Equilibria for abstract economies in Hausdorff topological vector spaces

Dedicated to Professor Anthony To-Ming Lau with much admiration.

Donal O'REGAN*

Abstract

In this paper using new fixed point results of the author, we establish a variety of existence results for equilibria for abstract economies.

Keywords: Fixed points, equilibria, abstract economies.
2020 Mathematics Subject Classification: 47H04, 47H10, 47N10, 90A14.

1. Introduction

Using strategy sets with constraint and preference correspondences defined on subsets of Hausdorff topological vector spaces, we present in this paper a variety of equilibrium results for abstract economies. These equilibrium results are deduced from recent fixed point results in the literature (see $[8,9,10]$) and our theory improves and generalizes corresponding results in the literature (see $[1,4,5,6,11,12]$ and the references therein).

Now, we recall some fixed point results [8, 9, 10] in the literature. First, we recall the following notions from the literature. For a subset K of a topological space X, we denote by $\operatorname{Cov}_{X}(K)$ the directed set of all coverings of K by open sets of X (usually we write $\operatorname{Cov}(K)=\operatorname{Cov}_{X}(K)$). Given two maps $F, G: X \rightarrow 2^{Y}$ (here 2^{Y} denotes the family of nonempty subsets of Y) and $\alpha \in \operatorname{Cov}(Y), F$ and G are said to be α-close if for any $x \in X$ there exists $U_{x} \in \alpha, y \in F(x) \cap U_{x}$ and $w \in G(x) \cap U_{x}$.

Let Q be a class of topological spaces. A space Y is an extension space for Q (written $Y \in$ $E S(Q)$) if for any pair (X, K) in Q with $K \subseteq X$ closed, any continuous function $f_{0}: K \rightarrow Y$ extends to a continuous function $f: X \rightarrow Y$. A space Y is an approximate extension space for Q (written $Y \in A E S(Q)$) if for any $\alpha \in \operatorname{Cov}(Y)$ and any pair (X, K) in Q with $K \subseteq X$ closed, and any continuous function $f_{0}: K \rightarrow Y$ there exists a continuous function $f: X \rightarrow Y$ such that $\left.f\right|_{K}$ is α-close to f_{0}.

Let V be a subset of a Hausdorff topological vector space E. Then, we say V is Schauder admissible if for every compact subset K of V and every covering $\alpha \in \operatorname{Cov}_{V}(K)$ there exists a continuous functions $\pi_{\alpha}: K \rightarrow V$ such that
(i). π_{α} and $i: K \rightarrow V$ are α-close,
(ii). $\pi_{\alpha}(K)$ is contained in a subset $C \subseteq V$ with $C \in A E S$ (compact).

[^0]X is said to be q - Schauder admissible if any nonempty compact convex subset Ω of X is Schauder admissible.

An upper semicontinuous map $\phi: X \rightarrow C K(Y)$ is said to Kakutani (and we write $\phi \in$ $K a k(X, Y)$); here $C K(Y)$ denotes the family of nonempty, convex, compact subsets of Y.

Theorem 1.1. Let I be an index set and $\left\{X_{i}\right\}_{i \in I}$ be a family of sets each in a Hausdorff topological vector space E_{i}. For each $i \in I$, let K_{i} be a nonempty compact subset of X_{i} and suppose $F_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow$ K_{i} is upper semicontinuous with nonempty convex compact values (i.e. $F_{i} \in \operatorname{Kak}\left(X, K_{i}\right)$). Also assume $K \equiv \prod_{i \in I} K_{i}$ is a Schauder admissible subset of the Hausdorff topological vector space $E \equiv$ $\prod_{i \in I} E_{i}$. Then, there exists a $x \in K$ with $x_{i} \in F_{i}(x)$ for $i \in I$ (here x_{i} is the projection of x on X_{i}).
Remark 1.1. One could repace K a Schauder admissible subset of E in Theorem 1.1 (and the other results in this paper) with other admissible subsets of E described in [7].

Let Z and W be subsets of Hausdorff topological vector spaces Y_{1} and Y_{2} and G a multifunction. We say $G \in D K T(Z, W)$ [2] if W is convex and there exists a map $S: Z \rightarrow W$ with co $(S(x)) \subseteq G(x)$ for $x \in Z, S(x) \neq \emptyset$ for each $x \in Z$ and the fibre $S^{-1}(w)=\{z \in Z: w \in S(z)\}$ is open (in Z) for each $w \in W$.

Theorem 1.2. Let I be an index set and $\left\{X_{i}\right\}_{i \in I}$ be a family of convex sets each in a Hausdorff topological vector space E_{i}. For each $i \in I$ suppose $F_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow X_{i}$ and $F_{i} \in \operatorname{DKT}\left(X, X_{i}\right)$. In addition assume for each $i \in I$ there exists a convex compact set K_{i} with $F_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Also suppose X is a q-Schauder admissible subset of the Hausdorff topological vector space $E=\prod_{i \in I} E_{i}$. Then, there exists a $x \in X$ with $x_{i} \in F_{i}(x)$ for $i \in I$.

Remark 1.2. If I is a finite set, then the assumption that " X is a q-Schauder admissible subset of the Hausdorff topological vector space $E^{\prime \prime}$ can be removed. In fact we have: Let $\left\{X_{i}\right\}_{i=1}^{N}$ be a family of convex sets each in a Hausdorff topological vector space E_{i}. For each $i \in\{1, \ldots, N\}$ suppose F_{i} : $X \equiv \prod_{i=1}^{N} X_{i} \rightarrow X_{i}$ and $F_{i} \in D K T\left(X, X_{i}\right)$. In addition assume for each $i \in\{1, \ldots, N\}$ there exists a convex compact set K_{i} with $F_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Then, there exists a $x \in X$ with $x_{i} \in F_{i}(x)$ for $i \in\{1, \ldots, N\}$.

Let Z and W be subsets of Hausdorff topological vector spaces Y_{1} and Y_{2} and F a multifunction. We say $F \in \operatorname{HLPY}(Z, W)[3,4]$ if W is convex and there exists a map $S: Z \rightarrow W$ with co $(S(x)) \subseteq F(x)$ for $x \in Z, S(x) \neq \emptyset$ for each $x \in Z$ and $Z=\bigcup\left\{\right.$ int $\left.S^{-1}(w): w \in W\right\}$; here $S^{-1}(w)=\{z \in Z: w \in S(z)\}$.

Theorem 1.3. Let I be an index set and $\left\{X_{i}\right\}_{i \in I}$ be a family of convex sets each in a Hausdorff topological vector space E_{i}. For each $i \in I$ suppose $F_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow X_{i}$ and $F_{i} \in \operatorname{HLPY}\left(X, X_{i}\right)$. In addition assume for each $i \in I$ there exists a convex compact set K_{i} with $F_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Also suppose X is a q-Schauder admissible subset of the Hausdorff topological vector space $E=\prod_{i \in I} E_{i}$. Then, there exists a $x \in X$ with $x_{i} \in F_{i}(x)$ for $i \in I$.

Remark 1.3. If I is a finite set, then the assumption that " X is a q-Schauder admissible subset of the Hausdorff topological vector space $E^{\prime \prime}$ can be removed. In fact we have: Let $\left\{X_{i}\right\}_{i=1}^{N}$ be a family of convex sets each in a Hausdorff topological vector space E_{i}. For each $i \in\{1, \ldots, N\}$ suppose $F_{i}: X \equiv$ $\prod_{i=1}^{N} X_{i} \rightarrow X_{i}$ and $F_{i} \in \operatorname{HLPY}\left(X, X_{i}\right)$. In addition assume for each $i \in\{1, \ldots, N\}$ there exists a convex compact set K_{i} with $F_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Then, there exists a $x \in X$ with $x_{i} \in F_{i}(x)$ for $i \in\{1, \ldots, N\}$.

We now state a result from the literature [11] which will be used in Section 2.

Theorem 1.4. Let X and Y be two topological spaces and A an open subset of X. Suppose $F_{1}: X \rightarrow$ $2^{Y}, F_{2}: A \rightarrow 2^{Y}$ (here 2^{Y} denotes the family of nonempty subsets of Y) are upper semicontinuous such that $F_{2}(x) \subset F_{1}(x)$ for all $x \in A$. Then, the map $F: X \rightarrow 2^{Y}$ defined by

$$
F(x)= \begin{cases}F_{1}(x), & x \notin A \\ F_{2}(x), & x \in A\end{cases}
$$

is upper semicontinuous.

2. AbSTRACT ECONOMY RESULTS

Let I be the set of agents and we describe the abstract economy as $\Gamma=\left(X_{i}, A_{i}, B_{i}, P_{i}\right)_{i \in I}$, where $A_{i}, B_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow 2^{E_{i}}$ are constraint correspondences, $P_{i}: X \rightarrow 2^{E_{i}}$ is a preference correspondence and X_{i} is a choice (or strategy) set which is a subset of a Hausdorff topological vector space E_{i}. We are interested in finding an equilibrium point for Γ i.e. a point $x \in X$ with $x_{i} \in \overline{B_{i}}(x)$ and co $A_{i}(x) \cap \operatorname{co} P_{i}(x)=\emptyset$ (or $x_{i} \in B_{i}(x)$ and $\left.A_{i}(x) \cap P_{i}(x)=\emptyset\right)$ for $i \in I$.

Theorem 2.5. Let $\Gamma=\left(X_{i}, A_{i}, B_{i}, P_{i}\right)_{i \in I}$ be an abstract economy with $\left\{X_{i}\right\}_{i \in I}$ a family of nonempty sets each in a Hausdorff topological vector space E_{i} (here I is an index set). For each $i \in I$, let A_{i}, B_{i}, P_{i} : $X \equiv \prod_{i \in I} X_{i} \rightarrow 2^{E_{i}}$ and assume the following conditions are satisfied:

$$
\begin{equation*}
U_{i}=\left\{x \in X: \text { co } A_{i}(x) \cap \operatorname{co} P_{i}(x) \neq \emptyset\right\} \text { is paracompact and open in } X \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{cl} B_{i}\left(\equiv \overline{B_{i}}\right): X \rightarrow C K\left(E_{i}\right) \text { is upper semicontinuous } \tag{2.2}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { there exists a nonempty compact subset } K_{i} \text { of } X_{i} \text { with } \overline{B_{i}}: X \rightarrow C K\left(K_{i}\right) \tag{2.3}\\
\text { and } K \equiv \prod_{i \in I} K_{i} \text { is a Schauder admissible subset of } E \equiv \prod_{i \in I} E_{i}
\end{array}\right.
$$

and

$$
\begin{equation*}
x_{i} \notin \operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x) \text { if } x \in U_{i} \text {; here } x_{i} \text { is the projection of } x \text { on } E_{i} \text {. } \tag{2.4}
\end{equation*}
$$

For $i \in I$ and $x \in X$, let $H_{i}(x)=\operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x)$ and suppose

$$
\begin{equation*}
H_{i}(x) \subseteq \overline{B_{i}}(x) \text { for } x \in U_{i} \tag{2.5}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\text { there exists a } S_{i}: U_{i} \rightarrow 2^{E_{i}} \text { with co } S_{i}(x) \subseteq H_{i}(x) \text { for } x \in U_{i} \tag{2.6}\\
\text { and } \left.S_{i}^{-1}(y) \text { is open (in } U_{i}\right) \text { for each } y \in E_{i} .
\end{array}\right.
$$

Then there exists a $x \in X$ with for each $i \in I$, we have $x_{i} \in \overline{B_{i}}(x)$ and co $A_{i}(x) \cap \operatorname{co} P_{i}(x)=\emptyset$.
Proof. Note for each $i \in I$ from (2.6), we have $H_{i} \in D K T\left(U_{i}, E_{i}\right)$ so from [2] there exists a continuous (single valued) selection $f_{i}: U_{i} \rightarrow E_{i}$ of H_{i} with $f_{i}(x) \in \operatorname{co}\left(S_{i}(x)\right) \subseteq H_{i}(x)$ for $x \in U_{i}$. For each $i \in I$, let

$$
G_{i}(x)= \begin{cases}f_{i}(x), & x \in U_{i} \\ \frac{B_{i}}{}(x), & x \notin U_{i}\end{cases}
$$

Note for each $i \in I$ that $\left\{f_{i}(x)\right\} \subseteq c o\left(S_{i}(x)\right) \subseteq H_{i}(x) \subseteq \overline{B_{i}}(x)$ (see (2.5)) if $x \in U_{i}$, so Theorem 1.4 guarantees that $G_{i}: X \rightarrow C K\left(E_{i}\right)$ is upper semicontinuous. Also for each $i \in I$, we have $G_{i}(x) \subseteq \overline{B_{i}}(x) \subseteq K_{i}$ for $x \in X$ so $G_{i} \in \operatorname{Kak}\left(X, K_{i}\right)$. Now, Theorem 1.1 guarantees a $x \in K$ with $x_{i} \in G_{i}(x)$ for $i \in I$. If $x \in U_{i}$ for some $i \in I$, then $x_{i}=f_{i}(x) \in H_{i}(x)=\operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x)$, which contradicts (2.4). Thus for each $i \in I$, we must have $x \notin U_{i}$ and then we have $x_{i} \in \overline{B_{i}}(x)$ and $\operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x)=\emptyset$.

Remark 2.4.

(i). If $i \in I$ and $H_{i}^{-1}(y)$ is open (in X) for each $y \in E_{i}$, then U_{i} in (2.1) is automatically open in X. This is immediate once one notices that $U_{i}=\cup_{y \in E_{i}} H_{i}^{-1}(y)$.
(ii). Of course there are other obvious analogues of Theorem 2.5 if the assumptions on co $A_{i} \cap$ co P_{i} are replaced by assumptions on co $A_{i} \cap P_{i}$ or $\overline{\operatorname{co}} A_{i} \cap P_{i}$ or $\overline{\operatorname{co}} A_{i} \cap \overline{\operatorname{co}} P_{i}$ or $\overline{\operatorname{co}} A_{i} \cap$ co P_{i} or $A_{i} \cap$ co P_{i} or $A_{i} \cap \overline{c o} P_{i}$ or $A_{i} \cap P_{i}$ or co $A_{i} \cap \overline{c o} P_{i}$ and the assumptions on $\overline{B_{i}}$ are replaced by assumptions on B_{i}.

Remark 2.5. For each $i \in I$ suppose there exists a map $S_{i}: X \rightarrow E_{i}$ (which may have empty values) with co $S_{i}(x) \subseteq H_{i}(x)$ for $x \in X$, the fibres $S_{i}^{-1}(y)$ are open (in X) for each $y \in E_{i}$ and also assume if $x \in U_{i}$, then $S_{i}(x) \neq \emptyset$. Then, (2.6) holds with S_{i} replaced by $\left.S_{i}\right|_{U_{i}}$. Let S_{i}^{\star} denote $\left.S_{i}\right|_{U_{i}}$. For $i \in I$ note $S_{i}^{\star}: U_{i} \rightarrow 2^{E_{i}}$, co $S_{i}^{\star}(x) \subseteq H_{i}(x)$ for $x \in U_{i}$ and for $y \in E_{i}$ note

$$
\left(S_{i}^{\star}\right)^{-1}(y)=\left\{x \in U_{i}: y \in S_{i}^{\star}(x)\right\}=\left\{x \in X: y \in S_{i}(x)\right\} \cap U_{i}=S_{i}^{-1}(y) \cap U_{i},
$$

so $\left(S_{i}^{\star}\right)^{-1}(y)$ which is open in U_{i}.
Theorem 2.6. Let $\Gamma=\left(X_{i}, A_{i}, B_{i}, P_{i}\right)_{i \in I}$ be an abstract economy with $\left\{X_{i}\right\}_{i \in I}$ a family of nonempty sets each in a Hausdorff topological vector space E_{i} (here I is an index set). For each $i \in I$, let $A_{i}, B_{i}, P_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow 2^{E_{i}}$ and assume (2.1), (2.2), (2.3) and (2.4) hold. For $i \in I$ and $x \in X$, let $H_{i}(x)=\operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x)$ and suppose (2.5) holds. In addition for each $i \in I$ assume

$$
\left\{\begin{array}{l}
\text { there exists a } S_{i}: U_{i} \rightarrow 2^{E_{i}} \text { with } \operatorname{co} S_{i}(x) \subseteq H_{i}(x) \text { for } x \in U_{i} \tag{2.7}\\
\text { and } U_{i}=\bigcup\left\{\operatorname{int}_{U_{i}} S_{i}^{-1}(w): w \in E_{i}\right\}
\end{array} .\right.
$$

Then there exists a $x \in X$ with for each $i \in I$ we have $x_{i} \in \overline{B_{i}}(x)$ and $\operatorname{co} A_{i}(x) \cap \operatorname{co} P_{i}(x)=\emptyset$.
Proof. Note for each $i \in I$ from (2.7), we have $H_{i} \in \operatorname{HLPY}\left(U_{i}, E_{i}\right)$ so from [4] there exists a continuous (single valued) selection $f_{i}: U_{i} \rightarrow E_{i}$ of H_{i} with $f_{i}(x) \in \operatorname{co}\left(S_{i}(x)\right) \subseteq H_{i}(x)$ for $x \in U_{i}$. Let G_{i} for $i \in I$ be as in Theorem 2.5 and the same reasoning guarantees a $x \in K$ with $x_{i} \in G_{i}(x)$ for $i \in I$.

Remark 2.6. For each $i \in I$ suppose there exists a map $S_{i}: X \rightarrow E_{i}$ (which may have empty values) with $\cos S_{i}(x) \subseteq H_{i}(x)$ for $x \in X, X=\bigcup\left\{\operatorname{int}_{X} S_{i}^{-1}(w): w \in E_{i}\right\}$ and also assume if $x \in U_{i}$, then $S_{i}(x) \neq \emptyset$. Then, (2.7) holds with S_{i} replaced by $\left.S_{i}\right|_{U_{i}}$. Let S_{i}^{\star} denote $\left.S_{i}\right|_{U_{i}}$. For $i \in I$ note $S_{i}^{\star}: U_{i} \rightarrow 2^{E_{i}}, \operatorname{co} S_{i}^{\star}(x) \subseteq H_{i}(x)$ for $x \in U_{i}$ and now we show $U_{i}=\bigcup\left\{\operatorname{int}_{U_{i}}\left(S_{i}^{\star}\right)^{-1}(w): w \in E_{i}\right\}$. To see this notice

$$
U_{i}=U_{i} \cap X=U_{i} \cap\left(\bigcup\left\{i n t_{X} S_{i}^{-1}(w): w \in E_{i}\right\}\right)=\bigcup\left\{U_{i} \cap i n t_{X} S_{i}^{-1}(w): w \in E_{i}\right\}
$$

so $U_{i} \subseteq \bigcup\left\{\operatorname{int}_{U_{i}}\left(S_{i}^{\star}\right)^{-1}(w): w \in E_{i}\right\}$ since for each $w \in E_{i}$, we have that $U_{i} \cap \operatorname{int}_{X} S_{i}^{-1}(w)$ is open in U_{i}. On the other hand clearly $\bigcup\left\{\operatorname{int}_{U_{i}}\left(S_{i}^{\star}\right)^{-1}(w): w \in E_{i}\right\} \subseteq U_{i}$ so as a result $U_{i}=$ $\bigcup\left\{\operatorname{int}_{U_{i}}\left(S_{i}^{\star}\right)^{-1}(w): w \in E_{i}\right\}$.
Theorem 2.7. Let $\Gamma=\left(X_{i}, A_{i}, B_{i}, P_{i}\right)_{i \in I}$ be an abstract economy with $\left\{X_{i}\right\}_{i \in I}$ a family of nonempty convex sets each in a Hausdorff topological vector space E_{i} (here I is an index set). For each $i \in I$, let $A_{i}, B_{i}, P_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow 2^{E_{i}}$ and assume the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{co}\left(A_{i}(x)\right) \subseteq B_{i}(x) \text { for } x \in X \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
x_{i} \notin B_{i}(x) \cap \operatorname{co} P_{i}(x) \text { if } x \in X \text { and } A_{i}(x) \cap P_{i}(x) \neq \emptyset \tag{2.9}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { there exists a nonempty convex compact subset } K_{i} \text { of } X_{i} \tag{2.10}\\
\text { with } B_{i}(X) \subseteq K_{i} \subseteq X_{i}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { for each } y_{i} \in X_{i} \text { the set }\left[\left(\text { co } P_{i}\right)^{-1}\left(y_{i}\right) \cup M_{i}\right] \cap A_{i}^{-1}\left(y_{i}\right) \tag{2.11}\\
\text { is open in } \left.X \text { (here } M_{i}=\left\{x \in X: A A_{i}(x) \cap P_{i}(x)=\emptyset\right\}\right)
\end{array}\right.
$$

Finally, assume X is a q-Schauder admissible subset of $E=\prod_{i \in I} E_{i}$. Then there exists a $x \in X$ with for each $i \in I$, we have $x_{i} \in B_{i}(x)$ and $A_{i}(x) \cap P_{i}(x)=\emptyset$.
Proof. For each $i \in I$, let $N_{i}=\left\{x \in X: A_{i}(x) \cap P_{i}(x) \neq \emptyset\right\}$ and for each $x \in X$ let

$$
I(x)=\left\{i \in I: A_{i}(x) \cap P_{i}(x) \neq \emptyset\right\} .
$$

For each $i \in I$, let $F_{i}, G_{i}: X \rightarrow 2^{X_{i}}$ be given by

$$
F_{i}(x)= \begin{cases}A_{i}(x) \cap \operatorname{co} P_{i}(x), & i \in I(x) \\ A_{i}(x), & i \notin I(x)\end{cases}
$$

and

$$
G_{i}(x)=\left\{\begin{array}{ll}
B_{i}(x) \cap c o P_{i}(x) & , i \in I(x) \\
B_{i}(x) & , i \notin I(x)
\end{array} .\right.
$$

Fix $i \in I$. Note from (2.8) that $\operatorname{co} F_{i}(x) \subseteq G_{i}(x)$ for $x \in X$ (and note $F_{i}(x) \neq \emptyset$ for $x \in X$). Also note for each $y_{i} \in X_{i}$, we have

$$
\begin{aligned}
F_{i}^{-1}\left(y_{i}\right) & =\left\{x \in X: y_{i} \in F_{i}(x)\right\} \\
& =\left\{x \in N_{i}: y_{i} \in A_{i}(x) \cap c o P_{i}(x)\right\} \cup\left\{x \in M_{i}: y_{i} \in A_{i}(x)\right\} \\
& =\left\{\left[\left(c o P_{i}\right)^{-1}\left(y_{i}\right) \cap A_{i}^{-1}\left(y_{i}\right)\right] \cap N_{i}\right\} \cup\left\{A_{i}^{-1}\left(y_{i}\right) \cap M_{i}\right\} \\
& =\left[\left(c o P_{i}\right)^{-1}\left(y_{i}\right) \cap A_{i}^{-1}\left(y_{i}\right)\right] \cup\left[A_{i}^{-1}\left(y_{i}\right) \cap M_{i}\right] \\
& =\left[\left(c o P_{i}\right)^{-1}\left(y_{i}\right) \cup M_{i}\right] \cap A_{i}^{-1}\left(y_{i}\right)
\end{aligned}
$$

which (see (2.11)) is open in X. Thus for each $i \in I$, we have $G_{i} \in D K T\left(X, X_{i}\right)$ and also from (2.10) note $G_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Now, Theorem 1.2 guarantees a $x \in K$ with $x_{i} \in G_{i}(x)$ for $i \in I$. Note if $i \in I(x)$ for some $i \in I$ then $A_{i}(x) \cap P_{i}(x) \neq \emptyset$ and $x_{i} \in B_{i}(x) \cap c o P_{i}(x)$, which contradicts (2.9). Thus $i \notin I(x)$ for all $i \in I$. Consequently, $x_{i} \in B_{i}(x)$ and $A_{i}(x) \cap P_{i}(x)=\emptyset$ for all $i \in I$.

Remark 2.7. In Theorem 2.7 if I is a finite set, then the assumption that " X is a q-Schauder admissible subset of the Hausdorff topological vector space E " can be removed (see Remark 1.2).

Theorem 2.8. Let $\Gamma=\left(X_{i}, A_{i}, B_{i}, P_{i}\right)_{i \in I}$ be an abstract economy with $\left\{X_{i}\right\}_{i \in I}$ a family of nonempty convex sets each in a Hausdorff topological vector space E_{i} (here I is an index set). For each $i \in I$, let $A_{i}, B_{i}, P_{i}: X \equiv \prod_{i \in I} X_{i} \rightarrow 2^{E_{i}}$ and assume (2.8), (2.9) and (2.10) hold. Also suppose X is a $q-$ Schauder admissible subset of $E=\prod_{i \in I} E_{i}$. For each $x \in X$, let $I(x)=\left\{i \in I: A_{i}(x) \cap P_{i}(x) \neq \emptyset\right\}$ and for each $i \in I$, let

$$
F_{i}(x)= \begin{cases}A_{i}(x) \cap c o P_{i}(x), & i \in I(x) \\ A_{i}(x), & i \notin I(x)\end{cases}
$$

and assume that

$$
\begin{equation*}
X=\cup\left\{\operatorname{int} F_{i}^{-1}(w): w \in X_{i}\right\} \tag{2.12}
\end{equation*}
$$

Then there exists a $x \in X$ with for each $i \in I$, we have $x_{i} \in B_{i}(x)$ and $A_{i}(x) \cap P_{i}(x)=\emptyset$.
Proof. Let N_{i} and G_{i} be as in Theorem 2.7. For $i \in I$ note $F_{i}(x) \neq \emptyset$ and co $F_{i}(x) \subseteq G_{i}(x)$ for $x \in X$ and $X=\cup\left\{\operatorname{int} F_{i}^{-1}(w): w \in X_{i}\right\}$. Thus for each $i \in I$, we have $G_{i} \in \operatorname{HLPY}\left(X, X_{i}\right)$ and also from (2.10) note $G_{i}(X) \subseteq K_{i} \subseteq X_{i}$. Now, Theorem 1.3 guarantees a $x \in K$ with $x_{i} \in G_{i}(x)$ for $i \in I$ and the reasoning in Theorem 2.7 guarantees the result.

Remark 2.8. In Theorem 2.8 if I is a finite set, then the assumption that " X is a q-Schauder admissible subset of the Hausdorff topological vector space E " can be removed (see Remark 1.3).

REFERENCES

[1] R. P. Agarwal, D. O'Regan: A note on equilibria for abstract economies, Mathematical and Computer Modelling, 34 (2001), 331-343.
[2] X. P. Ding, W. K. Kim and K. K. Tan: A selection theorem and its applications, Bulletin Australian Math. Soc., 46 (1992), 205-212.
[3] C. D. Horvath: Contractibility and generalized convexity, Jour. Math. Anal. Appl., 156 (1991), 341-357.
[4] L. J. Lim, S. Park and Z. T. Yu: Remarks on fixed points, maximal elements and equilibria of generalized games, Jour. Math. Anal. Appl., 233 (1999), 581-596.
[5] G. Mehta, K. K. Tan and X. Y. Yuan: Fixed points, maximal elements and equilibia of generalized games, Nonlinear Analysis, 28 (1997), 689-699.
[6] E. Tarafdar: A fixed point theorem and equilibrium point in abstract economy, J. Math. Econom., 20 (1991), 211-218.
[7] D. O'Regan: Deterministic and random fixed points for maps on extension type spaces, Applicable Analysis, 97 (2018), 1960-1966.
[8] D. O'Regan: Collectively fixed point theory in the compact and coercive cases, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 30 (2022), 193-207.
[9] D. O'Regan: A note on collectively fixed and coincidence points, submitted.
[10] D. O'Regan: Maximal elements for Kakutani maps, Journal of Mathematics and Computer Science, 27 (2022), 77-85.
[11] K. K. Tan, X. Z. Yuan: Maximal elements and equilibria for U-majorised preferences, Bull. Austral. Math. Soc., 49 (1994), 47-54.
[12] N. Yannelis, N. Prabhaker: Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., 12 (1983), 233-246.

Donal O'REGAN
National University of Ireland
School of Mathematical and Statistical Sciences
Galway, Ireland
ORCID: 0000-0002-4096-1469
E-mail address: donal. oregan@nuigalway.ie

[^0]: Received: 12.03.2022; Accepted: 24.04.2022; Published Online: 30.04.2022
 *Corresponding author: Donal O'Regan; donal.oregan@nuigalway.ie
 DOI: 10.33205/cma. 1102400

