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Architectures of neural networks affect the training performance of artificial 
neural networks. For more consistent performance evaluation of training 
algorithms, hard-to-train benchmarking architectures should be used. This 
study introduces a benchmark neural network architecture, which is called 
pipe-like architecture, and presents training performance analyses for popular 
Neural Network Backpropagation Algorithms (NNBA) and well-known 
Metaheuristic Search Algorithms (MSA). The pipe-like neural architectures 
essentially resemble an elongated fraction of a deep neural network and form 
a narrowed long bottleneck for the learning process. Therefore, they can 
significantly complicate the training process by causing the gradient vanishing 
problems and large training delays in backward propagation of parameter 
updates throughout the elongated pipe-like network. The training difficulties 
of pipe-like architectures are theoretically demonstrated in this study by 
considering the upper bound of weight updates according to an aggregated 
one-neuron learning channels conjecture. These analyses also contribute to 
Baldi et al.'s learning channel theorem of neural networks in a practical aspect. 
The training experiments for popular NNBA and MSA algorithms were 
conducted on the pipe-like benchmark architecture by using a biological 
dataset. Moreover, a Normalized Overall Performance Scoring (NOPS) was 
performed for the criterion-based assessment of overall performance of 
training algorithms. 

  

BORU-BENZERİ YAPAY SİNİR AĞI KARŞILAŞTIRMA MİMARİLERİNİN 
EĞİTİMİ HAKKINDA BİR TEORİK ARAŞTIRMA VE POPULAR EĞİTİM 

ALGORİTMALARIN PERFORMANS KARŞILAŞTIRILMALARI  
 

Anahtar Kelimeler Öz 
Yapay Sinir Ağları, 
Ağ Mimarileri, 
Eğitim Performansı, 
Geriyeyayılım Algoritmaları, 
Metasezgisel Eğitim. 
 

Sinir ağlarının mimarileri, yapay sinir ağlarının eğitim performansını etkiler. 
Eğitim algoritmalarının daha tutarlı performans değerlendirmesi için eğitimi 
zor kıyaslama mimarileri kullanılmalıdır. Bu çalışma, boru-benzeri mimari 
olarak adlandırılan bir referans sinir ağı mimarisini tanıtmakta ve popüler 
Sinir Ağı Geriyeyayılım Algoritmaları (SAGA) ve iyi bilinen Metasezgisel Arama 
Algoritmalarının (MAA) eğitim performansı analizlerini sunmaktadır. Boru-
benzeri sinir mimarileri, temelde bir derin sinir ağının uzunlamasına bir 
kesitini temsil eder ve öğrenme süreci için bir daraltılmış uzun darboğaz 
oluşturur. Bu nedenle, uzun boru-benzeri ağ boyunca parametre 
güncellemelerinin geriye doğru yayılmasında gradyan kaybolma problemleri 
ve büyük eğitim gecikmelerine neden olarak eğitim sürecini önemli ölçüde 
zorlaştırır. Bu çalışmada boru-benzeri mimarilerin eğitim zorlukları 
birleştirilmiş tek-nöron öğrenme kanalları konjektörüne göre ağırlık 
güncellemelerinin üst sınırı dikkate alınarak teorik olarak gösterilmiştir. Bu 
analizler aynı zamanda Baldi ve arkadaşlarının sinir ağlarının öğrenme kanalı 
teoremine pratik açıdan da katkıda bulunmaktadır. Popüler NNBA ve MSA 
algoritmalarının eğitim deneyleri, bir biyolojik veri seti kullanılarak boru 
benzeri kıyaslama mimarisinde gerçekleştirmiştir. Ayrıca, eğitim 
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1. Introduction 
 
Neural networks have been gaining growing popularity in many fields of engineering and applied science 
for almost two decades. Their architectures and computation schemes have been progressively developed 
since the first appearance of the fundamental neural network models (Kim,2017).  Today, the learning 
power of deep neural networks is harnessed for processing much bigger data stacks, and theoretical works 
and research competitions for deeper neural networks are continuing to boost learning capability of the 
deep neural networks (Coleman et al., 2017; Schmidhuber, 2015; Shrestha and Mahmood, 2019; Deng and 
Yu, 2013; Winkler and Le, 2017; Mhaskar et al., 2016). 
 
Architectures of neural networks and the training algorithms have been occasionally progressed. The 
gradient vanishing problem was a major problem when adding more hidden layers to neural networks to 
reach much deeper networks (Kim, 2017). As the hidden layer count has increased, gradient vanishing 
problems have emerged, slowed down the training, reduced efficiency of backpropagation algorithms 
throughout deep layers, and the practical benefits in use of deeper layers began to disappear. Since around 
2000, researches have came up with several solutions for the training problems of deep hidden layers; for 
instance use of more relevant activation functions (RELU and variants)(Kim, 2017; Oostwal et al., 2019), 
pre-training approaches (Hinton and Salakhutdinov, 2006), better random initial scaling (Glorot and 
Bengio, 2010), employment of better optimization methods (Martens, 2010), selection of more suitable 
neural network architectures (Shrestha and Mahmood, 2019; Bahrami et al., 2019; Arifovic and Gençay, 
2001) and improved initialization techniques such as the orthogonal initialization and the random walk 
initialization (Sussillo and Abbott, 2014).      
 
Besides the implementation of gradient based optimization methods in neural network training, there have 
been attempts to use metaheuristic optimization algorithms in the training process of neural networks. The 
metaheuristic optimization can provide a gradient-free search option and this becomes advantageous when 
searching the optimal points in low-gradient parametric search spaces (Martens, 2010). Metaheuristic 
methods employ a set and trial search strategy to seek optimal values of parameters in the complicated 
optimization problems (Arifovic and Gençay, 2001; Sussillo and Abbott, 2014). Due to these advantageous, 
there are several research works that have addressed the training of feedforward neural networks by using 
popular metaheuristics(Sexton and Gupta, 2000; Che et al., 2011; Gudise and Venayagamoorthy, 2003; Ince 
et al., 2010; Mosavi et al., 2016) and results were compared with the backpropagation method in the shallow 
feedforward neural network training problems: Sexton et al. showed that genetic algorithm could be 
effectively used for training of shallow neural networks for chaotic time series data and reported a superior 
training performance of genetic algorithm over the backpropagation methods (Sexton and Gupta, 2000). In 
a similar study, Che et al. concluded that the backpropagation algorithm can be preferred since it provides 
faster training of neural networks than the genetic algorithm; however it can suffer from the gradient 
vanishing problem where the genetic algorithm does not suffer (Che et al., 2011). Gudise et al. compared 
the neural network training performance of particle swarm optimization with performance of a 
backpropagation algorithm and reported that particle swarm optimization algorithm can faster converge 
to optimal weights than the backpropagation algorithm (Gudise and Venayagamoorthy, 2003). These 
contradicting reports on training performances of backpropagation and metaheuristic methods indicate the 
need for well-designed, standardized test and evaluation procedures. 
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Later, performances of several contemporary metaheuristic algorithms were compared for the training of 
neural networks (Mosavi et al., 2016; Ghasemiyeh et al., 2017). Besides the training process of the neural 
network, metaheuristic optimization has also been performed for optimization of the network architectures 
to reach an improved training performance (Arifovic and Gençay, 2001). Although there are many efforts 
that compare performances of the learning methods (Sewak et al., 2018; Caruana and Niculescu-Mizil, 2006; 
Bala et al., 1992) and training algorithms (Bahrami et al., 2019;  Zhao et al., 2010; Rusiecki, 2012; Karim et 
al., 2018; Can et al., 2019; Awolusi et al., 2019; Thakkar et al., 2020) in specific application domains, 
application-specific results obtained for arbitrary network architectures may not be relevant and consistent 
to have a common view on the training performances of the algorithms. For this reason, there is a demand 
for standard neural network training benchmark architectures, which are deliberately designed for hard-
to-train tests to uncover advantages and/or shortcoming of the training algorithms (Zhu et al., 2018; Fong 
et al., 2018). Such application-independent benchmarking is particularly useful to pinpoint major 
drawbacks of existing popular training algorithms and helpful to indicate new research directions for the 
ongoing research efforts. 
 
 This study investigates training performances of 9 widely used backpropagation training algorithms (e.g. 
LM, BFG, CGB etc.), which are implications of the gradient based optimization approaches, and 3 popular 
metaheuristic search methods (GA, PSO GWO) in the training problem of pipe-like deep neural network 
benchmark architectures. The pipe-like architecture of deep neural networks complicates the training 
process due to forming a long and narrowed learning bottleneck via an elongated feedforward path of 
neurons. In the experimental work, the body fat percentage estimation dataset, which may express bio-
complexity of human metabolism, is used in training of this architecture with different pipe lengths (hidden 
layer counts). For the overall performance assessment of the training methods in pipe-like neural network 
architecture, a NOPS scheme is employed and the overall training performance and performance criterion-
based selection of the training algorithms are shown. The addressed problems, novelties and main 
contributions of this study can be summarized as: 
 
(i) A pipe-like neural network benchmark architecture, which is called pipe-like neural network benchmark 
architecture, is introduced. The pipe-like neural network benchmark architecture forms an extended 
bottleneck for the learning process. The training difficulties of this hard-to-train benchmark architecture 
are theoretically analyzed in the aspect of Baldi et al.'s learning channel theorem of neural networks. This 
effort contributes to using practical implications of the learning channel theorem for investigating training 
problems in deep neural networks. 
 
(ii) A theorem to consider upper bounds of the training performance for gradient-based training algorithms 
is suggested. This theorem implements sensitivity derivative analysis on the pipe-like deep neural learning 
channel and it conjectures essential mechanisms that lead to gradient vanishing problems in deep neural 
networks. Suggestions of this theorem were observed in the experimental study and used to explain 
essential reasons for training performance degradations of gradient-based training in our experimental 
test. 
 
(iii) To the best of our knowledge, this is the first experimental study that tests training performances of 9 
popular NNBA algorithms and 3 fundamental MSA algorithms on the elongated pipe-like benchmark 
architectures from shallow one to deeper networks. The training performances of these algorithms are 
reported without any application-specific bias. The experimental results revealed performance drawbacks 
of these training algorithms and results indicated a requirement of designing new deep learning dedicated 
optimization algorithms, which are particularly specialized for training of deep neural network algorithms. 
 
(iv) To enable performance criterion-based selection of the training algorithms, a NOPS scheme is 
illustrated. By allowing importance weighting of the performance criterion, NOPS can contribute to the 
solution of automated training algorithm evaluation and selection problems. 
 
2. Preliminaries And Theoretical Background 
 
This section provides preliminary knowledge on NNBA and MSA training algorithms that are tested in 
experimental study. Then, training difficulties of the pipe-like neural network benchmark architecture are 
theoretically analyzed by suggesting a theorem for upper bounds of training performance of this benchmark 
architecture. This theoretical background establishes a theoretical foundation to demonstrate suitability of 
the pipe-like neural network benchmark architecture for testing of training algorithm performances.    
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2.1. Backpropagation Training Algorithms 
 
Training of an artificial neural network mathematically refers to finding optimal values of weight 
coefficients in order to minimize a predefined loss function. The loss functions are mathematical 
expressions that are used to evaluate the quality of the learning activity on the net. This optimization 
problem complicates as the number of layers in a neural network increases because of the increased 
function compositions to represent the network function (functional complexity of the network function) 
and growing weight and bias coefficient numbers to be optimized (high dimensionality of the optimization 
problem). To deal with complications associated with the training of multilayer feedforward neural 
network architectures, a “backpropagation” algorithm was proposed to cope with functional complexity of 
multilayer networks (Kim, 2017; Goodfellow et al., 2016). Then, the backpropagation has become the most 
fundamental training algorithm, and it has found a wide application area for the training of multilayer 
neural networks. It involves two essential stages (Kim, 2017): firstly, the input data propagates towards the 
output layer of neural networks; this stage is forward propagation of information, afterward, the error 
information, which is calculated at the output of the neural network, propagates back into the input layer 
of the neural network. This is the process of the backward propagation of the error information, where the 
term “backpropagation” comes from. Several training algorithms have been proposed to improve 
performance of the backpropagation training approach (Hagan et al., 1996; Cömert and Kocamaz, 2017; 
Hagan and Menhaj, 1994; Dennis and Schnabel, 1996; Mosavi et al., 2016; Pan et al., 2013). Table 1 shows a 
list of up-to-date backpropagation training algorithms that have been preferred in the training of multilayer 
feedforward neural networks in the current study. Training performance of backpropagation algorithms 
decrease when the hidden layer number of the feedforward neural networks increases because of the 
gradient vanishing problems: The decrease in gradient magnitudes can severely deteriorate the backward 
error propagation toward input layers, the weight updates slows down, and the training in deep layers 
begins to cease, practically. Therefore, consistent training performance analysis of algorithms should be 
carried out for deep and complicated neural network configurations. 
 

Table 1.  The NNBA Types, Which Are Tested in This Study, and Their Abbreviations 
Training Algorithms Abbreviations Related Works 

Levenberg-Marquardt backpropagation LM (Hagan et al., 1996; Hagan and 
Menhaj, 1994; Powell, 1977) 

Quasi-Newton backpropagation with Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) update 

BFG  
(Dennis and Schnabel, 1996) 

Conjugate gradient backpropagation with Powell-
Beale restarts 

CGB (Powell, 1977; Beale, 1972) 

Conjugate gradient backpropagation with Polak-
Ribiére updates 

CGP (Hagan et al., 1996; Scales, 1985 
; Fletcher, 1964) 

Conjugate gradient backpropagation with Fletcher-
Powell updates 

CGF (Hagan et al., 1996; Scales, 
1985; Fletcher, 1964 

Variable learning rate gradient descent GDX (Vogl et al., 1988) 
One-step secant backpropagation OSS (Battiti, 1992) 

Resilient backpropagation RP (Riedmiller and Braun, 1993) 
Scaled conjugate gradient backpropagation SCG (Moller, 1993) 

 
2.2. Metaheuristic Training for Artificial Neural Networks 
 
Metaheuristic optimization methods are easy-to-use, optimal solution seeking tools that have been widely 
implemented in engineering problems. They have been particularly used when the optimization problem is 
too complex to be solved numerically or analytically (Wong and Ming, 2019). These methods employ a set 
and trial search strategy that can provide a straightforward solution for empirical, complicated, even not-
well structured optimization problems. This introduces an important advantage that makes them 
preferable in real-world engineering application works. However, they have some disadvantages such as 
concerns about the dependability of solutions, inefficiency of these methods while searching in high 
dimensional search spaces etc. 
 
The candidate solution selection strategies of metaheuristic algorithms are very substantial for convergence 
performance of metaheuristic optimization, and they establish major discrimination points between 
metaheuristic optimization techniques. Some major problems, which were observed in use of the 
metaheuristic methods, can be summarized as (Gogna and Tayal, 2013; Chopard and Tomassini, 2018; 
Hinton, Salakhutdinov, 2006; Igel, 2014):  
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(i) Contemporary metaheuristic optimization methods cannot convey definite information whether or not 
the solution is globally optimal (Gogna and Tayal, 2013). However, the quality of solutions can be evaluated 
with the value of objective functions in applications (Parejo et al., 2012; Gunantara et al., 2019). 
 
(ii) Metaheuristic optimization is commonly effective in the low dimensional search spaces. An increase in 
the dimension of search spaces, that is, more parameters to optimize, severely reduces the converge 
performance in the metaheuristic searching because of the exponential growth in the exploration fields for 
the set and trial searching of search agents. When the number of parameters, namely the dimension of the 
problem, increases, the computation time of the algorithms severely arises (Chopard and Tomassini, 2018; 
Parejo et al., 2012).  
 
(iii) Many metaheuristic methods need the finite search spaces that are confined by the predefined search 
ranges of the optimized parameters. This may become an important shortcoming that can reduce practical 
efficiency of metaheuristic methods because it is not always an easy problem to determine predefined 
search ranges of parameters, which can include the global minimum or maximum. Therefore, improper 
configuration of parameter search regions can limit performance of metaheuristic search (Chopard and 
Tomassini, 2018; Birattari and Kacprzyk, 2009).   
 
(iv) Metaheuristics methods commonly utilize random number generation in the search processes to 
differentiate search paths. However, this brings a problem of unrepeatability of the solutions even though 
the computers can generate pseudo-random numbers. The reliable results require a statistical evaluation 
of the repeated optimization tasks. However, the rerunning of the algorithms many times can considerably 
increase the computational burden (Gogna and Tayal, 2013; Parejo et al., 2012).    
 
When the depth of a multi-layer feedforward neural network increases, training of the neural network 
introduces difficulties associated with gradient magnitudes for gradient-based optimization techniques. 
Therefore, there exist several efforts to implement gradient-free metaheuristic optimization as a substitute 
for backpropagation methods (Sexton and Gupta, 2000; Che et al., 2011; Gudise and Venayagamoorthy, 
2003; Ince et al., 2010; Mosavi et al., 2016). Since a majority of metaheuristic methods perform gradient-
free optimization algorithms, they are expected to present advantages over the gradient-based optimization 
algorithms when gradient calculations are problematic or ineffective. For the training of the multilayer 
feedforward networks, three widely preferred popular metaheuristic optimization methods in the 
literature are listed in Table 2 (Che et al., 2011; Ince et al., 2010; Mosavi et al., 2016). These methods are 
commonly used to minimize the sum of square error loss function of neural networks, which is written by 
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where, ),( ji xwf  represents i th output function of the neural network for the input vector jx . Training 

set is formed by the input-output data pairs ),..,,,( 21 kj yyyx . The weight vector w  represents a 

collection of the weight coefficients of neural networks, which are optimized during the training of the 
network via a metaheuristic method. (Bias coefficients are computationally assumed as an input with a 
weight value of 1). Number of parameters to optimize, n  layer neural network can be written by 
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)1( )( , where hk  is the number of neurons in the hidden layer h  and 0k  is the number 

of inputs in a neural network. Parameter number D  determines the dimension of the search space. The 

search space expands a D  dimensional hypercube by the term 
D

ul ww ],[ , where ],[ ul ww  is the upper 

and lower boundaries of weight coefficient search ranges. Due to the exponential growth of the search space 
volume, the metaheuristic algorithms in Table 2 have been utilized in the training of shallow neural 
networks (Che et al., 2011; Ince et al., 2010; Mosavi et al., 2016). It will be useful to test these methods in 
training of the pipe-like architecture of deep neural networks to better observe the inherent shortcomings 
of the metaheuristic training approach.  
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Table 2. The MSA Types, Which Are Tested in This Study, and Their Abbreviations 
Metaheuristic Search Algorithms Abbreviations Related Works 

Genetic Algorithm GA (Sexton and Gupta, 2000; Che et al., 2011; 
Melanie, 1996 ; Michalewicz, 1992  

Particle Swarm Optimization PSO (Gudise and Venayagamoorthy, 2003 ; Ince 
et al., 2010 ; Zeugmann et al., 2011)  

Gray Wolf Optimization GWO (Mosavi et al., 2016 ;Mirjalili and Mirjalili S., 
2014 ;Faris et al., 2018) 

 
2.3. A Theoretical Background on Pipe-like Architecture Deep Neural Network 
 
Architecture types of neural networks affect the learning skills, and the proper selection of network 
architecture is a very important stage for the training performance (Ince et al., 2010; Hornik, 1991). 
Fundamentally, feedforward neural network architectures are divided into two main categories: These are 
the single layer neural networks in Figure 1 and the multi-layer neural networks in Figure 1. Later, multi-
layer feedforward neural networks were grouped into two major subcategories that are the shallow neural 
networks and the deep neural networks. Theoretical discussions on the architecture or the configuration of 
artificial neural networks are continuing on the bases of universal approximation theorems (Schmidhuber, 
2015 ; Winkler and Le, 2017; Hornik, 1991; Csaji, 2001; Kratsios and Bilkoptov, 2020). 
 
Conceptually, increasing the tunable parameter numbers (layers, weights, bias, generic activation function) 
can enhance fitting capability to data because it increases complexity in the compositional function 
representation of neural network and accordingly allows representation of more composite function 

models by using the deep neural network function ),( ji xwf . Thus, deep neural networks present 

potential of better approximating to higher complexity compositional function models that cannot be well 
approximated by a shallow neural network (Mhaskar et al., 2016). On the other hand, in addition to 
enhancing approximation capability, increasing the depth of feedforward network was observed to enable 
more abstraction of the learned knowledge in the deeper layers similar to the biological neural network can 
do, for instance the convolution neural network can detect more complex features (irregular shape) in deep 
layers by using more primitive features (e.g. edges, curves) that are detected in the shallow layers (Deng 
and Yu, 2013). However, the overfitting problem, which causes a reduction in the generalization property 
in learning, emerges in deep neural networks because too many tunable parameters highly increase the 
approximation capability of neural network function to each data point in the training set. Overfitted models 
cause serious performance degradations in data applications in the cases of noisy data or insufficient data 
in training sets. Therefore, a proper generalization is preferable in data applications to obtain satisfactory 
practical performance. 
 
In order to compare training performances of the training methods, hard-to-train neural network 
architectures are more suitable to reveal the performance shortcomings and superiorities. In this manner, 
authors used a pipe-like architecture deep neural network in the performance tests. The width of layers 
was set to 5 neurons and the length of the neural network was increased up to 20 layers by adding a hidden 
layer at each test. Figure 2 shows a depiction of the trained 5 neurons wide and 20 layers long pipe-like 
benchmark architecture. This generic pipe-like structure enables testing several pipe architecture versions 
from the shallow one to the deep networks by adjusting the hidden layer counts. 
 
The communication and signaling phenomenon between neurons indicate the communication nature of the 
neural networks (Tagluk and Isik, 2019). A neural network resembles an information-adaptive narrowband 
communication channel with a learning property between the input layer and the output layer of the neural 
network. Previously, Baldi et al. have suggested the existence of a physical learning channel to convey 
information via the weights of the network (Isik and Sadowski, 2016) and they investigated the capacity of 
learning algorithms by considering the error gradients per weight. Thus, Baldi et al. conjectured a 
foundation for the learning channel theorem of neural networks. The current study contributes to the 
learning channel theorem of neural networks in a practical aspect by considering distribution of weight 
update magnitudes throughout a pipe-like deep neural network. Figure 2 depicts a one-neuron wide, pipe-
like network fraction (at middle schematic) that is composed of the hidden neuron model (at bottom 
schematic). Let's investigate the weight update magnitudes for this network to show hard-to-train nature 
of pipe-like benchmark networks: 
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Figure 1. A Representation Of A Single Layer Neural Network With 5 Neurons (On The Left-Hand Side) And A Multi 

Layer Neural Network With Three 3 Hidden Layer Of The 5 Neurons (On The Right-Hand Side) 
 

 
Figure 2. A Block Diagram Of A 5 Neuron Wide And 20 Layer Long Pipe Architecture Neural Network (Top Schema), A 

Depiction Of One-Neuron Wide Pipe-Like Network Segment (Middle Schema), One Neuron In The Hidden Layer 
(Bottom Schema) 

 
Essentially, the pipe-like architecture results in a long bottleneck for the training process because a pipe-
like architecture forms a narrowed and elongated network for forward  and backward propagation of neural 
information and it exhibits two major training drawbacks for gradient based training algorithms that are 
the propagation delay problems related to narrowing of network and gradient vanishing problems related 
to elongation of network. To analyze these properties associated with the network architecture, let’s denote 

the output function of the layer h  in the neural network by the function ),( h

j

hh xwf , where the superscript 

h  is the layer index. When the layer number increases by adding more layers, the resulting output function 

of a deep neural network with n  layers can be commonly expressed by using function compositions as 
(Mhaskar et al., 2016; Isik and Sadowski, 2016; Strang, 2018) 
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where the superscript n  is the depth of this function composition. 
 
By considering activation function and the weighted sum of neuron inputs in the form of 

)().(),( 11    hhhh

i

h

i

hhhhh wwxwfy   (Isik and Sadowski, 2016; Mhaskar et al., 2016), the 

output of whole neural network is considered in the form of 
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This equation suggests a composite learning function family of the weight coefficient vector 
hw . The (.)h  

stands for the activation in the layer h . The weighted sum of neuron inputs in the layer h  can be 

represented by the weighted sum of previous layer outputs   1. h

i

h

i

h wv  . For every optimal 

determination of the weight coefficient set of 
*w = {

1w ,
2w ,

3w ,..,
hw } at a minima of the loss function, the 

results yield a learned function ),( *

jj xwfy   for an input vector jx  from the training set. The pipe-like 

architecture mainly narrows the width of the network, and this decreases the number of the weighted sum 
terms in the output function of the network. Consequently, this decreases the complexity of the composite 
learning function family that is represented by the Equation (3). Accordingly, a reduction in the complexity 
of the composite learning function tree decreases the representative nature of the output function. This is a 
factor that complicates the training tasks of a pipe-like architecture for all training algorithms. 
 
The gradient-based algorithms use delta rule for the weight updates, 
      

hhh www   
(4) 

 

where 
hw  is the weight update (Kim, 2017; Isik and Sadowski, 2016).  The weight updates 

hw  are 

commonly performed in directions where the loss function decreases. Therefore, sensitivity function 
hw

E




 

is widely used for the weight update 
h

h

w

E
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   in order to detect the descent directions of the loss 

function, where 0  is the learning rate that is commonly used to regulate converge rate of gradient-

based optimization techniques. The magnitude of the weight updates 
h

h

w

E
w




   is an indicator to 

evaluate penetration of learning through the network. To consider training difficulties of pipe-like neural 
network architecture for gradient-based backpropagation training algorithms, it is useful to investigate an 
upper boundary of sensitivity function magnitude in the network. 
 
Theorem 1 (An upper bound for sensitivity derivatives in pipe-like neural network models): 

In cases of k  numbers of the neuron in the each layer and gradient-based training algorithms, an upper 
bound for sensitivity derivatives at the first layer neurons can be expressed as 
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Proof: To calculate sensitivity derivative 
hw

E




 through the layers, a chain rule of derivative operators is 

implemented to cope with the composite function form of the neural network output function. When the 
chain rule of derivative operator is used for the one-neuron wide and n  layer pipe-like architecture, the 

sensitivity derivative can be written by  
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for an update of weights in the first hidden layer (Roodschild et al., 2020). Here, by considering at the hidden 

layers 
h

h

h

w
v





1

 and the first hidden layer jx
w

v





1

1

, the magnitude of sensitivity at the first hidden 

layer is expressed by the weight update magnitude as 
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(7) 

 

For k  numbers of the neuron in the each layer (i.e., the learning channel width of k-neurons), one can 
aggregate contributions of all one-neuron path segments (See middle schema in Figure 2) in order to state 
an upper boundary for the sensitivity function magnitudes: 
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Some Remarks and A Numerical Example:   
    
By using Equation (5), an upper boundary for the weight updates at the first layer neurons can be obtained  
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(8) 

 
This boundary reveals a restrictive factors for the learning activity of the pipe-like neural networks: The 
learning tendency of the network at each training epoch depends on the magnitude of activation function 

derivatives 
h

h

v


, the magnitude of weight coefficients 

hw , the learning rate   and the depth of the 

network ( n ). For the worst-case analysis, each partial derivative term of activation functions can be 

assumed 1



h

h

v


 and the weight magnitudes are considered 1

1







h

h

h

w
v


, these conditions cause 

the whole chain rule approximating to zero, 0
1






w

E
, as the number of hidden layer ( n ) increases 

because of the subsequent multiplication of  1



h

h

v


 and 1hw  terms. This effect results in the weight 

updates also converging to zero, 01 w , and it can severely slow down the training process.  

 
According to Theorem 1, the deep pipe-like network encounters two major training complications for NNBA 

methods: (i) gradient vanishing problem ( 0
1






w

E
) because of the multiplication of terms with 

1



h

h

v


 and 1hw  as the hidden layer number increases, and (ii) slowing down the training process 

though the pipe-like networks as neuron counts k  (the channel width) decreases in the narrowed layers.  

For a numerical illustration of the gradient vanishing problem in the pipe-like neural networks, it is useful 
to consider upper bounds of sensitivity derivatives at the first hidden layer for a fundamental activation 
function. For illustration purpose, a pipe-like neural network with the sigmoid activation function (

ve
v




1

1
)( ) is investigated based on the inequality (5). The unit weight coefficients 1iw  and the 
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unit input 1jx  are assumed in order to compensate for effects of weight and input parameters. Thus, 

one can consider only effects of the activation function selection on the training process. Let us consider 

sigmoid activation functions, it is obvious that 25.0



h

h

v


. For an upper boundary analysis, the 

maximum value 25.0



h

h

v


 can be used in inequality (5). Figure 3 shows change of logarithmic scaled 

sensitivity function amplitude (
1w

E




) at the first layer neurons while increasing hidden layer numbers up 

to 20 layers. The upper bound of the sensitivity derivative up to 20 hidden layer network is about 

13

1
1009.9 





w

E
, which also implies that the weight updating 

131 1009.9  w  is at a negligible 

level at the first layer. This problem suppresses backward propagation of error signals through deep neural 
networks. This result indicates a severe gradient vanishing problem with almost cessation of the training 
process under the presumed conditions. However, according to this conjecture, one can suggest that the 
learning rate ,  can be adaptively used to amplify the sensitivity function amplitudes to deal with this issue. 

 

 

Figure 3. The Level Of Sensitivity Function In Logarithmic Scale At The First Hidden Layer (
1w

E




) For Sigmoid 

Activation Functions 

 
3. An Experimental Study 
 
This section reports experimental results for training performance of 9 popular NNBA algorithms and 3 
fundamental MSA algorithms on the elongated pipe-like benchmark architectures. The advantages and 
disadvantages of the tested training algorithms are revealed in training of this benchmark architecture.  
 
3.1. A Comparison of Training Algorithms from Shallow to Deep Training  
 
Artificial neural networks have been widely used for the black-box modeling of the physical and biological 
systems and they have been implemented in the model-based prediction problems (Chen et al., 2020; Zhao 
et al., 2020). Due to higher level of complexity and chaotic dynamics, biological system modeling benefits 
from highly nonlinear function approximation skills of the artificial neural networks. To conduct the 
training experiments, the body fat rate estimation problem is solved by using body fat data from Matlab. 
This dataset is composed of 13 anatomical measurements of the human body as input data, and the neural 
network is trained to predict body fat percentages based on these anatomical features (Zamri et al., 2018). 
This dataset involves highly nonlinear relations and noisy data, which make it preferable for training 
algorithm tests. 
 
Figure 4 shows the average MSE performance of NNBA training tests. Figure 5 and Figure 6 illustrate the 
maximum MSE and the minimum MSE performances of NNBA training processes for 10 repeated tests. A 
large increase in layer counts cannot consistently improve MSE performance because of emergence of the 
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gradient vanishing and saturation problems as suggested in remarks of theorem 1. In overall, one can 
observe that the BFG, LM, CGB and RP backpropagation algorithms provide an improved average MSE 
performance when training the neural network architectures from 1 layer to 10 layers. However, for 10 
repeated tests, the minimum MSE performances are produced by the LM algorithm for all configurations in 
Figure 6. These results indicate the potential of the LM algorithm to reach the lowest MSE when training of 
the neural networks is repeated adequately. 
 

 
Figure 4. Average MSE Performances of The NNBA Trainings 

 

 
Figure 5. Maximum MSE Performances of The NNBA Trainings 
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Figure 6. Minimum of MSE performances of the NNBA trainings 

 

Figure 7 shows the average MSE performance of the training tests by using MSAs. Figure 8 and 9 illustrate 
the maximum MSE and the minimum MSE performances for 10 repeated training tests of each neural 
network configuration. Increasing the hidden layer number to 2 layers or more severely deteriorated the 
tested MSE performances because MSAs need much more computation time in searching optimal points as 

the dimension of search spaces increases. The dimension of search space ( 


 
n

h

hhh kkkD
1

)1( )( ) grows 

fast with the layer number n  in neural networks. Another factor that affects the performance of MSAs is 

the geometry of search spaces. Loss functions of shallow networks introduce rather multimodal search 
spaces and a higher exploration skill becomes an advantage to find better solutions, and this effect can 
increase average performance of search agents in multimodal search spaces. As the number of hidden layers 
increases in neural networks, the convexity of their search space increases because more hidden layers 
increase depth and optimization parameters, and accordingly approximation performance of the composite 
neural network function.  
 
Figure 7 and 8 reveal that the GA can provide better average MSE and maximum MSE performances up to 8 
hidden layer networks. A main reason for this result is that the GA is more explorative than swarm-based 
search algorithms (GWO, PSO) because of randomly applied genetic processes such as random mutation 
and crossover. These processes occasionally lead to random spreading of population into the search space 
at each generation, and such dispersion of individuals makes it more probable to find better solutions in 
multi-modal search space of shallow networks. On the other hand, GWO and PSO algorithms perform more 
exploitative search because search agents (individuals) of the swarm tend to move towards the best 
individual. Therefore, minimum MSE performance of GWO and PSO begins to improve after 8 hidden layers 
in Figure 9 as a result of the increase in convexity of the search space. Due to enhanced exploitation 
capability of GWO, the GWO algorithm can provide the lowest minimum MSE values when the training is 
repeated adequately. These results reveal that the GWO algorithm can be advantageous to obtain a 
minimum MSE in the case that the training of the deep neural networks is repeated. 
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Figure 7. Average MSE Performances of The MSAs 

 

 
Figure 8. Maximum MSE Performances of The MSAs 

 

 
Figure 9. Minimum MSE Performances of The MSAs 
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The computation time per weight parameter is useful to consider the computation load of an optimization 
method in the training process. It expresses the average of training time that a training algorithm is used to 
perform a weight update. It eliminates effects of network depth on training time measurements of 

algorithms. It is computed by dividing the total computation time ( cT ) by the number of weight parameters 

(
wN ) as wc NT / . Figure 10 shows the average computation times per weight in the training processes of 

NNBAs. The figure reveals that the BFG training method consumes considerably more time during the 
training process. Figure 11 shows the average computation times per weight in MSAs during the training 
process. The figure reveals a lower computation time of the GA algorithm compared to GWO and PSO 
algorithms in this regression problem because automatic stopping criteria of Matlab ga() can decrease the 
computation time. GWO and PSO algorithms do not stop before performing the maximum iteration number 
(Maximum iteration number is 1000 iterations for GWO and PSO). Figure 12 compares NNBAs and MSAs in 
terms of computation time per the weight coefficient. For these network configurations (up to 10 hidden 
layers), it is apparent that the computation times of MSAs is much higher than those of the NNBAs and such 
a high computation time is another important disadvantage of MSAs for the deep neural network training 
tasks. A reason for high computation time of MSAs is that MSAs are multi-agent (population-based) search 
algorithms, and they perform a loss function calculation for each agent of the population. This is an 
important factor that increases the training time of MSAs depending on the population size. Since 
population size and iteration numbers of MSAs are the same while the number of layers increases, the 
computation time per weight is relatively steady in Figure 11. 
 

 
Figure 10. Computation Time (In Sec) During Training of The Neural Network Configurations By using NNBAs  

 

 
Figure 11. Computation Times (In Sec) During Training of The Neural Network Configurations By Using MSAs 

 

Table 3 lists the training test results of algorithms on a pipe-like deep neural network architecture with 20 
hidden layers. In the case of 20 hidden layers, the lowest average MSE is provided by the GWO algorithm 
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and the lowest maximum MSE is provided by the PSO algorithm as a result of the increased convexity in the 
search space. On the other hand, due to the gradient vanishing problem of the pipe-like deep neural 
network, which was analyzed by using Theorem 1, training performances of NNBAs can reduce to levels 
that are comparable with training performances of MSAs. The performance of MSAs deteriorated because 
of the high-dimensional search space with 646 optimization parameters. However, the lowest minimum 
MSE is still provided by the LM algorithm (The lower minimum MSE implies accessibility to the best MSE 
performance in the case of multiple training.) and the lowest standard deviation of the MSE is provided by 
the CGF algorithm. (The lower standard deviation implies consistency of the MSE performance in multiple 
tests.) The lowest average computation time per weight is provided by the RP algorithm because The RP 
uses the sign of the partial derivative of the activation functions and this improves convergence speed 
however reduces convergence accuracy (Riedmiller an Braun, 1993). Although the lowest average MSE is 
possible by using the GWO, it’s computation time is much higher than all NNBAs. Table 3 showed that NNBA 
methods consume quite less computation time. Deep neural network training applications require faster 
algorithms in order to process large amounts of data. The speed of training algorithms is an important asset 
for deep neural network training in big data applications (Zhu et al.,2018). 
 

 
Figure 12. The Computation Time (In Sec) Comparison Between NNBAs And MSAs 

 

When an optimization algorithm is developed to be successful in hard-to-training benchmark networks, it 
will be more specialized and more dedicated for deep neural network training tasks. This unveils a research 
motivation that the optimization algorithms should be designed dedicated to the neural networks “deep 
learning dedicated optimization algorithms” in order to surpass the training performance standards of 
general purpose optimization algorithms. 
 

Table 3. Test Results of The Pipe Architecture Deep Neural Network With 20 Hidden Layers For Analyses Of MSE 
Performances And Computation Times For 10 Repeated Training (The Number Of Weights To Be Updated At Each 

Iteration Is 646) 
Training 

Algorithm 
Types 

Algorithm Average 
MSE 

Maximum 
MSE 

Minimum 
MSE 

Standard 
Deviation 

Average 
Computation 

Time (Sec.) Per 
Weight Update 

NNBA LM 49.26 69.84 16.25 26.56 2.12 
NNBA BFG 54.00 74.24 30.08 15.61 11.28 
NNBA CGB 63.15 70.84 28.08 13.67 1.22 
NNBA CGP 62.60 82.50 28.86 15.09 1.23 
NNBA CGF 69.73 70.14 68.86 0.34 1.07 
NNBA GDX 89.43 259.83 69.78 59.88 1.00 
NNBA OSS 67.84 72.50 45.75 7.82 1.36 
NNBA RP 71.37 74.60 70.18 1.62 0.89 
NNBA SCG 62.60 69.92 43.00 11.52 1.25 
MSA GA 73.30 106.95 46.65 18.32 129.11 
MSA PSO 52.30 60.16 44.17 5.14 20964.90 
MSA GWO 43.26 66.89 31.30 10.21 20698.54 
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3.2. Overall Performance Analysis and Criterion-based Selection of Training Algorithms 
 
For criterion-based assessment on the practical effectiveness of training algorithms, a normalized overall 
performance scoring (NOPS) is adopted to statistical properties in Table 3 as follows: 
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(9) 

  

where the parameter iP , pi ,..,2,1  stands for the value of the properties (performance indices) in the 

analyses of m  different algorithm options. Authors used 5 properties to evaluate training algorithm 

performance ( 5p ). Accordingly, the property 
1P  is the average MSE value, the property 2P  is the 

maximum MSE value, the property 3P  is the minimum MSE value, the property 4P  is the standard deviation 

and the property 5P   is the average computation time per weight. Previously, the weighted sum formula 

has been considered for decision-making problems (Stanujkic and Zavadskas, 2015 ; Goh et al., 1996). We 
modified it for the criterion-based selection of the training algorithms by using importance weighting. It 
should be noticed that all properties should be minimized for a desirable performance in this training 
algorithm selection problem. Therefore, an algorithm with a lower NOPS is better in criterion-based overall 

performance. The parameter iW  stands for the importance weight of the property i  and the importance 

weight should satisfy the normalization condition 1
1




p

i

iW  to perform a weighted average. For the equal 

importance of the properties, the importance weight is set to a constant value of 
p

Wi

1
 . Table 4 and Table 

5 show NOPS lists of NNBAs and MSAs for three type importance weighting:  the equal importance weights 

with ]2.0 2.0 2.0 2.0 2.0[iW ,  the NOPS_1 importance weights with 0.3] 0.0 0.2 0.1 0.4[iW  (it 

attributes more importance for average and minimum MSE performances to express accuracy and for 
computation time to express speed of the training algorithms) and NOPS_2 importance weights with 

0.3] 0.3 0.0 0.0 0.4[iW  (it attributes more importance for average MSE and standard deviation to 

express accuracy and consistency and for computation time to express speed of the training algorithms). 
Due to their higher speed and accuracy requirements, NOPS_1 can be preferable for training algorithm 
selection tasks of deep learning applications for big data analytics. Since MSAs have very high computation 
time, NOPS calculations were separately performed for NNBAs and MSAs categories. According to the NOPS 
analyses, the LM, CGB and CGP training algorithms can be advantageous for speed and accuracy 
requirements due to their low scores in Table 4. Improvements on nonlinear optimization (Marquardt, 
1963) can contribute to NNBAs. Among the tested MSAs in Table 5, GA algorithms can be useful in terms of 
speed and accuracy weighting. However, one should consider that these MSAs have extremely high 
computation time as shown in Table 3, and they are not effective for deep neural network training.  

 
Table 4. NOPS Analyses of NNBAs For The Pipe Architecture Deep Neural Network With 20 Hidden Layers 

Training 
Algorithm 

Types 

Algorithm NOPS for Equal 
Importance 

NOPS_1 for Speed and 
Accuracy Importance 

NOPS_2 for Speed and 
Consistency 
Importance 

NNBA LM 0.0608 0.0795 0.1155 

NNBA CGB 0.0552 0.0823 0.0869 

NNBA CGP 0.0591 0.0838 0.0894 

NNBA SCG 0.0583 0.0897 0.0827 

NNBA OSS 0.0572 0.0965 0.0805 

NNBA RP 0.0612 0.1047 0.0640 

NNBA CGF 0.0581 0.1049 0.0629 

NNBA GDX 0.1629 0.1402 0.1927 

NNBA BFG 0.0563 0.2184 0.2254 
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Table 5. NOPS Analyses of MSAs For The Pipe Architecture Deep Neural Network With 20 Hidden Layers 
Training 

Algorithm 
Types 

 
Algorithm 

NOPS for Equal 
Importance 

NOPS_1 for Speed 
and Accuracy 
Importance 

NOPS_2 for Speed 
and Consistency 

Importance 

MSA GA 0.0773 0.2967 0.3378 
MSA GWO 0.1598 0.3309 0.3420 
MSA PSO 0.1476 0.3724 0.3202 

 
3.3. A Discussion on Experimental Results: 
 
Some significant observations from experimental results can be summarized as 
 
(i) For training of the shallow networks with a hidden layer of 5 neurons, MSE performances of the tested 
NNBAs and MSAs are comparable. However, when two or more hidden layers were added to the network, 
MSE values of the MSAs sharply increased and the training performances severely deteriorated. While 
increasing the hidden layer numbers, MSE performances of NNBAs rather slowly deteriorate because the 
gradient vanishing problem gradually becomes effective as the layer number increases as suggested by 
Theorem 1. Therefore, authors concluded that the tested MSAs are suitable for the training of shallow neural 
networks. This shortcoming is mainly caused by the fact that the tested MSA methods are practicable for 
low dimensional optimization problems (Fong et al., 2018). An increase in hidden layers largely increases 
the number of weight and bias coefficients, namely the dimension of the search space of the loss function. 
For this reason, in order to train deep neural networks via MSAs, it is necessary to design algorithms that 
can be particularly effective for high dimensional optimization problems. Consequently, research efforts on 
high dimensional optimization problems will be very strategic for the deep learning research community. 
Authors anticipated that development of deep learning dedicated optimization methods can be more 
effective than the adaptation of general purpose optimization methods for neural network training. In a 
recent work, Manoharan et al. discussed performance improvement of neural network dedicated 
metaheuristics for several datasets (Manoharan and Sathesh, 2020).MSAs were preferably utilized in 
network architecture optimization problems because architecture optimization introduces lower-
dimensional optimization problems compared to training tasks. MSAs can more effectively optimize hyper-
parameters of neural networks such as layer numbers, neuron numbers and configuration of neural 
elements. Several works have discussed benefits of such neuroevolutionary approaches in deep learning 
(Stanley et al., 2019; Floreano et al., 2008; Suganuma, 2017; Ding et al., 2013; Galván and Mooney, 2021).      
 
(ii) The computation load of the MSAs is much larger than those of the tested NNBAs. This is another 
substantial shortcoming of MSAs in the training of deep neural networks. The main reason is that 
metaheuristic optimization commonly uses multi-agents (population) global search techniques. NNBAs use 
the single search agent and perform the local search according to the gradient direction. This property of 
NNBAs becomes an advantage for reduction of algorithmic computation complexity and it can significantly 
reduce the computation load of the training process. Nonetheless, low average MSE results of GWO in Table 
3 can support the idea, suggesting that the gradient free metaheuristic search can be a solution to deal with 
the complications associated with the gradient-based deep neural network training, such as the gradient 
vanishing and gradient exploding problems. However, the computation time of GWO is severely high, which 
becomes an important disadvantage for deep learning applications. 
 
For consistent evaluation of training algorithms, hyperparameters of each training algorithm type have 
been configured to similar values.  Some significant hyperparameters of the training algorithms are 
summarized in Table 6. Upper and lower bounds of weight coefficients are important parameters because 
they can affect the training performance for MSA methods. When these bounds are set symmetrical in 
positive and negative ranges, MSAs can obtain both negative and positive weight coefficients in the 
optimization stage. Besides, we configured the upper and lower bounds of weight coefficients in the narrow 
range of [-10, 10] as in Table 6. This can lead to a regularization effect (data generalization) in the neural 
learning process by preventing large differences between weight coefficients. Since the number of 
optimized weight coefficients in the training process exponentially grows the search space of MSAs, 
population size of MSAs can be increased to maintain the search performance for large search spaces. 
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Table 6. Hyperparameter Setting of Training Algorithms  
Training 

Algorithm Types 
Algorithm HyperParameter Setting 

NNBA LM, BFG, 
CGB, CGP, 
CGF, GDX, 
OSS, RP, 

SCG 

Number of epoch: 200, Minimum gradient magnitude: 1e-20, Error goal: 0, 
Numbers of neurons in hidden layers are 5, Activation function in hidden 
layers is hyperbolic tangent sigmoid transfer function, Activation function 

in output layer is linear transfer function, Number of weight coefficient: 
646. 

MSA GA Iteration number: Default stopping criteria of Matlab ga() function is used, 
Population size: 200, Number of parameters (dimension of optimization):  

646, Lower bound of parameters: -10, Upper bound of parameters:10.  
MSA PSO Maximum iteration number: 1000,  Population size: 200, Number of 

parameters (dimension of optimization):  646, Lower bound of 
parameters: -10, Upper bound of parameters:10, Damping Ratio: 0.99, 
Personal Acceleration Coefficient: 2, Social Acceleration Coefficient: 2. 

MSA GWO Maximum iteration number: 1000,  Population size: 200, Number of 
parameters (dimension of optimization):  646, Lower bound of 

parameters: -10, Upper bound of parameters:10.  

 
4. Conclusions 
 
This study introduced the pipe-like neural network benchmark architecture and performance analysis 
results of popular training algorithms were reported for different depths of the generic pipe-like neural 
network architecture. Training difficulties of this network were theoretically demonstrated by extending 
the learning channel theory to an aggregated one-neuron learning channel conjecture in Theorem 1. The 
weight update bounds of aggregated one-neuron learning channels and gradient vanishing problem of pipe-
like deep networks were analyzed for a fundamental neuron model. In the experimental studies, training 
processes of a pipe-like deep neural network took several weeks run-time for a high performance computer 
(Intel I7 processors and 16 GB RAM) without interruptions. 
 
Some remarks and suggestions can be summarized as follows: 
 
* Upper bounds theorem of training performance demonstrated training complications of the pipe-like 
neural network benchmark architecture on the basis of learning channel theorem, and the experimental 
study validates these performance complications for 9 popular NNBA algorithms and 3 fundamental MSA 
algorithms. 
 
* A major weaknesses of the tested popular NNBA algorithms originates from decrease of sensitivity 

function magnitudes (
hw

E




) through hidden layers according to remarks of Theorem 1. This effect causes 

severe attenuation of backward error signal propagation in the deep neural networks for backpropagation 
algorithms. Possible solutions to this problem may be reducing of gradient dependence of optimization 
methods (e.g., use of gradient-free optimization methods (Sexton and Gupta, 2000; Che et al., 2011; Gudise 
and Venayagamoorthy, 2003; Ince et al., 2010; Mosavi et al., 2016)), implementation of gradient magnitude 
balancing mechanisms to regulate backward error propagation (e.g., adjustment of additional gain 
coefficients (Roodschild et al., 2020) to balance gradient magnitudes through hidden layers), improving 
activation function (Kim, 2017; Oostwal et al., 2019) to enhance gradient magnitude of the activation 

function (
h

h

v


). 

 
*An essential shortcoming of the tested popular MSA algorithms is related to a high increase of computation 
burden as the dimension of optimization problems (the number of parameters to optimize) increases. 
Dimension of optimization problem for the training of neural networks grows very fast as the layer number 
increases. Population sizes and iteration numbers of MSAs should be increased to deal with the high 
dimension issue, however this can severely increase the computation time and cause the tested MSAs to be 
impractical for the deep neural network training task. Possible solutions of this problem may be 
enhancement of search strategies by specializing them to perform more effective searching on neural 
network function types. Such metaheuristics are referred to as deep learning dedicated MSAs. 
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The current study introduced a hard-to-train benchmark network that can be utilized as a test bench for 
development of training algorithms. Future works can address designing and testing of the deep learning 
dedicated optimization algorithms by using a pipe-like neural network test benches.  
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