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Abstract 

The diagnosis of breast cancer and the determination of the cancer types are essential 

pieces of information for cancer research in monitoring and managing the disease. In 

recent years, artificial intelligence techniques have led to many developments in 

medicine, as any information about the patient has become more valuable. In 

particular, artificial intelligence methods used in the detection and classification of 

cancer tissues directly assist physicians and contribute to the management of the 

treatment process. This study aims to classify breast tissues with ten different tissue 

characteristics by utilizing the breast tissue data set, which has 106 electrical 

impedance spectroscopies taken from 64 patients in the UCI Machine Learning 

Repository database. Various machine learning algorithms including k-nearest 

neighbors, support vector machine, decision tree, self-organizing fuzzy logic, and 

convolutional neural networks are used to classify these tissues with an accuracy of 

81%, 78%, 82%, 92%, and 96%, respectively. This study demonstrated the benefit 

of the usage of convolutional neural networks in cancer detection and tissue 

classification. Compared to traditional methods, convolutional neural networks 

provided better and more reliable results. 
 

 
1. Introduction 

 

Machine learning algorithms aim to analyze large 

data sets and intend to use the obtained information in 

a valuable way. Advances in machine learning and 

data processing techniques have directly affected 

many areas, especially the fields of the automotive 

[1], entertainment sector, digital markets [2], texture 

[3], fashion, defense [4] industries, and health [5]. 

Development of these algorithms leads to a variety of 

studies being done in these areas, especially in 

medicine. 

The development of artificial intelligence 

techniques in parallel with technology has brought 

many developments in the field of health. These 

developments have made data on patients more 

valuable. Among these disease data sets, especially 

the analysis of data sets related to the diagnosis and 

classification of cancer diseases with artificial 
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intelligence algorithms, produces direct results to help 

physicians and brings out results that will contribute 

to managing the treatment process. 

Breast cancer is a type of cancer that grows 

slowly but can cause death rapidly when 

metastasizing and is the first leading cause of death 

after lung cancer among women with cancer in the 

world [6]. Research shows that the most important 

risk factor for the spread of breast cancer is the density 

of the breast tissue [7]. As with other types of cancer, 

the diagnosis of breast cancer at an early stage and the 

determination of cancerous tissue are of great 

importance in terms of monitoring the disease and 

implementing treatment. 

It is known that the electrical impedance of 

breast tissue is compatible with the electrical 

properties of human tissue, which includes both 

resistance and capacitance, and that the electrical 

properties of biological tissues show significant 
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differences depending on the structure and frequency 

[8]. Therefore, it is a complex and difficult process to 

define tissue characteristics using traditional 

methods. Advanced technical approaches provided by 

the developments in technology have become very 

useful in this context. 

Electrical impedance techniques have 

emerged for use in obtaining and imaging tissue 

characteristics, have been used for a long time [9], and 

allow impedance mapping [10]. In a study presented 

by Jossinet in 1998 [10], significant differences were 

observed in the impedance and phase angle values in 

the examination between 6 different breast tissues in 

the range of 488 Hz to 1 MHz. These results suggest 

that electrical impedance spectroscopy (EIS) is a 

primary modality for classifying breast tissues and 

especially for the detection of breast cancer. Da Silva 

et al. proposed a breast tissue classification study 

using EIS [11]. Using the data obtained from 106 

patients in an interventional way with EIS, the breast 

tissues were characterized and classified into 6 

different types. Furthermore, a new data set was 

obtained in this study, which is called the UCI breast 

tissue data set [11]. Kerner et al. presented a 

classification study of breast tissue using EIS in 26 

patients [12]. Images obtained from a multi-frequency 

EIS system are reconstructed using nonlinear 

differential equations, and an 83% performance rate 

is achieved on these images based on a special visual 

criterion. 

Enachescu et al. presented a method based on 

the UCI breast tissue data set to detect and predict the 

presence of cancerous tissue in the breast [13]. In their 

study, the learning vector quantization (LVQ) method 

was used and an accuracy of 77% was obtained in the 

detection of breast tissue. Wu and Ng studied tissue 

classification on the UCI breast tissue data set using 

the radial-based function with different classifiers; 

naive bayes (NB), simple average (SA), and majority 

vote (MV). They achieved accuracies of 64%, 67%, 

67%, and 80%, respectively [14]. 

In their study, Prasad et al. classified the UCI 

breast tissue data set by creating a fuzzy logic 

classification model, and an accuracy of 72% was 

achieved in the overall classification [15]. 

There are studies in the literature using hybrid 

algorithms. Alonso et al. tried to classify the UCI 

breast tissue data set using the logistic regression, NB, 

and the k-nearest neighbor (kNN) algorithms, and 

they achieved a success rate of 77% [16]. Also, the 

performance rate increased to 96% with a hybrid 

algorithm using a Bayesian approach. Daliri 

developed a hybrid algorithm by using the extreme 

learning machine (ELM) and support vector machines 

(SVM) methods and applied the hybrid algorithm to 

the UCI breast tissue data set [17]. In [17], an average 

value of 88% accuracy was obtained in classifying six 

different breast tissues in the data set. Eroğlu et al. 

classified the UCI breast tissue data set using 

ensemble learning algorithms such as random forest, 

SVM, and traditional artificial neural networks [18]. 

Using these methods, authors have achieved 

accuracies ranging from 76% to 83%. Liu et al. used 

the SVM algorithm for the classification of the UCI 

breast tissue data set and an average accuracy of 80% 

was obtained [19]. In the study of Ayyappan, breast 

tissue classification was carried out with different 

machine learning classifiers [20]. Since different 

results were obtained with different classifiers, the 

highest performance rate was obtained using bagging 

classification with 96%. Rahman et al. applied 

ensemble learning-based machine learning 

algorithms to the UCI breast tissue data set and 

classified different breast tissues [21]. The random 

forest (RF), decision trees (DT), AdaBoost, and 

gradient boosted regression trees have achieved 78%, 

86%, 60%, and 75% success, respectively. Sadad et 

al. proposed a fuzzy c-means and region-growing 

based algorithm for segmentation and classification 

of tumours in mammograms [22]. Local binary 

pattern gray-level co-occurrence matrix and local 

phase quantization techniques were used to extract 

features [22]. A precision of 98.2% was achieved for 

the MIAS data set with DT and 95.8% was obtained 

for the DDSM data set using the kNN classifier [22]. 

Zhang et al. presented a convolutional neural network 

(CNN) based study to identify abnormal breast tissues 

taken from the MIAS data set [23]. An improved nine-

layer CNN was proposed and a comparison of three 

activation functions; rectified linear unit (ReLU), 

leaky ReLU, and parametric ReLU, was made. In 

addition, six different pooling techniques were 

compared, and an accuracy of 94% was obtained with 

the combination of parametric ReLU and rank-based 

stochastic pooling. 

In this study, different algorithms were 

utilized for the classification of breast tissues in the 

UCI breast tissue data set, and it was aimed to 

distinguish EIS measurements most efficiently. For 

this purpose, the classification accuracies of 

traditional algorithms such as SVM, kNN, and DT 

and advanced algorithms such as SOFLC and CNN 

were compared using the features of the breast tissue. 

Despite the fact that tissue classification and cancer 

detection studies have accelerated with the 

development of artificial neural network technology 

in recent years, one of the most important issues in 

CNN-based studies is that efficiency and cost are 

directly proportional. Therefore, attention is paid to 

keeping the efficiency high and maintaining the speed 



M. B. Bicer, H. Yanık / BEU Fen Bilimleri Dergisi 11 (3), 798-811, 2022 

800 
 

of the algorithm while creating the CNN model. The 

question of whether the accuracy can be increased by 

using CNN for the UCI breast tissue data set has been 

the main motivation for this study. In addition to that, 

a new classifier called self-organizing fuzzy logic 

(SOFL) is applied to the same data set in order to 

evaluate the performance of it in such a highly used 

and cited data set. 

 

2. Material and Method 

 

In this study, it is aimed to classify six different breast 

tissues using UCI breast tissue data set [11] 

containing 106 different EIS measurements. Details 

concerning the data collection procedure are given in 

[10] and the properties of the data set can be seen in 

Table 1. 

 
Table 1. Data set features 

Parameter Properties 

Data set characteristic Multivariate 

Feature characteristic Real number 

Number of data 106 

Number of features 10 

Number of classes 6 

 

The names and abbreviations of the six 

classes and the number of samples in each are given 

in Table 2. These samples were obtained from 64 

different patients. In addition to that, the definitions 

of the features in the data set are given in Table 3. 

Using these features, the classification of six different 

breast tissues and detection of cancerous tissue can be 

done. Descriptive statistics for the data set are 

calculated for each feature and class in the data set, 

and given in the Table 4. As seen in Table 4, the 

range of values taken by each feature is at 

different levels. While the values of PA500 and 

HFS parameters are much less than 1, the values 

of Area, P, and I0 parameters are quite large. 

Table 2. Breast tissue types and data population 

Class Abbreviation Number of samples 

Carcinoma car 21 

Fibroadenoma fad 15 

Mastopathy mas 18 

Glandular gla 16 

Connective con 14 

Adipose adi 22 

 
Table 3. Feature information of data set 

Parameter Details 

I0 Impedivity (ohm) at zero frequency 

PA500 Phase angle at 500 kHz 

HFS High-frequency slope of phase angle 

DA Impedance distance between spectral ends 

Area Area under spectrum 

A/DA 
Area normalized by impedance distance 

between spectral ends 

Max IP Maximum of the spectrum 

DP 

Distance between impedivity (ohm) at zero 

frequency and real part of the maximum 

frequency point 

P Length of the spectral curve 

Class 6 different classes 

 

The calculated correlation values between 

features are given in Table 5. When the correlation 

matrix given in Table 5 is examined, the features of 

P, DR, Area, and HFS features show high correlations 

with the I0 and Max IP, DA, A/DA, and PA500 

features, respectively. The machine learning 

algorithms used in this study will be discussed in turn 

by considering the accuracy values obtained for test 

data. Statistics and confusion matrix plots regarding 

the results obtained with the presented classifiers are 

given in the Results and Discussion Section. 

 

 
Table 4. Descriptive statistics for the data set 

  Case I0 PA500 HFS DA Area A/DA Max IP DR P Class 

Count 106.000 106.000 106.000 106.000 106.000 106.000 106.000 106.000 106.000 106.000 106.000 

Mean 53.500 784.252 0.120 0.115 190.569 7335.155 23.474 75.381 166.711 810.638 3.500 

Standard Deviation 30.744 753.950 0.069 0.101 190.801 18580.314 23.355 81.346 181.310 763.019 1.806 

Minimum Value 1.000 103.000 0.012 -0.066 19.648 70.426 1.596 7.969 -9.258 124.979 1.000 

1st Quartile 27.250 250.000 0.067 0.044 53.846 409.647 8.180 26.894 41.781 270.215 2.000 

2nd Quartile 53.500 384.937 0.105 0.087 120.777 2219.581 16.134 44.216 97.833 454.108 3.000 

3rd Quartile 79.750 1487.990 0.170 0.167 255.335 7615.205 30.953 83.672 232.990 1301.559 5.000 

Maximum Value 106.000 2800.000 0.358 0.468 1063.441 174480.476 164.072 436.100 977.552 2896.583 6.000 
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Table 5. Correlation of the features in the data set 

  I0 PA500 HFS DA Area A/DA Max IP DR P 

I0 1.000 -0.394 0.029 0.820 0.560 0.612 0.824 0.733 0.989 

PA500 -0.394 1.000 0.509 -0.090 0.084 0.230 -0.050 -0.077 -0.346 

HFS 0.029 0.509 1.000 0.107 0.206 0.356 0.371 0.012 0.102 

DA 0.820 -0.090 0.107 1.000 0.731 0.648 0.753 0.974 0.774 

Area 0.560 0.084 0.206 0.731 1.000 0.830 0.735 0.676 0.574 

A/DA 0.612 0.230 0.356 0.648 0.830 1.000 0.813 0.541 0.679 

Max IP 0.824 -0.050 0.371 0.753 0.735 0.813 1.000 0.600 0.862 

DR 0.733 -0.077 0.012 0.974 0.676 0.541 0.600 1.000 0.666 

P 0.989 -0.349 0.102 0.774 0.574 0.679 0.862 0.666 1.000 

 

2.1. Support Vector Machine 

 

Support vector machine (SVM) is a vector space-

based supervised artificial learning technique, 

adopted to solve the classification of single or multi-

label data and regression problems, depending on the 

distance between two points in the data sets [24]. 

Although linear and nonlinear SVMs kernels can be 

applied according to the structure of the data, the 

linear SVM kernel is preferred in this study. While 

76.42% of the data was used in the training of the 

presented SVM model, the remaining part of the data 

was used to test. 

 

2.2. k-Nearest Neighbors (kNN) 

 

Cover and Hart proposed the k-nearest neighbors 

(kNN) algorithm, which is one of the most widely 

used supervised machine-learning algorithms [25]. 

This algorithm is generally used in solving 

classification problems. It is generally used when all 

the features in a data set are continuous. 

In kNN classification, firstly, the k value is 

determined in the algorithm. The k value corresponds 

to the number of elements to be examined. The 

distance between samples whose classes are known 

and new samples whose classes are tried to be found 

in the data set is calculated. Distances are computed 

using distance functions and sorted by their values. 

The nearest neighbors of the new sample are obtained, 

and the nearest class is selected based on distance 

functions. In this study, the Euclidean distance 

function (EDF) is used to perform the calculation as 

it is the most commonly used one in the literature. The 

mathematical expression of EDF is given in Eq. (1). 

 

   
2

1

,
N

i i

i

d x y x y


   (1) 

 

d represents the distance between two points, and x 

and y denote the predicted and true values, 

respectively. There are many approaches to choosing 

the k value as it may vary depending on the data set. 

There are some important criteria when choosing the 

precise k value. Choosing a small k value causes noise 

to have bigger deflections on the result, while 

choosing a large k value increases the computational 

cost of the study. Generally, when trying different k 

values, the square root of the number of data points is 

taken as the upper limit value, and searching should 

start with a small value. The values between 1 and 10 

as the k value were tried iteratively, and the value of 

5 that gives the best accuracy for the classification 

problem was selected. 

 

2.3. Decision Trees 

 

Decision trees (DT) are relational probability maps in 

the form of a kind of tree. Quinlan inducts this 

algorithm and it helps to visualize and create feature 

thresholds based on decisions. In addition, DT 

demonstrates the best separation of a decision 

mathematically according to the characteristics of a 

data set [26]. 

Generally, a DT starts with a single node, and 

each node gives another opportunity to the next two 

possibilities, and the tree grows to the best separation. 

Nodes can vary between probability, decision, or end 

nodes based on their location. 

DT classifiers classify as rule-based machine 

learning algorithms in multi and continuous feature 

data sets. Each decision tree branch is branched with 

feature-based threshold rules and causes new 

decisions that provide the opportunity to determine 

the correct class within the framework of these 

decisions. 
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Figure 1. Proposed CNN classifier structure 

 

 

2.4. Self-Organizing Fuzzy Logic Classifier 

(SOFLC) 

 

The self-organizing fuzzy logic classifier (SOFLC) 

defines prototypes using input data via the offline 

training process [27]. In order to classify the data, it 

creates a 0-degree AnYa fuzzy rule-based system. 

After the first classification is done offline, the 

SOFLC model can update itself to fit the template of 

the new data by changing the system structure and 

meta-parameters as new data is generated. The values 

of the distance/dissimilarity parameter and 

granularity level were chosen as Euclidean and 34, 

respectively. 

 

2.5. Convolutional Neural Networks 

 

A convolutional neural network (CNN) is a 

multi-layered neural network structure that is often 

used in the feature extraction and classification of 

two-dimensional visual data and is an important part 

of the deep learning concept [28]. The differences 

between CNN and conventional neural networks 

(NN) are that CNN contains more layers than NNs 

and data features are extracted from the network 

structure. Hereby, the raw data to be classified can be 

given directly as an entry to the network. A CNN 

model can be easily applied to two-dimensional data 

such as images and videos. There are large CNN 

models developed and trained for various purposes in 

the literature. Despite some models are successful in 

classifying the training data, the accuracy of the 

model may be lower in different data sets or test data 

[28]–[30]. Therefore, it is important to design a CNN 

model suitable for the data, and learning parameters 

should be selected very carefully to prevent 

overfitting and underfitting as well. Since the breast 

tissue data set contains six different tissues, the output 

layer of the proposed CNN model has been selected 

to be a six-element classifier and the input layer is 

selected to be a nine-element. The constructed CNN 

model is shown in Figure 1. Details of the proposed 

CNN classifier and layers shown in Figure 1 are given 

in Table 6. 

 
Table 6. Layer information about the proposed CNN 

model 

# Layer Sizes 
Learnable Parameter 

Sizes 

1 Input 9×1×1 - 

2 2D Convolution 9×1×93 
Weights: 3×3×1×93 

Biases: 1×1×93 

3 Batch Normalization 9×1×93 
Offset: 1×1×93 

Scale: 1×1×93 

4 ReLU 9×1×93 - 

5 2D Convolution 9×1×48 
Weights: 3×3×93×48 

Biases: 1×1×48 

6 ReLU 9×1×48 - 

7 2D Convolution 9×1×89 
Weights: 3×3×48×89 

Biases: 1×1×89 

8 ReLU 9×1×89 - 

9 2D Convolution 9×1×68 
Weights: 3×3×89×68 

Biases: 1×1×68 

10 ReLU 9×1×68 - 

11 2D Convolution 9×1×55 
Weights: 3×3×68×55 

Biases: 1×1×55 

12 ReLU 9×1×55 - 

13 2D Convolution 9×1×55 
Weights: 3×3×55×55 

Biases: 1×1×55 

14 ReLU 9×1×55 - 

15 Fully Connected 1×1×6 
Weights: 6×495 

Biases: 6×1 

16 Softmax 1×1×6 - 

17 Classification Output - - 

 

The initial weights for each layer of the CNN 

model are assigned using the Xavier weight 

initializer. The model was trained using 81 (76.42%) 

data points, and the remaining 25 (23.58%) data was 

used to test the model. In the training phase of the 

model, the number of data was kept the same, but after 

each training, the data was chosen randomly. 

 

3. Results and Discussion 

 

In this study, the UCI breast tissue data set was used, 

and by using this data set, the breast tissues were 

classified with the use of machine learning methods. 

In Table 7, methods used in classification, training 
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and test data distribution and performance rates are 

given. 

 
Table 7. Classification performances 

Classifiers 
Accuracies (%) 

Training Test All 

SVM 83 88 84 

kNN 81 92 84 

DT 83 92 85 

SOFLC 83 92 85 

CNN 100 96 99 

 

The DT structure and the chain of rules 

obtained in this study are illustrated in Figure 2. In 

this way, the relationship between properties and 

tissue characteristics can be observed. Also, 

evaluation metrics of the classifiers are computed 

using Eq. (2) – (9), 

 

tp tn
Accuracy

tp tn fp fn




  
 (2) 

tp
Sensitivity

tp fn



 (3) 

tn
Specificity

tn fp



 (4) 

tp
Precision

tp fp



 (5) 

fp
False Positive Rate

fp tn



 (6) 

2

2
1

tp
F score

tp fp fn




  
 (7) 

       

tp tn fp fn
MCC

tp fp tp fn tn fp tn fn

  


      

 (8) 

 

       

2 tp tn fn fp
Kappa

tp fp fp tn tp fn fn tn

   


      
 (9) 

 

where tp, tn, fp and fn represent true positive (TP), 

true negative (TN), false positive (FP) and false 

negative (FN), respectively. While performing 

numerical calculations, the 5-fold cross-validation 

method was used. The training and test data, which 

are separated equally, were randomly chosen in each 

cycle, and the overall accuracy was calculated by 

averaging each accuracy value obtained in each fold. 

Accuracy, sensitivity, specificity, precision, false 

positive rate (FPR), F1 score, Matthews correlation 

coefficient (MCC), and Cohen’s Kappa values are 

calculated for each class separately and for all classes 

with the equations given with Eq (2) – (9) are 

tabulated in Table 8–12. As seen in Table 8, the 

accuracies of the SVM classifier were obtained as 

82.7% and 88.0%, respectively, for training and 

testing. The MCC values range from 0.824 to 0.849 

for training, test, and all data. These values show that 

there is an acceptable correlation between the 

predicted and the target classes. 

 

 

Figure 2. Decision tree and the rules identifying the relationship between features and tissues 
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Table 8. Detailed statistical results on SVM classification 

  Class Accuracy Sensitivity Specificity Precision FPR F1 score MCC Kappa TP FP FN TN 

T
ra

in
 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.605 16 0 0 65 

Fibro-adenoma 0.938 0.938 0.938 0.789 0.062 0.857 0.823 0.583 15 4 1 61 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.753 10 0 0 71 

Glandular 0.667 0.667 0.971 0.800 0.029 0.727 0.689 0.739 8 2 4 67 

Connective 0.667 0.667 0.957 0.727 0.043 0.696 0.646 0.730 8 3 4 66 

Adipose 0.667 0.667 0.924 0.667 0.076 0.667 0.591 0.656 10 5 5 61 

All 0.827 0.823 0.965 0.831 0.035 0.824 0.791 0.378 - - - - 

T
es

t 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.520 6 0 0 19 

Fibro-adenoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.600 5 0 0 20 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.680 4 0 0 21 

Glandular 0.667 0.667 0.909 0.500 0.091 0.571 0.510 0.737 2 2 1 20 

Connective 0.750 0.750 1.000 1.000 0.000 0.857 0.846 0.725 3 0 1 21 

Adipose 0.667 0.667 0.955 0.667 0.045 0.667 0.621 0.770 2 1 1 21 

All 0.880 0.847 0.977 0.861 0.023 0.849 0.830 0.568 - - - - 

A
ll

 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.585 22 0 0 84 

Fibro-adenoma 0.952 0.952 0.953 0.833 0.047 0.889 0.862 0.587 20 4 1 81 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.736 14 0 0 92 

Glandular 0.667 0.667 0.956 0.714 0.044 0.690 0.641 0.739 10 4 5 87 

Connective 0.688 0.688 0.967 0.786 0.033 0.733 0.692 0.729 11 3 5 87 

Adipose 0.667 0.667 0.932 0.667 0.068 0.667 0.598 0.682 12 6 6 82 

All 0.840 0.829 0.968 0.833 0.032 0.830 0.799 0.423 - - - - 

- Not Applicable. 

 
When the Kappa values are examined, it 

shows that there is a moderate level of agreement, and 

there is also the possibility of chance during 

classification. 

According to Table 9 regarding the kNN 

classifier, the accuracy for the training data was 

81.5%, while the accuracy for the test data was 92%. 

In fact, since the kNN classifier does not contain a 

training phase, the most important factor determining 

the performance is the appropriate selection of 

training and test data. While the FPR parameter for 

this classifier had very low values, MCC results were 

obtained as 0.780 and 0.898 for training and test, 

respectively. These results show that the predicted 

classes had an acceptable correlation with the target 

classes. Also, it is seen that the kNN and SVM 

classifiers exhibit similar Kappa performance. 
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Table 9. Detailed statistical results on kNN classification  

  Class Accuracy Sensitivity Specificity Precision FPR F1 score MCC Kappa TP FP FN TN 

T
ra

in
 

Carcinoma 0.857 0.857 0.985 0.923 0.015 0.889 0.868 0.674 12 1 2 66 

Fibro-adenoma 0.875 0.875 0.969 0.875 0.031 0.875 0.844 0.617 14 2 2 63 

Mastopathy 0.833 0.833 0.971 0.833 0.029 0.833 0.804 0.712 10 2 2 67 

Glandular 0.917 0.917 0.942 0.733 0.058 0.815 0.785 0.678 11 4 1 65 

Connective 1.000 1.000 0.942 0.750 0.058 0.857 0.841 0.663 12 4 0 65 

Adipose 0.467 0.467 0.970 0.778 0.030 0.583 0.539 0.721 7 2 8 64 

All 0.815 0.825 0.963 0.815 0.037 0.809 0.780 0.333 - - - - 

T
es

t 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.360 8 0 0 17 

Fibro-adenoma 1.000 1.000 0.950 0.833 0.050 0.909 0.890 0.570 5 1 0 19 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.840 2 0 0 23 

Glandular 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.760 3 0 0 22 

Connective 0.750 0.750 0.952 0.750 0.048 0.750 0.702 0.695 3 1 1 20 

Adipose 0.667 0.667 1.000 1.000 0.000 0.800 0.799 0.803 2 0 1 22 

All 0.920 0.903 0.984 0.931 0.016 0.910 0.898 0.712 - - - - 

A
ll

 

Carcinoma 0.909 0.909 0.988 0.952 0.012 0.930 0.913 0.601 20 1 2 83 

Fibro-adenoma 0.905 0.905 0.965 0.864 0.035 0.884 0.855 0.606 19 3 2 82 

Mastopathy 0.857 0.857 0.978 0.857 0.022 0.857 0.835 0.741 12 2 2 90 

Glandular 0.933 0.933 0.956 0.778 0.044 0.848 0.826 0.697 14 4 1 87 

Connective 0.938 0.938 0.944 0.750 0.056 0.833 0.807 0.671 15 5 1 85 

Adipose 0.500 0.500 0.977 0.818 0.023 0.621 0.588 0.740 9 2 9 86 

All 0.840 0.840 0.968 0.837 0.032 0.829 0.804 0.423 - - - - 

- Not Applicable. 

 
Table 10 contains detailed statistical 

classification results for the DT classifier. The 

accuracy values for the DT classifier were greater 

than 82.7%. The MCC values of the DT classifier, 

which exhibits similar Kappa performance to SVM 

and kNN, were also similar to the aforementioned 

models. When Table 11, which contains the results of 

the classification made using SOFLC, is examined, 

the accuracy values were in a similar range to those of 

SVM, kNN, and DT classifiers. On the other hand, the 

MCC and Kappa parameters had similarities with the 

mentioned models, although they have minor 

differences. In the SOFLC model, the MCC value for 

the test phase was higher than for the other models. 

The statistical values obtained by the proposed CNN 

model are shown in Table 12. When the values are 

examined, the model, which performs much better 

than previous models in terms of accuracy, 

sensitivity, and specificity, had the lowest FPR rates. 
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Table 10. Detailed statistical results on DT classification 

  Class Accuracy Sensitivity Specificity Precision FPR F1 score MCC Kappa TP FP FN TN 

ra
in

 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.630 15 0 0 66 

Fibro-adenoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.654 14 0 0 67 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.753 10 0 0 71 

Glandular 0.857 0.857 0.910 0.667 0.090 0.750 0.698 0.626 12 6 2 61 

Connective 1.000 1.000 0.886 0.579 0.114 0.733 0.716 0.645 11 8 0 62 

Adipose 0.294 0.294 1.000 1.000 0.000 0.455 0.498 0.738 5 0 12 64 

All 0.827 0.859 0.966 0.874 0.034 0.823 0.819 0.378 - - - - 

T
es

t 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.440 7 0 0 18 

Fibro-adenoma 0.857 0.857 1.000 1.000 0.000 0.923 0.901 0.493 6 0 1 18 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.680 4 0 0 21 

Glandular 1.000 1.000 0.958 0.500 0.042 0.667 0.692 0.882 1 1 0 23 

Connective 0.800 0.800 1.000 1.000 0.000 0.889 0.873 0.648 4 0 1 20 

Adipose 1.000 1.000 0.958 0.500 0.042 0.667 0.692 0.882 1 1 0 23 

All 0.920 0.943 0.986 0.833 0.014 0.858 0.860 0.712 - - - - 

A
ll

 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.585 22 0 0 84 

Fibro-adenoma 0.952 0.952 1.000 1.000 0.000 0.976 0.970 0.615 20 0 1 85 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.736 14 0 0 92 

Glandular 0.867 0.867 0.923 0.650 0.077 0.743 0.704 0.685 13 7 2 84 

Connective 0.938 0.938 0.911 0.652 0.089 0.769 0.737 0.648 15 8 1 82 

Adipose 0.333 0.333 0.989 0.857 0.011 0.480 0.487 0.774 6 1 12 87 

All 0.849 0.848 0.970 0.860 0.030 0.828 0.816 0.457 - - - - 

- Not Applicable. 
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Table 11. Detailed statistical results on SOFLC classification 

  Class Accuracy Sensitivity Specificity Precision FPR F1 score MCC Kappa TP FP FN TN 

T
ra

in
 

Carcinoma 1.000 1.000 0.954 0.842 0.046 0.914 0.896 0.577 16 3 0 62 

Fibro-adenoma 0.727 0.727 0.957 0.727 0.043 0.727 0.684 0.740 8 3 3 67 

Mastopathy 0.286 0.286 0.970 0.667 0.030 0.400 0.369 0.767 4 2 10 65 

Glandular 1.000 1.000 0.928 0.706 0.072 0.828 0.809 0.653 12 5 0 64 

Connective 1.000 1.000 0.986 0.917 0.014 0.957 0.951 0.718 11 1 0 69 

Adipose 0.941 0.941 1.000 1.000 0.000 0.970 0.963 0.596 16 0 1 64 

All 0.827 0.826 0.966 0.810 0.034 0.799 0.779 0.378 - - - - 

T
es

t 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.600 5 0 0 20 

Fibro-adenoma 0.750 0.750 0.952 0.750 0.048 0.750 0.702 0.695 3 1 1 20 

Mastopathy 0.750 0.750 1.000 1.000 0.000 0.857 0.846 0.725 3 0 1 21 

Glandular 1.000 1.000 0.952 0.800 0.048 0.889 0.873 0.648 4 1 0 20 

Connective 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.760 3 0 0 22 

Adipose 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.600 5 0 0 20 

All 0.920 0.917 0.984 0.925 0.016 0.916 0.904 0.712 - - - - 

A
ll

 

Carcinoma 1.000 1.000 0.965 0.875 0.035 0.933 0.919 0.582 21 3 0 82 

Fibro-adenoma 0.733 0.733 0.956 0.733 0.044 0.733 0.689 0.729 11 4 4 87 

Mastopathy 0.389 0.389 0.977 0.778 0.023 0.519 0.493 0.758 7 2 11 86 

Glandular 1.000 1.000 0.933 0.727 0.067 0.842 0.824 0.652 16 6 0 84 

Connective 1.000 1.000 0.989 0.933 0.011 0.966 0.961 0.728 14 1 0 91 

Adipose 0.955 0.955 1.000 1.000 0.000 0.977 0.971 0.597 21 0 1 84 

All 0.849 0.846 0.970 0.841 0.030 0.828 0.810 0.457 - - - - 

- Not Applicable. 

 
The CNN model, which had the highest MCC 

values compared to the models examined within the 

scope of the study, also performed well according to 

the Kappa parameter, which is an indicator of 

compatibility. As it can be seen from the tables, the 

classifier with the lowest accuracy for test data was 

SVM, while the highest classifier performance was 

achieved by the proposed CNN model. While the 

lowest accuracy value was obtained with kNN in the 

classification of training and all data, the proposed 

CNN model reached the highest accuracy value. As it 

can be seen from the tables, the proposed CNN model 

shows great success in breast tissue classification. 
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Table 12. Detailed statistical results on CNN classification 

  Class Accuracy Sensitivity Specificity Precision FPR F1 score MCC Kappa TP FP FN TN 

T
ra

in
 

Carcinoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.605 16 0 0 65 

Fibro-adenoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.728 11 0 0 70 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.654 14 0 0 67 

Glandular 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.704 12 0 0 69 

Connective 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.728 11 0 0 70 

Adipose 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.580 17 0 0 64 

All 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 - - - - 

T
es

t 

Carcinoma 0.800 0.800 1.000 1.000 0.000 0.889 0.873 0.648 4 0 1 20 

Fibro-adenoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.680 4 0 0 21 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.680 4 0 0 21 

Glandular 1.000 1.000 0.952 0.800 0.048 0.889 0.873 0.648 4 1 0 20 

Connective 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.760 3 0 0 22 

Adipose 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.600 5 0 0 20 

All 0.960 0.967 0.992 0.967 0.008 0.963 0.958 0.856 - - - - 

A
ll

 

Carcinoma 0.952 0.952 1.000 1.000 0.000 0.976 0.970 0.615 20 0 1 85 

Fibro-adenoma 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.717 15 0 0 91 

Mastopathy 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.660 18 0 0 88 

Glandular 1.000 1.000 0.989 0.941 0.011 0.970 0.965 0.690 16 1 0 89 

Connective 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.736 14 0 0 92 

Adipose 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.585 22 0 0 84 

All 0.991 0.992 0.999 0.990 0.002 0.991 0.989 0.966 - - - - 

- Not Applicable. 

 
Confusion matrix plots obtained utilizing the 

SVM, kNN, DT, SOFLC, and CNN classifiers are 

illustrated in Figure 3 (a) – (e). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 
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(e) 

Figure 3. Confusion matrixes related to the classification 

result obtained from (a) SVM, (b) kNN, (c) DT, (d) 

SOFLC and (e) CNN classifiers 

 

Table 13 shows the comparison of machine 

learning methods applied in this study with successful 

algorithms in the literature. Table 13 shows that the 

proposed CNN model gave the highest accuracy rate 

for training, test and entire data. In the classification 

of all tissues, it was observed that the SOFLC stands 

out in terms of overall speed and performance. In the 

classification between tumour tissue and normal 

tissue, CNN has achieved a success rate of 100% in 

training and 96% in test, showing the most successful 

result in determining tumour tissue. As a result, it is 

thought that increasing the number of samples in the 

data set will further stabilize the accuracy and 

increase the performance of CNN, especially in 

classification. The increase in the features in the data 

set along with the increase in the amount of data will 

also contribute to achieving better results in future 

studies. 

 
Table 13. Test accuracy comparison of classification results with different approaches 

  S1 S2 S3 S4 S5 

(Wu and Ng 2007) 
RBF RBF+SA RBF+MV RBF+NB - 

64.83% 66.81% 66.46% 80.27% - 

(Daliri 2015)  
ELM - - - - 

88.95% - - - - 

(Eroğlu et al. 2014) 
SVM RF ANN - - 

81.13% 83.96% 76.41% - - 

(Liu et al. 2015) 
SVM - - - - 

80.62% - - - - 

(Rahman et al. 2019) 
RF ERT DT GBT ADB 

85.19% 81.48% 78.10% 74.08% 62.96% 

This Study 
SVM kNN DT SOFLC CNN 

88.00% 92.00% 92.00% 92.00% 96.00% 

 
4. Conclusion and Suggestions 

 

In this study, a convolutional neural network model 

having six convolution layers for breast tissue 

classification is proposed. The model was trained and 

tested using the breast tissue data set from UCI. To 

compare the performance of the proposed model, 

SVM, DT, kNN, and SOFLC models are also trained 

for classification using the same data set. The 

accuracy percentages for the classifier models SVM, 

kNN, DT, SOFLC, and the proposed CNN for the test 

data were obtained as 88%, 92%, 92%, and 96%, 

respectively. As compared to state-of-the-art methods 

used on this data set, the results demonstrated that the 

proposed model had a higher accuracy. The inclusion 

of six convolution layers with pooling layers in 

between, as well as the quantity of convolution filters, 

are the most significant factors that contribute to the 

proposed model's increased performance. A recently 

proposed technique called SOFLC was also utilized, 

and its performance was compared to that of 

conventional and convolutional neural networks. On 

the basis of accuracy and computational cost, SOFLC 

appears to be a promising method, although CNN 

outperforms in terms of total performance. 
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