0,21) are unit vectors normal and tangential to the liquid-gas interface respectively,
then the equation expressing the equilibrium of this interface [14-p69] is

A - T -~
ceNi=g en+ *h, C))]
= =g R
cury

where ¢ and gg are the stress tensors for the liquid and gas respectively, T is the surface tension of the

liquid, and R, the radius of curvature of the liquid-gas interface. For a Newtonian
liguid the stress tensor is given by

Ou, Ou
%= e ®
% o

where & i is the Kronecker delta symbol. It can be shown, balancing shear stresses, that

u v . Oy
ﬂ(gy‘*‘a)"?}‘g(ay +ax)

(6)

where the subscript g refers to the gas. However e /m <<1, so equation (6) reduces to a ‘zero-shear
stress' condition, namely
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?ﬁ+—a~v—=0atx=il. )

oy

o) 5} o . .
Using relations, # = Cid and v= ——ay— , this may be written in terms of the streamfunction, giving
X

2 2
%y—'i,——%x—g,-——Oatx:il. (8)

2
awz—a—q{-:o at x='_|_'1, . (9)

and the zero-shear stress condition becomes

2z
ny:=0 at x==%1. (10)

General Solution

The boundary value problem, figure 1, can be solved for { using "natural’ eigenfunctions of the biharmonic

equation which are even functions of X since the flow is symmetric about x = 0. In fact {{x, ) has the form

v= Z{y(Anesz’ + Bne_iﬂy) + Cnel,,y + Dne-,l,,y }COS ;bnx y (11)

n=l

where A are eigenvalues and A", an C o Dn are constant coefficients to be determined from the boundary
y . 3’y o
conditions. The conditions, ¥ =——-=0 at x =%l are satisfied if cosd, =0 for all A, giving the
eigenvalues
A =(n —}/Z)nfor n=12,. (12)

Since the streamfunction ¥/{x, y) satisfies the boundary condition (2)on ¥ = A then {(x, y) can be written in

the form
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w0

W=D W,co0s4,x, (13)

n=]

where

Ae + B

Ay 1_ 224, (4-y) . 14
sinh24 4 {h=e ) K

w=(y-A)(4,e" +Be ") -4

~

0 1%
Since Ew(x, A)=S§ and also -*a%(x,—A) =1 then using the orthogonality

condition A, and B, are obtained

242 242
,1 n+l A, A _ n eﬁl“A S"" ewl,,A . n el,.,A
D [(e smn24z,° € TGanaan,
A4, = - (15)
M(sinhz 2A"“n - 4A2/‘Li)
S1 -
2
(_1)n+1 (eﬁ.,,(i —— 2A;“n e—ﬂ.“A) _S(e*A,A —— A/'l’n el"A
sinh2A44, sinh2 44,
Bn = 1 . (16)
f_m(sinhz QA/‘L,, - 4142/1?')
sin "

Series Truncation and Convergence
Since, in practice, it is only possible to include a finite number of terms in the series (13), it is necessary to first
establish that the series converges and then to determine the number of terms which need to be taken in order to

ensure that the series has converged satisfactorily.

The series for Y

It is possible to investigate the convergence of the series for i by determining the dominant contribution to

each term in the series for large # . First consider the coefficient 4, which may be rewritten as

o] 1 ot s gVl g b s
(-1 (5—7“_—2/7.”146 ") —( " —24,4e”"")
4,= 1o 4 e thA ) oA '

+ —47 " de™
4 2 4
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Extracting the dominant term, we see that for large #,

4, = (=)D I&SH +lot
e R

h

where "l.o.t." indicates lower order terms. Similarly for the coefficient B, ,

B, = (—-1)("+1) “/1—'21—‘4 +lot
e Ll

"

Substituting expressions (17) and (18) into § gives for large

n+ S - A +A
w, = (-1)f 1)[(,1 (eJ:"(A_y)) + ,l(i‘»“‘*)-") } tlotfor ~A<y<d

n

Expression (19) gives the dominant terms in i both of which are

v, = O((-1)"*" ;Lie*""n ), k>0

n

an

(18

(19)

(20)

where either k = A—y or k= A+ y for y € (—A, A). The series Zy/n for § € [~1,1] is clearly absolutely

convergent and hence the series for i converges for y € [—4, A].

To see how convergence varies for different values of y and A, tables 1 and 2 indicate the accuracy on

truncation after 7 terms of the streamfunction caiculated from equation (13) for 4 = 0.1 and 4 =1 respectively

and S = 2/3 . Table 1, for example, shows that for 4 = 0.1 and ¥ = Af2 truncating series (13) after n =100

terms gives an accuracy of 9-10 decimal places whereas for 7 = 200 terms the accuracy is 17 decimal places in

. This clearly shows that the accuracy of { improves very rapidly as the number of terms in the series (13) is

increased. Table 2 shows that for 4 =1 and y = A/2 truncating the series after only 7 = 20 terms gives ¥

correct to 10 decimal places. Clearly for large 4 the convergence is much faster than for lower A values, but it

also depends on ), as shown tables 1 and 2.
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Table 1: A comparison of the accuracy of the streamfunction calculated by the series (13) after # terms (the accuracy is
indicated by the underlined numbers) for 4 = 0.1at S = 2/3. 1 denotes the number of terms used in the series.

S=2/3and A=0.1

Y n actual values of §r
= (0.7 x=-03 x=0.0
y=4 50 0.0 0.0 0.0
100 0.0 0.0 0.0
200 .0 0.0 0.0
50 -0.021887577212570 -0.021875137363653 -0.021874876919845
y=A/ 100 -0.021883248376509 -0.021874999483326 -0.021874999976018
200 -0.021885248427780 -0.0218749995101G3 -0.021874999999919
300 -0.021885248427780 -0.021874999510103 -0.021874999999919
50 -0.008352175975982 -0.008333332130091 -0.008333333302818
y=0 100 -0.008352175913157 -0.008333332094946 -0.008333333334355
200 -0.008352175913157 -0.008333332094946 -0.008333333334355
300 -0.008352175913157 -0.008333332094946 -0.008333333334355
50 0.009365349725042  (.009375092392383  (0.009374917946727
y=-4/ 100 0.009365174276404  0.009375000472198  0.009374999984145
260 0.009365174310584  0.069375000490049  0.009375000000079
300 0.009365174310584  0.009375000490049  0.009375000000079

Table 2: A comparison of the accuracy of the streamfunction given by the series (I3) after 7 terms for A =1.00at
§=2/3.
S=2/3and 4=1.0
y n actual values of §/
x=-0.7 x=-0.3 x=0.0
y=A | 2 0.0 0.0 0.0
50 0.0 0.0 0.0
100 0.0 0.0 0.0
20 -0.12198463011580 -0.19330687552501  -(.20444704539851
=A/ 50 -0.12198463012672  -0.19330687554985  -0.20444704539602
Y 100 -0.12198463012672  -0.19330687554985  -0.20444704539602
200 -0.12198463012672  -0.19330687554985  -0.20444704539602
20 -(.031460348869680 -0.059018667895093 -0.065249136291313
y= 0 50 -0.031460348869680 -0.059018667895093 -0.065249136291313
100 -0.031460348869680 -0.059018667895093 -0.065249136291313
200 -0.031460348869680 -0.059018667895093 -0.065249136291313
20 0.063269110456510 0.094031267337532 (.09742534R491845
y=-Al 50 0.063269110454200 0.094031267339420 0.097425348492717
100 0.063269110454900  0.094031267339420 0.097425348492717
200 0.063269110454900  0.094031267339420  0.097425348492717
_ dy
The series for

0
Similarly, substituting expressions (17) and (18) into v gives for large 1
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S+ (v 4)) f—*(ym)

a':”n {n+l) n n
—r (-] i + ey +lot 21
oy e e

For y € (4, A4)

% = O(~D)™V e ) where k >0 22)

0 0
and so the series Z Y is absolutely convergent and hence the series for @ converges for y € (—A4, 4).
To see how convergence varies for different values of y and A, table 3 indicates the accuracy of the

o) !
truncated for —&- for various aspect ratios, speed ratios and positions within the cavity. For A =0.1, §=-1/2

o
at y =—A/2 truncating L 4 after 100 terms gives 8 decimal place accuracy and for # = 200 sixteen decimal

places, see table 3.

0
This table shows also that for 4 =1,5 = ~1 and at the same location y = —~A4/2 with only 20 terms, L4

0
shows an accuracy of 14 decimal places. Results clearly show that the convergence of the series for v depends

on ¥ and A . In general for large A the convergence is much faster than for small $AS but that the convergence

decreases as the lids are approached.

On The Lids

The coefficients 4, , B, are chosen so that the lid velocity boundary conditions are approximated by Fourier

series. Hence on the top lid

oy y ScosA, x
- -1 (n+1) n 23
re > (-1 T ) (23)
and on the bottom lid
oy cosd x
27 _ __-l (n+l) X2t . 24
; > (<D 7 ) (24)
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Since these series satisfy the "Dirichlet' conditions for Fourier series convergence they converge to the boundary

conditions on the lids everywhere except close to the corners.
Corner Singularities

It can be seen that this problem contains singularities at all corners formed at the junction between a moving lid
and a free surfaces. We computed the singular behaviour near the upper-left corner with the procedure described by

Moffatt {10} to compore the present results. In this procedure a local solution is computed for the biharmonic

equation in plane co-ordinates (r,&) of the form

Y=>rf,0). (25)

The boundary value problem to be solved in the corner region has boundary conditions,

‘{’=O,~1-2\£=S at =0,
r 060

wo0 1% g 492",
r of 2

The lowest order solution is ‘¥, = rf, (@) given by

¥, = —'—(40cosd + 2n0sinf — z’ sin ).

7[2

The lower order describes the asymptotic behaviour at the corners. The convergence of the coefficients of series

(25) shows the same behaviour as we found in our computations whereas the convergence of the derivative of

streamfuction (13) is decreased near the corners. However, as the number of terms, #, used in the series A d is

0
increased, even the convergence in these regions improves. For example, for any value of A, ¥ is correct to 2

decimal places when # = 100 terms whereas when $n=2008 terms 3-4 decimal places, see table 3.
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Table 3. A comparison of the accuracy of the horizontal component of liquid velocity given by the series evaluated after #1 terms

for A=0.1at S=-1/2 and 0.

S=-1/2 and 4=0.1

[1]
(2]

(3]

589 (1975).

I. Appl. Math., 33, 337-347 (1977).

(4]
Part II", SIAM. I. Appl. Math,, 34, 7-27 (1978).
[5] F.Gircan, "'PhD Thesis", University of Leeds, (1997).

y n actual values of {/
x=-0.7 x=-0.3 x=0.0
y= A 50 -0.507 -0.503 -0.496
: 100 -0.496 -0.498 -0.498
200 -0.498 -0.499 -0.499
50 0.34504269983902 0.34373097945617 0,34376688894477
y= Al2 100 0.34505909029467 0.34374991319534  0.34375000713707
200 0.34505907515618 0.34374991531351  0.34375000010319
300 0.34505907515618  0.34374990531351  0.34375000010319
50 -0.12500287386101 -Q.12500000777502 -0.12499999302999
= 100 -0.12500285981042 - 4 - 1
Y 0 200 -0.12500285981040 -0.12500000000095  -0.12500000000000
300 -0.12500285981040  -0.12500000000095  -0.12500000000000
50 -0.40754876310628 -0.40624844239106 -0.40625144451786
y=-A4/2 100 -0.40755695832287 -0.4062499(0925386 -0.40625000362014
200 -0.40755695075362 -0.4062499053129]1 -0.40625000010320
300 -0.40755695075362 -0.40624990531291  -0.40625000010320
50 1.014 1.007 0.993
y= -4 100 0.992 0.996 0.996
200 0.9964 0.9582 0.9984
S=-10and 4=1.0
Yy n actual values of ¥/
x=-0.7 x=-03 x=0.0
10 -1.068 -1.035 -0.968
y=1.0 20 -0.965 -0.982 -0.984
50 -1.014 -1.007 -(0.993
100 -0.992 -0.996 -0.996
10 -0.069175427893891 -0.27044200038033 -0.32634509494049
y=05 20 -0.069175472292034 -0.27044205430477 -0.32634504155722
50 -0.069175472292028 -0.27044205430476 -0.32634504155721
100 -0.069175472292028 -0.27044205430476  -0.32634504155721
10 0.069175427893891 0.27044200038033  0.32634509494049
y=-0.5 20 (0.069175472292034 0.27044205430477 0.32034504155722
S0 0.069175472292028 0.27044205430476 0.32634504155721
100 0.069175472292028 0.27044205430476 0.32634504155721
10 1.068 1.035 0.968
y=-05 20 0.965 0.982 0.984
50 1.014 1.007 0.993
100 0.992 (.9%6 0.996
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