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Abstract. We give a new proof of Hilbert’s Syzygy Theorem for monomial

ideals. In addition, we prove the following. If S = k[x1, . . . , xn] is a polynomial

ring over a field, M is a squarefree monomial ideal in S, and each minimal

generator of M has degree larger than i, then pd(S/M) ≤ n− i.
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1. Introduction

Hilbert’s Syzygy Theorem, first proved by David Hilbert in 1890, states that,

if k is a field and M is a finitely generated module over the polynomial ring S =

k[x1, . . . , xn], then the projective dimension of M is at most n. In this article we

give a simple proof of this fact for monomial ideals.

Various mathematicians have preceded us in proving Hilbert’s Syzygy Theorem

for finitely generated modules, or in the more restrictive context of monomial ideals.

Hilbert [6], Cartan and Eilenberg [2,3], Schreyer [10], and Gasharov, Peeva and

Welker [5], have all proved some form of this result using an array of arguments,

including elimination theory, Gröbner basis, and homological algebra. Thus, our

theorem joins a generous list of similar results and yet it has a distinctive mark:

our proof is simple and short. It is simple because it is accessible to any reader who

knows the basics of free resolutions. It is short because in just a few lines we prove

the theorem for squarefree monomial ideals, and in a few more lines we reduce the

general case to the squarefree case.

The secret to simplify and shorten our proofs is to exploit intrinsic properties

of monomials such as total degree and least common multiple. For instance, we

take advantage of these properties when we introduce the Taylor resolution as a

multigraded resolution. As insubstantial as it sounds, it is manipulating these basic

notions that makes all the difference (Theorem 3.1 illustrates this point).

This work comes with a bonus. In the squarefree case, we prove something

slightly stronger than Hilbert’s Syzygy Theorem. To be precise, we show that if M
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is a squarefree monomial ideal minimally generated by monomials of degree larger

than some integer i, then pd(S/M) ≤ n− i.

2. Background and notation

Throughout this paper S represents a polynomial ring over a field, in n variables.

The letter M always denotes a monomial ideal in S.

We open this section by defining the Taylor resolution as a multigraded free

resolution, something that will turn out to be fundamental in the present work.

The construction that we give below can be found in [7].

Construction 2.1. Let M = (m1, . . . ,mq). For every subset {mi1 , . . . ,mis} of

{m1, . . . ,mq}, with 1 ≤ i1 < . . . < is ≤ q, we create a formal symbol [mi1 , . . . ,mis ],

called a Taylor symbol. The Taylor symbol associated to {} will be denoted by [∅].

For each s = 0, . . . , q, set Fs equal to the free S-module with basis {[mi1 , . . . ,mis ] :

1 ≤ i1 < . . . < is ≤ q} given by the
(
q
s

)
Taylor symbols corresponding to subsets of

size s. That is, Fs =
⊕

i1<...<is

S[mi1 , . . . ,mis ] (note that F0 = S[∅]). Define

f0 : F0 → S/M

s[∅] 7→ f0(s[∅]) = s̄.

For s = 1, . . . , q, let fs : Fs → Fs−1 be given by

fs ([mi1 , . . . ,mis ]) =

s∑
j=1

(−1)j+1 lcm(mi1 , . . . ,mis)

lcm(mi1 , . . . , m̂ij , . . . ,mis)
[mi1 , . . . , m̂ij , . . . ,mis ]

and extended by linearity. The Taylor resolution TM of S/M is the exact se-

quence

TM : 0→ Fq
fq−→ Fq−1 → · · · → F1

f1−→ F0
f0−→ S/M → 0.

Following [7], we define the multidegree of a Taylor symbol [mi1 , . . . ,mis ],

denoted mdeg[mi1 , . . . ,mis ], as follows: mdeg[mi1 , . . . ,mis ] = lcm(mi1 , . . . ,mis).

Definition 2.2. Let M be a monomial ideal, and let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ S/M → 0

be a free resolution of S/M . We say that a basis element [σ] of F has homological

degree i, denoted hdeg[σ] = i, if [σ] ∈ Fi. F is said to be a minimal resolution

if for every i, the differential matrix (fi) of F has no invertible entries.
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Note: From now on, every time that we make reference to a free resolution

F of S/M we will assume that F is obtained from TM by means of consecutive

cancellations. To help us remember this convention, the basis elements of a free

resolution will always be called Taylor symbols.

Definition 2.3. Let M be a monomial ideal, and let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ S/M → 0

be a minimal multigraded free resolution of S/M .

• For every i, the ith Betti number bi (S/M) of S/M is bi (S/M) = rank(Fi).

• For every i, j ≥ 0, the graded Betti number bij (S/M) of S/M , in

homological degree i and internal degree j, is

bij (S/M) = #{Taylor symbols [σ] of Fi : deg[σ] = j}.

• For every i ≥ 0, and every monomial l, the multigraded Betti number

bi,l (S/M) of S/M , in homological degree i and multidegree l, is

bi,l (S/M) = #{Taylor symbols [σ] of Fi : mdeg[σ] = l}.

• The projective dimension pd (S/M) of S/M is

pd (S/M) = max{i : bi (S/M) 6= 0}.

3. Hilbert’s Syzygy Theorem in the squarefree case

Without preamble, we state and prove one of our main results.

Theorem 3.1. Let M = (m1, . . . ,mq) be a squarefree monomial ideal. Suppose

that deg(m1), . . . ,deg(mq) > k, for some k ≥ 0. Then pd(S/M) ≤ n− k.

Proof. Let

F : 0→ Fp
fp−→ Fp−1 · · ·F1

f1−→ F0
f0−→ S/M → 0

be a minimal resolution of S/M . Let [θ] be a Taylor symbol of Fp and let fp[θ] =∑
ai[τi]. By the minimality of F, none of the ai is invertible, and at least one of the

ai is not zero, say ar 6= 0. It follows that mdeg[θ] = mdeg(ar[τr]). Let [σp] = [θ]

and [σp−1] = [τr]. Note that deg[σp−1] < deg[σp].

Suppose that [σp], . . . , [σp−j ] are Taylor symbols of Fp, . . . , Fp−j , respectively, such

that, for all i = 1, . . . , j, deg[σp−i] < deg[σp−i+1].

Let fp−j [σp−j ] =
∑

bi[ξi]. By the minimality of F, none of the bi is invertible,

and at least one of the bi is not zero, say bs 6= 0. It follows that mdeg[σp−j ] =

mdeg(bs[ξs]).
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Let [σp−j−1] = [ξs]. Note that deg[σp−j−1] < deg[σp−j ]. Thus, we can recursively

define a sequence [σ1], . . . , [σp] of Taylor symbols of F1, . . . , Fp, respectively, such

that k + 1 ≤ deg[σ1] < . . . < deg[σp] ≤ n. Thus, {deg[σ1], . . . ,deg[σp]} is a subset

of {k + 1, . . . , n}, and hence, p = #{deg[σ1], . . . ,deg[σp]} ≤ #{k + 1, . . . , n} =

n− k. �

Theorem 3.1 has some interesting applications. For instance, if M is an edge

ideal, then pd(S/M) ≤ n − 1. More importantly, Hilbert’s Syzygy Theorem for

squarefree monomial ideals follows from Theorem 3.1, with k = 0.

4. Hilbert’s Syzygy Theorem for monomial ideals

The following theorem is due to Gasharov, Hibi, and Peeva [4, Theorem 2.1].

We change their terminology and notation to make it consistent with our own.

Theorem 4.1. Let M be minimally generated by G, and let F be a minimal resolu-

tion of S/M . Given a monomial m, consider the ideal Mm, minimally generated by

the elements of G dividing m. Denote by Fm the subcomplex of F generated by the

Taylor symbols of F with multidegrees dividing m. Then Fm is a minimal resolution

of S/Mm.

Corollary 4.2. Let M be minimally generated by G. Given a monomial m, con-

sider the ideal Mm minimally generated by the elements of G dividing m. Then,

for all i

bi,m(S/M) = bi,m(S/Mm).

Proof. Let F be a minimal resolution of M , and let Fm be the minimal resolution

of S/Mm, given by Theorem 4.1. By construction, F and Fm have the same Taylor

symbols [σ], with hdeg[σ] = i, and mdeg[σ] = m. �

Construction 4.3. Let M = (m1, . . . ,mq), where mi = xαi1
1 . . . xαin

n , for all i.

Let m = lcm(m1, . . . ,mq). Then m factors as m = xα1
1 . . . xαn

n , where αj =

max(α1j , . . . , αqj), for all j = 1, . . . , n. For all i = 1, . . . , q, define m′i = xβi1

1 . . . xβin
n ,

where

βij =

αj , if αij = αj

0, otherwise.

Let M ′ = (m′1, . . . ,m
′
q). The ideal M ′ will be referred to as the twin ideal of M .

Example 4.4. Let M = (m1 = x2y2z,m2 = x2z2,m3 = yz2). Notice that m =

lcm(m1,m2,m3) = x2y2z2. Then m′1 = x2y2; m′2 = x2z2; m′3 = z2. Thus, the twin

ideal of M is M ′ = (x2y2, x2z2, z2) = (x2y2, z2).
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The terminology of the twin ideal is suggestive; the next theorem [1, Theorem

4.10] justifies this choice of words.

Theorem 4.5. Let M ′ be the twin ideal of M = (m1, . . . ,mq), and let m =

lcm(m1, . . . ,mq). Then bi,m(S/M) = bi,m(S/M ′), for all i.

Now we have all the tools to prove Hilbert’s Syzygy Theorem for monomial

ideals.

Theorem 4.6. Let M be a monomial ideal of S = k[x1, . . . , xn]. Then

pd(S/M) ≤ n.

Proof. Let l be a monomial. Let Ml be the ideal generated by the elements of the

minimal generating set of M dividing l. Let us denote by {m1, . . . ,mq} the minimal

generating set of Ml, where mi = xαi1
1 . . . xαin

n , for all i. Let lcm(m1, . . . ,mq) =

xα1
1 . . . xαn

n . Then the twin ideal of Ml is given by M ′l = (m′1, . . . ,m
′
q), where each

m′i factors as

m′i = xβi1

1 . . . xβin
n , with βij =

αj , if αij = αj

0, otherwise.

In particular, each xj appears with exponent either αj or 0 in the factorization of

each generator m′1, . . . ,m
′
q. Let us make the change of variables y1 = xα1

1 , . . . , yn =

xαn
n . Then m′1, . . . ,m

′
q can be represented in the form

m′1 = yδ111 . . . yδ1nn

...

m′q = y
δq1
1 . . . y

δqn
n ,

where, for all 1 ≤ i ≤ q, and all 1 ≤ j ≤ n, δij =

1 if αij = αj

0 if αij 6= αj .
Hence,

we can interpret M ′l as a squarefree monomial ideal in k[y1, . . . , yn]. By Theorem

3.1, pd

(
k[y1, . . . , yn]

M ′l

)
≤ n. Therefore, pd(S/M ′l ) ≤ n and thus, bi,l(S/M

′
l ) = 0,

for all i ≥ n + 1. Finally, from Corollary 4.2 and Theorem 4.5, we obtain that

bi,l(S/M) = bi,l(S/Ml) = bi,l(S/M
′
l ) = 0 for all i ≥ n + 1. Since l is an arbitrary

monomial, we must have that pd(S/M) ≤ n. �

We close this article with a simple observation. Once Hilbert’s Syzygy Theorem

is proven for monomial ideals, it can be easily proven for arbitrary ideals I of S

using the following well-known fact. If in(I) is the initial ideal of I (with respect
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to any ordering), then the Betti numbers of S/I are bounded above by those of

S/in(I) and, hence, pd(S/I) ≤ pd(S/in(I)) ≤ n [3,8,9].
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