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ABSTRACT: Servo systems are used extensively in many industrial applications that require precise 

position control. However, parameter uncertainties, matched and unmatched disturbances encountered 

in most of these applications adversely affect the controller performance. Therefore, in industrial control 

applications, robustness is at least as important as precision. In this study, an Extended State Observer-

based Sliding Mode Controller (GDGKKK) design is presented for precise position control of a rotary servo 

system having parameter uncertainties and disturbance input. The performance of the proposed controller 

has been tested by performing simulation studies for five different uncertainty and disturbance input 

scenarios and compared with the traditional Sliding Mode Control (SMC) and Proportional Derivative 

(PD) control to evaluate its effectiveness. The mathematical model of the Quanser SRV02 rotary servo unit 

was used in the simulation studies in MATLAB/Simulink software. The simulation results show that the 

PD control is very sensitive to load changes and disturbances and while the traditional SMC control is 

insensitive to load changes and matched disturbances, it is sensitive to mismatched disturbances. On the 

other hand, the results clearly showed that the proposed GDGKKK controller offers extremely successful 

disturbance rejection performance against both load changes and matched and unmatched disturbances. 
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Belirsizlik ve Bozuculara Sahip Bir Servo Sistemin Konum Kontrolü İçin Gözlemci Tabanlı Kayan 

Kipli Kontrolcü Tasarımı 

 

ÖZ: Servo sistemler, hassas konum kontrolü gerektiren birçok endüstriyel uygulamada yoğun olarak 

kullanılmaktadır. Ancak bu uygulamaların çoğunda karşılaşılan parametre belirsizlikleri, eşleşen ve 

eşleşmeyen bozucu etkenler, kontrolcü performansını olumsuz yönde etkilemektedir. Dolayısıyla 

endüstriyel kontrol uygulamalarında gürbüzlükte en az hassasiyet kadar önem taşımaktadır. Bu 

çalışmada, parametre belirsizlikleri ve bozucu girişe sahip bir döner servo sistemin hassas pozisyon 

kontrolü için Genişletilmiş Durum Gözlemcisine dayalı Kayan Kipli Kontrolcü (GDGKKK) tasarımı 

sunulmuştur. Önerilen kontrolcünün performansı, beş farklı belirsizlik ve bozucu giriş senaryosu için 

benzetim çalışmaları yapılarak test edilmiş ve etkinliğinin değerlendirilebilmesi için klasik Kayan Kipli 

Kontrol (SMC) ve Oransal Türevsel (PD) kontrol ile kıyaslanmıştır. MATLAB/Simulink yazılımında 

benzetim çalışmalarında Quanser SRV02 döner servo ünitesine ait matematiksel model kullanılmıştır. 

Benzetim sonuçları, PD kontrolün yük değişimlerine ve bozucu girişlere karşı oldukça duyarlı olduğunu, 

klasik SMC kontrolün ise yük değişimleri ve eşleşen bozuculara karşı dayanıklı olmakla birlikte 

eşleşmeyen bozuculara karşı duyarlı olduğunu göstermiştir. Diğer yandan sonuçlar, önerilen GDGKKK 

kontrolcünün hem yük değişimlerine hem de eşleşen ve eşleşmeyen bozuculara karşı son derece başarılı 

bir bozucu reddetme performansı sunduğunu açıkça göstermiştir. 

Anahtar Kelimeler: Gözlemci, Gürbüz Kontrol, Kayan Kipli Kontrol (KKK), Konum kontrolü, Servomotor 
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1. INTRODUCTION 

Servo systems are widely used in many fields of industry, especially in applications requiring precise 

motion control due to their advantages such as light weight and small structure, high performance and 

efficiency, high torque/inertia ratio, reliability and low noise. Traditional PID control has been used 

intensively in servo motor control due to its simple structure and easy application. The PID controller can 

guarantee a robust and suitable control performance if an accurate dynamic model and detailed 

information about the disturbances can be obtained (Cheon et al., 2004). However, in most practical 

applications, servo systems have kinds of disturbances and uncertainties because of nonlinear friction, 

measurement noise, load variations, external disturbances, etc. (Wang et al., 2017). The presence of the 

system uncertainties, parameter changes and external disturbances results in poor control performance 

for conventional linear control methods. 

In recent years, researchers have focused on servo systems affected by uncertainties and disturbances 

and they have proposed many different control methods to increase the robustness of the systems. Among 

all these control methods, SMC has stand out as one of the most effective methods in terms of robustness 

due to its invariance property against the external disturbances and parameter variations. SMC uses a 

discontinuous control action to force the state trajectories of the system to a predefined sliding surface. 

After the system states reach the sliding surface, the stability and dynamic characteristics of the system is 

independent of certain perturbations including external disturbances and only depend on the sliding 

surface parameters.  

Although the SMC provides fast response and good robustness features, it has some disadvantages 

such as chattering and sensitivity to mismatched disturbances. Chattering is the high frequency 

oscillations that occur near the sliding surface due to the discontinuous control law. In addition to 

decreasing control performance, chattering can cause actuator failure in practical applications. 

Researchers have proposed many methods for eliminating or reducing the effect of chattering. A novel 

exponential reaching law for the conventional SMC was presented in (Wang et al., 2013), a boundary layer 

around the switching surface which replace the discontinuous control law with a continuous one is used 

in (Kachroo and Tomizuka, 1996; Baik et al.,2000), second order and higher-order SMC methods are used 

in (Bartolini et al., 1998; Levant, 2003) and low-pass filtering is used in (Tseng and Chen, 2010). Fuzzy-

logic based SMC (Ha et al., 2001) and Nonsingular Terminal SMC (Zheng et al., 2014) are some other 

methods proposed to avoid chattering by using continuous functions instead of classical switching 

functions. In order to ensure robustness, the switching gain must be selected to be greater than the upper 

bound of the disturbance. But in most of the practical applications, it is difficult to measure or estimate the 

upper bound of the disturbance and so the switching gain could be much large. Because of the large 

switching gain cause large chattering, adaptive SMC and neural-network based SMC methods are used 

to tune proper switching gains in (Bao et al, 2010; Wang et al., 2009).  

Besides the chattering phenomenon, the most of the existing traditional SMC approaches are 

insensitive only to matched disturbances and cannot attenuate mismatched disturbances which act in a 

different channel than the control input, effectively. Some researchers have proposed integral SMC and 

global SMC methods in (Rubagotti et al., 2011; Liu et al., 2014) to improve the disturbance rejection 

performance of the SMC for the systems effected of matched and mismatched disturbances. Some 

researchers have combined SMC control with other robust control techniques such as backstepping in (Li 

and Hu, 2011) and adaptive control in (Chang, 2009).  

On the other hand, disturbance observer-based SMC is one of the most effective approach used to deal 

with mismatched disturbances. Besides increasing the robustness, it can also reduce the chattering since 

the switching gain can be reduced to small values after the disturbance is estimated and compensated in 

control input.  

In (Cheon et al.,2004) a disturbance estimator-based SMC controller was proposed for position control 

of AC servomotor subjected to external disturbance, in (Shao et al., 2021) recursive SMC combined with 

an adaptive disturbance observer was used for position control of a linear motor deteriorated by payload 

variations, friction and external disturbances, a nonlinear disturbance observer-based SMC was used for 
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systems with matched and mismatched uncertainties in (Hou et al., 2017). A SMC based on an unknown 

system dynamics estimator was proposed in (Wang et al., 2020) for a servomechanism having unknown 

system dynamics. A nonlinear disturbance observer based terminal SMC was proposed for nonlinear 

systems subjected to both matched and mismatched disturbances in (Nguyen et al., 2021) and Extended 

state observer-based SMC was used for a class of nonlinear systems subjected to matched and mismatched 

disturbance in (Shi et al., 2018). All these studies show that the disturbance observers reduce the chattering 

problem as well as increasing the disturbance rejection property of the SMC control effectively. 

In this study ESO based SMC control of a rotary servo system having parameter uncertainties and 

disturbances is realized. While traditional SMC control is a robust control method against parameter 

changes and matched disturbances, it is sensitive to mismatched disturbances. So, in the proposed control 

scheme, an ESO was added to the control scheme to improve the disturbance rejection capability of the 

SMC control against mismatched disturbances. The performance of the proposed controller was tested on 

simulation model of Quanser SRV02 servo unit for five different conditions consisted of different 

uncertainties and disturbances and compared with the traditional SMC and PD control in order to 

evaluate its effectiveness. The results showed that the proposed ESOSMC controller provided much better 

performance against load variations, matched and mismatched disturbances compared to both PD and 

traditional SMC control. 

2. MATHEMATICAL MODEL OF THE ROTARY SERVO SYSTEM  

In this study, mathematical model of SRV02 rotary servo base unit of Quanser Inc. was used as 

simulation model. Schematic of the DC motor armature circuit and the gearbox of the SRV02 is shown in 

Fig. 1. 

 

 
Figure 1. Armature circuit and gear train of the SRV02 rotary servo system 

 

The equation of the armature circuit can be obtained by using Kirchoff's Voltage Law as 

 
𝑉𝑚(𝑡) − 𝑅𝑚𝐼𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡) = 0 (1) 

 

where 𝑉𝑚(𝑡), 𝑅𝑚 and 𝐼𝑚(𝑡) is the input voltage, armature resistance and armature current of the motor 

respectively, 𝜔𝑚(𝑡) is the angular velocity of the motor shaft and 𝑘𝑚 is the back-emf constant of the motor. 

Motor inductance Lm is neglected since it is much less than resistance. The equation of motion of the load 

can be derived by using Newton's Second Law of Motion as 

 

𝐽𝑙

𝑑𝜔𝑙(𝑡)

𝑑𝑡
+ 𝐵𝑙𝜔𝑙(𝑡) = 𝜏𝑙(𝑡) (2) 
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where 𝐽𝑙 is the moment of inertia of the load which includes the inertia of the gearbox and the inertia of 

the attached external loads, 𝐵𝑙  is the viscous friction coefficient of the load shaft, 𝜔𝑙(𝑡) is the angular 

velocity of the load shaft and 𝜏𝑙(𝑡) is the total torque applied on the load. The equation of motion of the 

motor shaft can be written as follows by the same way, 

 

𝐽𝑚

𝑑𝜔𝑚(𝑡)

𝑑𝑡
+ 𝐵𝑚𝜔𝑚(𝑡) + 𝜏𝑚𝑙(𝑡) = 𝜏𝑚(𝑡) (3) 

 

where 𝐽𝑚 is the moment of inertia of the motor shaft, 𝐵𝑚 is the viscous friction acting on the motor 

shaft, 𝜏𝑚𝑙(𝑡) is the resulting torque acting on the motor shaft from the load torque and 𝜏𝑚(𝑡) is the total 

motor torque. The resulting torque 𝜏𝑚𝑙(𝑡) transferred from the load torque to the motor shaft can be found 

as follows. 

 

𝜏𝑚𝑙(𝑡) =
𝜏𝑙(𝑡)

𝜂𝑔𝐾𝑔

 (4) 

 

where 𝜂𝑔 is the gearbox efficiency and 𝐾𝑔 is the gear ratio. The relationships between the positions and 

angular velocities of the load and motor shaft can be defined as follows.  

 

𝜃𝑚(𝑡) = 𝐾𝑔𝜃𝑙(𝑡) (5) 

 

𝜔𝑚(𝑡) = 𝐾𝑔𝜔𝑙(𝑡) (6) 

 

Equation of motion of the load shaft with respect to applied motor torque can be obtained by substituting 

Eq. 2, 4 and 6 into Eq. 3 as follows. 

 

𝐽𝑒𝑞

𝑑𝜔𝑙(𝑡)

𝑑𝑡
+ 𝐵𝑒𝑞𝜔𝑙 = 𝜂𝑔𝐾𝑔𝜏𝑚(𝑡) (7) 

 

In this equation, the equivalent moment of inertia 𝐽𝑒𝑞  and the equivalent damping coefficient of the motor 

𝐵𝑒𝑞  can be defined as, 

 

𝐽𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐽𝑚 + 𝐽𝑙 (8) 

 

𝐵𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐵𝑚 + 𝐵𝑙  (9) 

 

The relationship between the motor torque and the current can be defined as  

 

𝜏𝑚(𝑡) = 𝜂𝑚𝑘𝑡𝐼𝑚(𝑡) (10) 

 

where 𝑘𝑡 is the current-torque constant and 𝜂𝑚 is the motor efficiency. The motor torque can be expressed 

with respect to the input voltage 𝑉𝑚(𝑡) and the angular velocity of the load shaft 𝜔𝑙(𝑡) by subtracting 𝐼𝑚(𝑡) 

from Eq. (1) and substituting it in Eq. (10). 

 

𝜏𝑚(𝑡) =
𝜂𝑚𝑘𝑡(𝑉𝑚(𝑡) − 𝑘𝑚𝐾𝑔𝜔𝑙(𝑡))

𝑅𝑚

 (11) 

 

If we substitute Eq. (11) into Eq. (7), we can obtain the expression of the angular velocity of the load shaft 

with respect to input voltage, 
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𝐽𝑒𝑞 (
𝑑

𝑑𝑡
𝜔𝑙(𝑡)) + 𝐵𝑒𝑞𝑣𝜔𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡) (12) 

 

In this equation the total equivalent damping term 𝐵𝑒𝑞𝑣  and the actuator gain 𝐴𝑚 can be defined as follows.  

 

𝐵𝑒𝑞𝑣 =
𝜂𝑔𝐾𝑔

2𝜂𝑚𝑘𝑡𝑘𝑚 + 𝐵𝑒𝑞𝑅𝑚

𝑅𝑚

 (13) 

 

𝐴𝑚 =
𝜂𝑔𝐾𝑔𝜂𝑚𝑘𝑡

𝑅𝑚

 (14) 

 

In most of the practical applications of the electromechanical systems have parameter uncertainties and 

disturbances because of the mass variations, actuator saturation, external forces, damping, friction, sensor 

noises, etc. So, the system defined in Eq. (12) can be considered as 

 

�̈�𝑙 = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡) + 𝑑(𝑡) (15) 

 

where 𝜃𝑙(𝑡) is the load shaft angle, 𝑢(𝑡) is the control signal, 𝛼 is a constant, 𝑓(𝜃, 𝑡) is a function of 𝜃𝑙(𝑡) 

and 𝑑(𝑡) is sum of the disturbance and uncertainty of the system. We assume that the total disturbance is 

bounded and |𝑑(𝑡)| ≤ 𝐷. By defining the states and the outputs of the system as 𝒙(𝒕) = [𝑥1(𝑡)    𝑥2(𝑡)]𝑇 =

[𝜃𝑙(𝑡)   �̇�𝑙(𝑡)]
𝑇
 and 𝒚 = [𝑦1    𝑦2]𝑇 = [𝑥1    𝑥2]𝑇 respectively, the system given in Eq. (15) can be written as 

follows. 

 
�̇�1(𝑡) = 𝑥2(𝑡)                                  

�̇�2(𝑡) = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡) + 𝑑(𝑡)
 

 
(16) 

3. SLIDING MODE CONTROL OF THE SERVO SYSTEM 

Traditional SMC control scheme of the servo system is given in Fig. 2. The SMC control law consist of 

two parts as equivalent control and switching control. The equivalent control drives the system states to 

sliding surface and the switching control keeps the system states on the sliding surface.  

 

 
Figure 2. Traditional SMC control scheme 

 

The total control input of the SMC is defined as; 

 
𝑢(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠𝑤(𝑡) (17) 
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where 𝑢𝑒𝑞(𝑡) denotes the equivalent control and 𝑢𝑠𝑤(𝑡) denotes the switching control. In order to obtain 

equivalent control signal 𝑢𝑒𝑞(𝑡), the plant is described as below by ignoring the external disturbance and 

uncertainty.  

 
�̇�1(𝑡) = 𝑥2(𝑡)                    

�̇�2(𝑡) = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡)
 

 
(18) 

If the desired load shaft angle is denoted by 𝜃𝑙𝑟 , the state error can be defined as 𝑒1(𝑡) = 𝜃𝑙(𝑡) − 𝜃𝑙𝑟 . 

So, the error system can be written as 

 
�̇�1(𝑡) = 𝑒2(𝑡)                              

�̇�2(𝑡) = 𝑓(𝜃, 𝑡) − �̈�𝑟 + 𝛼 𝑢(𝑡)
 

 
(19) 

Sliding surface can be selected as, 

 

𝑠(𝑡) = 𝑐 𝑒1(𝑡) + 𝑒2(𝑡) (20) 

 

where, 𝑐 > 0 is a positive constant. Derivative of the sliding surface can be obtained as 

 

�̇�(𝑡) = 𝑐 �̇�1(𝑡) + �̇�2(𝑡) = 𝑐 𝑒2(𝑡) + 𝑓(𝜃, 𝑡) − �̈�𝑙𝑟 + 𝛼 𝑢(𝑡) (21) 

 

The equivalent control signal can be found by setting the derivative of the sliding surface equals to 

zero.  

 

𝑢𝑒𝑞(𝑡) =
1

𝛼
(�̈�𝑙𝑟 − 𝑓(𝜃, 𝑡) − 𝑐𝑒2(𝑡)) (22) 

 

Lyapunov function can be selected as, 

 

𝑉(𝑡) =
1

2
𝑠(𝑡)2 (23) 

 

According to Lyapunov stability theory, reaching condition of the sliding mode can be defined as 

 

�̇�(𝑡) = 𝑠(𝑡)�̇�(𝑡) < 0 (24) 

 

In order to satisfy the reaching condition, the switching control can be chosen as below by using 

exponential reaching law. 

 

𝑢𝑠𝑤(𝑡) = −
1

𝛼
(𝜅𝑠(𝑡) + 𝜂 𝑠𝑔𝑛(𝑠(𝑡))) (25) 

 

where, 𝜅 and 𝜂 are positive constants. Thus, total control input can be obtained by using Eq. (17) as 

 

𝑢 =
1

𝛼
(�̈�𝑙𝑟 − 𝑓(𝜃, 𝑡) − 𝑐𝑒2(𝑡) − 𝜅 𝑠(𝑡) − 𝜂 𝑠𝑔𝑛(𝑠(𝑡))) (26) 

 

 

Stability Proof:  

 

Derivative of the sliding surface can be written as 
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�̇�(𝑡) = 𝑐 �̇�1(𝑡) + �̇�2(𝑡) = 𝑐 𝑒2(𝑡) + 𝑓(𝜃, 𝑡) − �̈�𝑙𝑟 + 𝛼 𝑢(𝑡) + 𝑑(𝑡) (27) 

 

If we substitute Eq (26) into Eq (27), 

 

�̇�(𝑡) = −𝜅𝑠(𝑡) − 𝜂𝑠𝑔𝑛(𝑠(𝑡)) + 𝑑(𝑡) (28) 

 

From Eq (24), 

 

𝑠(𝑡) �̇�(𝑡) = 𝑠(𝑡)[−𝜅𝑠(𝑡) − 𝜂𝑠𝑔𝑛(𝑠(𝑡)) + 𝑑(𝑡)]          

               = −𝜅 𝑠(𝑡)2 − 𝜂 𝑠(𝑡)𝑠𝑔𝑛(𝑠(𝑡)) + 𝐷𝑠(𝑡)    

= −𝜅 𝑠(𝑡)2 − 𝜂|𝑠(𝑡)| + 𝐷𝑠(𝑡)       

 (29) 

 

So, the system is asymptotically stable in case of 𝜂 > 𝐷. 

Although the SMC control has invariance property against the external disturbances and parameter 

changes, this feature is only valid after the sliding surface is reached. However, before reaching to the 

sliding surface, the invariance property cannot be guaranteed and the system performance is sensitive to 

perturbations. One of the best ways to overcome this problem is to use a disturbance observer. The total 

disturbance which including the disturbances and the parameter variations is estimated by the observer 

and compensated by the controller. 

4. EXTENDED STATE OBSERVER BASED SLIDING MODE CONTROL OF THE SERVO SYSTEM 

In this study an extended state observer (ESO) is used as a disturbance observer. The general structure 

of the proposed Extended State Observer Based Sliding Mode Control strategy is shown in Fig. 3.  

 
Figure 3. Extended state observer-based SMC control scheme 

 

If the system in Eq. (12) is considered as 

 

�̈�𝑙 = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡) (30) 

 

where,  𝑓(𝜃, 𝑡) is a function which includes the external disturbance and uncertain parameters, the state-

space model can be written as 

 
�̇�1(𝑡) = 𝑥2(𝑡)                    

�̇�2(𝑡) = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡)
 

 
(31) 

If we define an additional state variable as 𝑥3(𝑡) = 𝑓(𝜃, 𝑡), the state-space model can be extended as  
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�̇�1(𝑡) = 𝑥2(𝑡)                    

�̇�2(𝑡) = 𝑓(𝜃, 𝑡) + 𝛼 𝑢(𝑡)

�̇�3(𝑡) = 𝑓̇(𝜃, 𝑡)                  

 

 

(32) 

Now, the ESO can be designed as 

 

�̇̂�1(𝑡) = �̂�2(𝑡) − 𝛽1𝜖(𝑡)                   

�̇̂�2(𝑡) = �̂�3(𝑡) − 𝛽2𝜖(𝑡) + 𝛼0 𝑢(𝑡)

�̇̂�3(𝑡) = −𝛽3𝜖(𝑡)                                

 

 

(33) 

where �̂�1(𝑡), �̂�2(𝑡), �̂�3(𝑡) are the approximated values of 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) respectively, 𝛽1, 𝛽2, 𝛽3 are the 

observer gains, 𝜖(𝑡) = 𝑥1(𝑡) − �̂�1(𝑡) is the approximation error of 𝑥1(𝑡). The observer gains 𝛽1, 𝛽2, 𝛽3 can 

be computed from the characteristic polynomial of the ESO. The observer pole 𝜔𝐸𝑆𝑂  is usually placed 3 to 

10 times to the left of the closed loop pole 𝜔𝐶  to ensure that the observer dynamics are fast enough. The 

respective solutions for 𝛽𝑜1, 𝛽𝑜2, 𝛽𝑜3 are as follows.  

 

𝜔𝐸𝑆𝑂 = (3 − 10)𝜔𝐶 ,   𝛽𝑜1 = 3𝜔𝐸𝑆𝑂 ,    𝛽𝑜2 = 3𝜔𝐸𝑆𝑂
2,    𝛽𝑜3 = 𝜔𝐸𝑆𝑂

3 (34) 

 

The observing sliding surface can be defined as  

 

�̂�(𝑡) = 𝑐 �̂�1(𝑡) + �̂�2(𝑡) (35) 

 

where �̂�1(𝑡) = �̂�1(𝑡) − 𝜃𝑙𝑟  and �̂�2(𝑡) = �̂�2(𝑡) − �̇�𝑙𝑟 . We can select the control signal as 

 

𝑢 =
1

𝛼
(�̈�𝑙𝑟 − �̂�3(𝑡) − 𝑐𝑒2(𝑡) − 𝜅 �̂�(𝑡) − 𝜂 𝑠𝑔𝑛(�̂�(𝑡))) (36) 

 

Stability Proof: 

 

Sliding surface for the system given in Eq. (31) can be selected as, 

 

𝑠(𝑡) = 𝑐 𝑒1(𝑡) + 𝑒2(𝑡) (37) 

 

Derivative of the sliding surface is, 

 

�̇�(𝑡) = 𝑐 �̇�1(𝑡) + �̇�2(𝑡) = 𝑐 𝑒2(𝑡) + 𝑓(𝜃, 𝑡) − �̈�𝑙𝑟 + 𝛼 𝑢(𝑡) (38) 

 

If we substitute Eq. (36) into Eq. (38) and Eq. (38) into Eq. (24), 

 

�̇�(𝑡) = 𝑠[𝑓(𝜃, 𝑡) − �̂�3(𝑡) + 𝑐(𝑒2(𝑡) − �̂�2(𝑡) − 𝜅�̂�(𝑡) − 𝜂 𝑠𝑔𝑛 (�̂�(𝑡))]                                             

         = (�̂� + 𝑠 − �̂�)[𝑓(𝜃, 𝑡) − �̂�3(𝑡) + 𝑐(𝑒2(𝑡) − �̂�2(𝑡) − 𝜅�̂�(𝑡) − 𝜂 𝑠𝑔𝑛 (�̂�(𝑡))] 

  = (|𝑓(𝜃, 𝑡) − �̂�3(𝑡)| + 𝑐|𝑒2(𝑡) − �̂�2(𝑡)|)|�̂�(𝑡)| 

             +(|𝑓(𝜃, 𝑡) − �̂�3(𝑡)| + 𝑐|𝑒2(𝑡) − �̂�2(𝑡)|)|𝑠(𝑡) − �̂�(𝑡)|  

      − �̂�(𝑡) [𝜅 (�̂�(𝑡) + 𝜂 𝑠𝑔𝑛 (�̂�(𝑡)))] − |𝑠(𝑡) − �̂�(𝑡)| [𝜅 (�̂�(𝑡) + 𝜂 𝑠𝑔𝑛 (�̂�(𝑡)))] 

(39) 

 

Due to convergence of the ESO, 

 
(|𝑓(𝜃, 𝑡) − �̂�3(𝑡)| + 𝑐|𝑒2(𝑡) − �̂�2(𝑡)|)|�̂�(𝑡)| (40) 
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+(|𝑓(𝜃, 𝑡) − �̂�3(𝑡)| + 𝑐|𝑒2(𝑡) − �̂�2(𝑡)|)|𝑠(𝑡) − �̂�(𝑡)|

− |𝑠(𝑡) − �̂�(𝑡)| [𝜅 (�̂�(𝑡) + 𝜂 𝑠𝑔𝑛 (�̂�(𝑡)))] ≅ 0 

 

is bounded and close to zero. So, 

 

�̇�(𝑡) = −�̂�(𝑡) (𝜅 (�̂�(𝑡) + 𝜂 𝑠𝑔𝑛 (�̂�(𝑡)))) = −𝜅�̂�(𝑡)2 − 𝜂|�̂�(𝑡)| < 0 (41) 

5. RESULTS AND DISCUSSION 

The performance of the proposed ESOSMC controller was examined for five different conditions 

according to different disturbance inputs affecting the system. The control results of the ESOSMC are 

compared with the traditional PD and SMC control results to evaluate its effectiveness. A square signal 

with 0.4 rad amplitude and 0.4 Hz frequency was used as reference input. The parameters of the SRV02 

rotary servo unit are given in Table 1 and the parameters of the PID controller are taken as 𝑘𝑃 = 1.79, 𝑘𝑑 =

4.66 x 10−4 and 𝑘𝑖 = 0. These values are the optimum values determined by the manufacturer. The 

controller parameters are chosen as, 𝑐 = 85, 𝜂 = 30 and 𝜅 = 20 for the SMC and 𝑐 = 85, 𝜂 = 1, 𝜅 = 20 and 

𝜔𝑜 = 100 for the ESOSMC. The signum function in the control signal has been replaced by the saturation 

function to reduce the chattering. 

 

Table 1. Parameters of the SRV02 rotary servo unit 

Symbols Definitions Value 

𝐽𝑚 Moment of inertia of the motor shaft 4.6 x 10-07 (kgm2) 

𝐽𝑙 Moment of inertia of the load shaft 1.6 x 10-05 (kgm2) 

𝐽𝑒𝑞  Equivalent moment of inertia  9.8 x 10-05 (kgm2) 

𝐵𝑒𝑞  Equivalent Viscous Damping Coefficient 15 x10-05 (Nms/rad) 

𝐾𝑔 Gear ratio 14 

𝑘𝑡 Current-torque constant 0.0077 (Nm/A) 

𝑘𝑚 Back-emf constant 0.0077 (Vs/rad) 

𝜂𝑔 Gearbox efficiency  0.9 

𝜂𝑚 Motor efficiency 0.69 

𝑅𝑚 Armature resistance 2.6 (ohm) 

 

1st condition: The performances of the controllers were evaluated under ideal system conditions 

without parameter variations and disturbances. The controller responses and the control voltages are 

given in Fig.4 and Fig.5 respectively. As seen in Figure 4, ESOSMC gives better results than other 

controllers in terms of response speed. Also, an overshoot occurred in the PD control response and a small 

steady-state error was observed in the traditional SMC response. 

2nd condition: The equivalent moment of inertia of the servo system was increased by 500% by 

connecting a load to the motor shaft in order to examine the robustness of the controllers against the 

parameter variations. The controller responses and the control voltages are given in Fig.6 and Fig.7 

respectively. Accordingly, it is seen that the SMC and the ESOSMC are completely insensitive to parameter 

variations, while the PD controller is greatly affected and its response shows large deviations from the 

desired response. 
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Figure 4. Controller responses in case of ideal conditions (no parameter variations or disturbance) 

 

 
Figure 5. Controller voltages in case of ideal conditions (no parameter variations or disturbance) 

 

 
Figure 6. Controller responses in case the equivalent moment of inertia is increased by 500% 

 



Observer-based Sliding Mode Control of a Servo System in the Presence of Uncertainties and Disturbances 573 

 
Figure 7. Controller voltages in case the equivalent moment of inertia is increased by 500% 

3rd condition: A time dependent 𝑑1(𝑡) = 25 𝑠𝑖𝑛 (5𝑡) disturbance input was applied to the input 

channel of the system in order to examine the disturbance rejection performances of the controllers against 

the matched disturbances. The controller responses and the control voltages are given in Fig.8 and Fig.9 

respectively. It can be clearly seen from Fig. 8 that the PD control is highly sensitive to matched 

disturbances and its response shows large deviations from the desired response. As mentioned earlier, the 

traditional SMC control has invariance property against the matching disturbances. In accordance with 

this, the SMC control has generally given a successful response against the matched disturbance except 

some deviations shown in the zoomed part of the Fig. 8. On the other hand, it is also seen that the proposed 

ESOSMC controller has provided a better disturbance rejection ability against the matched disturbances 

then SMC. 

 

 
Figure 8. Controller responses in case of 𝑑1 = 25 𝑠𝑖𝑛(5𝑡) matched disturbance input 

 

 

 
Figure 9. Controller voltages in case of 𝑑1 = 25 𝑠𝑖𝑛(5𝑡) matched disturbance input 
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4th condition: A time dependent 𝑑1(𝑡) = 0.5 𝑠𝑖𝑛 (5𝑡) disturbance input was applied directly to system 

in order to examine the disturbance rejection performances of the controllers against the mismatched 

disturbances. The controller responses and the control voltages are given in Fig. 10 and Fig. 11 

respectively. As mentioned earlier, although the traditional SMC control is insensitive to matched 

disturbances, this feature is not valid to mismatched disturbances. It can be seen from Fig. 10; both the PD 

and SMC control are extremely sensitive to mismatched disturbances and the controller responses have 

deviated considerably from the desired response. On the other hand, it can be clearly seen that the 

proposed ESOSMC controller is completely insensitive to mismatched disturbances and it has provided a 

perfect disturbance rejection ability. 

 
Figure 10. Controller responses in case of 𝑑2 = 0.5 𝑠𝑖𝑛(5𝑡) mismatched disturbance input 

 

 
Figure 11. Controller voltages in case of 𝑑2 = 0.5 𝑠𝑖𝑛(5𝑡) mismatched disturbance input 

 

5th condition: As the last condition, the parameter variation and the matched and unmatched 

disturbance inputs given in the previous conditions were applied to the system at the same time. The 

controller responses and the control voltages are given in Fig. 12 and Fig. 13 respectively. It is clearly seen 

from Figure 12 that the proposed ESOSMC controller can offer a superior performance compared to other 

controllers in terms of both response speed and disturbance rejection, even if parameter changes and 

matched and unmatched disturbances affect the system at the same time.  
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Figure 12. Controller responses in case of increasing the equivalent moment of inertia by 500% and at the 

same time applying 𝑑1 = 25 𝑠𝑖𝑛(5𝑡) matched disturbance and 𝑑2 = 0.5 𝑠𝑖𝑛(5𝑡) unmatched disturbance 

inputs to the system 

 

 
Figure 13. Controller voltages in case of increasing the equivalent moment of inertia by 500% and at the 

same time applying 𝑑1 = 25 𝑠𝑖𝑛(5𝑡) matched disturbance and 𝑑2 = 0.5 𝑠𝑖𝑛(5𝑡) unmatched disturbance 

inputs to the system 

 

On the other hand, while the PD control provides a smooth control signal for all conditions, both SMC 

and the proposed ESOSMC controllers showed chattering, although it is not critical level. The amount of 

the chattering in control signal was slightly reduced by using the saturation function instead of the sign 

function, but it is seen that the extended state observer cannot provide a significant improvement in the 

chattering phenomenon. 

6. CONCLUSION 

In this study, extended state observer-based sliding mode control scheme has been proposed for 

precise position control of a rotary servo system. The proposed control scheme is tested via simulation 

studies for five different conditions consisted of different uncertainties and disturbances and its 

performance were compared with the PD controller and the traditional SMC controller. The simulation 

results showed that the PD control is sensitive to parameter changes and disturbances while the SMC 

control is sensitive to mismatched disturbances. However, it has been seen that the proposed control 

scheme is much more successful than the PD and SMC control in terms of both the response speed and 

the ability to reject disturbances including mismatched disturbances. 
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