Hacettepe Journal of Hacet. J. Math. Stat.
Volume 52 (3) (2023), 585 595
Mathematics & Statistics DOI : 10.15672/hujms.1104784

RESEARCH ARTICLE

The Stevié-Sharma operator on the Lipschitz
space into the logarithmic Bloch space

Hamid Vaezi*! (2, Soran Mahmoudfakheh?

! Department of Pure Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, University
of Tabriz, Tabriz, Iran

2 University of Tabriz, Tabriz, Iran

Abstract

In this paper, we study the boundedness and compactness of the Stevic-Sharma operator
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1. Introduction

Let X and Y be Banach spaces of analytic functions on a domain €2 in C, v an analytic
function on) and ¢ be an analytic function mapping 2 into itself. The weighted compo-
sition operator with symbols u and ¢ from X to Y is the operator uC, with range in Y’
defined by

uc@f:MuCgof:U(fo(P)a fex,
where M, is the multiplication operator with symbol u and C,, is the composition operator
with symbol ¢. We refer the interested reader to [7] and [17] for the theory of composition
operators and to [6,13,18,20,21] for (weighted) composition on some spaces of analytic
functions. For essential norm of (generalized) weighted composition operators from some
spaces of analytic functions into nth weighted type spaces, we refer for example to [1,2,14].

Let D be the open unit disc in the complex plane C, H(D) the space of analytic func-
tions on D and H* = H*°(ID) denote the space of bounded analytic functions f on D with
norm || fllee = sup.ep | f(2)]-

The Lipschitz space Lip, (with 0 < « < 1) is the space of functions f € H(D)
satisfying the Lipschitz condition of order «, i.e, there exists a constant C' > 0 such that
|f(2) = f(w)] < Clz—w|* z,w € D. Such functions f extend continuously to the closure
of the disc.
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The quantity

£ Lzip, = 1£(O)] + sup{ L2 L ]

e z,weD,z #w}
defines a norm on Lip,. Let f € Lip, and set

C= sup{M, z,w €D,z # w}.

2 —ul
Then, for z € D, we have
() < [f(0)] + Clz]* < Clz = w|® < || fl| Lipa-

Thus, taking the supremum over D, we obtain || f{lcc < || ]l Lipe-

A function f € H(D) is said to belong to the Bloch-type space, denoted by B?, if
Bf = sup,ep(l — |2[3)2|f/(2)| < oo. Under the seminorm f — B¢ , B is conformally
invariant, and the norm defined by || f||g« = [f(0)| + By yields a Banach space structure
on B,

By a theorem of Hardy and Littlewood [12], the elements of Lip, are characterized by
the following Bloch-type condition: A function f € H(D) belongs to Lip, if and only if

a(f) = sup(1 — o) ()] < oc. (1)

Moreover,
£l Lipa = [FO)] + a(f). (1.2)

Composition operators uC, between Lip, and Zygmund space were studied by Colonna
and Li in [6]. The spaces Lip, and the Zygmund space play an important role in connection
to the theory of the HP spaces when 0 < p < 1. For more information on these and other
facts regarding these spaces, we refer the interested reader to [8] and [9].

The logarithmic Bloch space is defined as follows [22,23]:

Buoy = {1 € HD) s 1] = sup(1 = [+ o 1 1'(2)] < o}

The space Bjo, is a Banach space under the norm ||f|s,, = [f(0)[ + [|f|l. The space
Bjog arises in connection to the study of certain operators with symbols. Arazy in [3]
proved that the multiplication operator M, is bounded on the Bloch space if and only
it v € H*® N Byyy. The space B,y appeared in the study of boundedness of the Hankel
operators on the Bergman space. Attele [4] proved that for f € L2(ID), the Hankel operator
Hy : Li(D) — L'(D) is bounded if and only if || f||g,,, < co. For recent papers on some
operators on By, see, for example, [5,10,11,16,23]

The composition, multiplication, and differentiation operator on H(D) are defined as

follows:
(Cof)(z) = (fop)(z), =€ HD),
(Myf)(z) = ¢(2)(f)(2), =€ H(D), (1.3)
(Df)(2) = f'(z), =€ H(D).

The differentiation operator is typically unbounded on many analytic function spaces. For
Y1, 2 € H(D), let

Ty oo f (2) = V1(2) f(9(2) + ¥2(2) f(@(2)),  f € HD).

The operator Ty, .., Was studied by Stevic and co-workers for the first time in [18,
24]. This operator is related to the various products of multiplication, composition, and
differentiation operators. It is clear that all products of composition, multiplication, and
differentiation operators in the following several ways can be obtained from the operator

Twl,@h#’ by fixing 1, ¥s.




The Stevié-Sharma operator o877

MyCoD =Toyp, MyDCyp = Toye o,  CoMyD = Toypop,p;
DMyCyp =Ty pppr  CoDMy = Typrop o,  DCoMy = Tw’ow’,(ww)%s@'
The purpose of this paper is to study the boundedness and compactness of the operator
Ty apo from Lip, space to the logarithmic Bloch space By,.
The following criterion for the compactness follows by standard arguments (see, e.g.,
the proofs of the corresponding lemmas in [7] or [19]. The details will not be pursued here.

Lemma 1.1. Suppose),po € H(D) and ¢ be an analytic self-map of D. Then Tiy, yy 0
Lipo — Biog is compact if and only if it is bounded and for any bounded sequence {f,} in
Lipa which converges to zero uniformly on D as n — oo, | Ty a0 Sl By — 0 @8 1 — 00.

Constants are denoted by C' and K in this paper, they are positive and not necessarily
the same in each occurrence. The notation a < b means that there is a positive constant
C such that a < Cb. We say that a < b if both a < b and b < a hold.

2. Boundednes of the operator Ty, ,, , : Lip, — Biog

In this section we give necessary and sufficient conditions for the boundedness of the
operator Ty, .o : Lipa — Biog.

Theorem 2.1. Let 91,92 € H(D) and ¢ be an analytic self-map of D. The operator
T aposo * Lipa — Biog is bounded if and only z'f the following quantities are finite:

M, Zigg(l—\ZI )log 7 | |!¢1( )|,
(=2 log WIM(Z')@’ z) + 5 (2)|
Mo =sup A~ e P
and
(- P)log 2o (=)
B S i 5 e
Proof. Sufficiency. For any f € Lip,,
(1 - |2*) log 2‘ ||(Tw1,¢2,¢f)( 2l < (112 )log 7 | ’|7/11( 2)(f(e(2))]
+ (1= |2 )log § | |\(¢1( 2)¢'(2) +95(2) f'((2)|
+(1— |2 )log § |(h2(2)@ (2)) f" (¢(2))]

r |

< Ol fllzip (1~ 121 log O]
(1= [2P)log [ ()¢ () + 3] (1 |z12>1og13|z||w2<z>¢<z>\> .
(1= [p(z)P) e (1= le(z)P)>= ’

where in the last inequality we have used (1.1) and the following well-known characteri-
zation of Bloch-type functions (see [25]):

sup(1 — 22)! 1 (2)] = |£(0)] + sup(l - |2[2)27 1" (2). (2.1)

zeD
Necessity. Assume that Tiy, 4, o @ Lipo — B is bounded. It means that there exists a
constant C' such that || Ty, yy o f 5., < CllfllLip, for all f € Lip,. For f(z) =1 € Lipa,
My = sup(1 — [2[*) log -~ ¥ ()] < oo, (2:2)
zeD ’ ‘
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For f(z) = z € Lip,,

M =sup(1 — |z|?) log
z€D | |

[¥1(2)0(2) +91(2)¢' () + ¥a(2)] < oo (2.3)
By (2.2), (2.3), the triangle inequality and the fact that |¢| < 1, we obtain

Ny = Sup(l — |2/ ) log T——[t1(2)¢'(2) + ¢5(2)] < oo, (2.4)

2€D \ |
For f(z) = 2% € Lipq,
Ny = 21615(1 = |2 log | ||¢1( 2)0%(2) +2(¥1(2)¢' (2) 25)
+¥5(2))e(2) + 2@0280 (2)] < oo,

By (2.2), (2.4), (2.5), the triangle inequality and the boundedness of the function ¢(z),
we obtain

N3 = sup(l — |z|? )log |2 (2)¢’ (2)] < o0. (2.6)

z€eD | |
For a fixed a € D and for z € D, set

—(L—laf) b1 —laP)? (1 [a]?)®

fa(2) = 1) T 0 _mre T 1 —anie (2.7)
A direct calculation shows that f, € Lipq,
1) = a( 200~ o)
a F~)1—a
S » 23
A2 ) o3 a)1 )y
(1—az)l-@ (1—az)l-@
and )
iy g2(—= )2 =)~ |a]*)
i@ =7( (1—az)* (2.9)
L 2= )B ) - laf*)? LBt |a|2)3>
(1—az)2« (1—az)2 )
Taking b, ¢ in (2.7) such that f,(w) = f//(w) =0, then f(a) = uﬁ%,
where C7 # 0. Thus, for a € D,
€ 2 Ty o1 2 sup(1 = 1) o 2‘ (T Bt )
= sup(1 = |2*) log ; ‘ ([ Fow ()
+ (P1(2)¢' (2 )+1/12( 2)) fa) (9(2)
+ (U2(2)¢ () ) (0(2))))
(2.10)

> (1= ja) log 111 (|44 0) oo (1)
+ ($1(a)¢ (@) + (@) Fhg ((a)
+ (Y2()¢' ()) o) (9(a))])

[Cllp(@)[(1 — [2[*) log Eg w1 (a)¢ (a) + ()|
- (1 —fp(a)2) = '
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From (2.10),
(1~ [af?) log 1251 (a)/(a) + v ()]
sup N

1<lp(a)l<1 (1 = [p(a)[?)t—

sy o (el (@9 (@) + vh(e)le(@)
= Letol (1~ lp(@P)==

(1~ |af?) log 12541 (a)¢'(a) + ¥4 (a)]|o(a)]

s (1~ @)= =2

According to (2.4),
o Jog g W1 (2)¢ (@) + ¥h(a)]

sup (1—la —
b (1=l (1—\90(a)|2)1 a

Yr(a)¢/(2) + dh(a)| < 5.

4
< Zsup(l — af )log 7
3 a€D ’ ‘

For a fixed a € D and for z € DD, set

cl —la]*) . d(—la)* = (1—la]*)*

93) = T gie T A are (1@
Then
=) —|af)  d2-a)(1—|af)? B-a)d—]a[*)?®
wl) =gyt Goage T Goage )
and
) el —a)(2—a)(l —|al? d(2 —a)(3 —a)(1 —|a|?)?
ga(z):a2( ( ()1(_%)2(& o) |, d ()1(_(12))2(& |al®)
B-a)d—a)(1 - |a|2)3)
(1 —az)2
We can take two constants ¢, d in (2.13) such that g, (w) = g},(w) = 0. Then
" 0262
9a(a) = W’

where Cy # 0. Thus, for a € D,

2
C> HTwl,wz,tpfga(a)” > Sgg(l - |Z’ )log | ’|(T1/J1 P2, sofap ) ( )’

= sup(1 — [2[*) log ﬁ( L) ot (2 ()

+ (1= [ log - Hrwl() ?(2) + 45 (2)) fip) (2 (2)]
+ (1= |2P)log 7 |||<¢2<> &N F o (0(2))

> (1~ [a]*) log ||( 1(@) (Foa(p(a))]

+ (1~ |af)log —— le() ¢ (@) + ¥4(a)) Sy ((a)
+ (1~ |af*)log ; ||\< 2(a)¢ (@)]) fla ()]

_Calle*(@)I(1 — [al?) log w2 (a) ¢ (a))]
B (1 = le(a)?)>~ ‘

589

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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From (2.17),
(1 - JoP?) log 12 42(e)¢/ (o)
sup 2\2—a
1<lp(a)|<1 (1 —[p(a)?)
2(a)|(1 = |2]?) log 2 |wa(2)¢ (a
<4 sup %(a)[(1 — |z[%) g12_|2z|lwz( )¢'(a)] (2.18)
1<lp(a)<1 (1 —[p(a)[?)2—=
0% ()| log 15 [v2(a)¢' (a)]
< 4sup(1 — |al? < C.
S (e P OB
According to (2.6),
s (1 —[2?) log 2 ¥2(2)¢' (2)]
lp(a)|<d (1= Je(2)[?)>
4 2
<5 sup  (1—|z[*)log [Y2(2)¢' ()] (2.19)
3 1/2<|p(a)| <1 1— 2|
< 2 sup(1— |2 log T [¥a(2)¢'(2)] < SN
_321615 z ogl_‘z| 2(2)¢(2)] < g Na.
]

3. Compactness of the operator Ty, 4, : Lipy — Biog
In this section we study the compactness of the operator T, y, , from Lip, into Bjgg.

Theorem 3.1. Let 11,92 € H(D) and ¢ be an analytic self-map of D. The operator
Ty aop * Lipa — Biog is compact if and only if it is bounded and

: 2 / _
i (1= ) log v () =0, (3.1)
- P log 2l (I () + ()
W = [p@Pe =0 (3:2)
e (1 = |#12) log 2 [al2)¢/(2)]
' 11—z logl_—‘z'wgzgo'z
1 =0. .
T A e 0 (3:3)

Proof. Suppose that Ty, 4, : Lipa — B is bounded, (3.1), (3.2) and (3.3) hold. Let

{fr} be a bounded sequence in Lip, which convergence to zero uniformly on D as k — oo.
It suffices, in view of Lemma (1.1), to show that

I Tp1 2,0 fl|Brog = 0,k — 00 (3.4)
For any € > 0, there exists ¢ € (0, 1) such that if § < [p(2)] < 1 then
2
(1= |2[*) log -— " Wi (2)] < (3.5)

(1 - [2]2) log 25 |1 (2)¢/ (=) + ¥5(2)]
0 [p@P)

(1 = [2[*) log 155 [v2(2)#' (2)]

(1= lp(2)[?)>~
From the boundedness of the operator Ty, 4, @ Lipa — Biog and the proof of Theorem

(2.1),the relations (2.2), (2.4) and (2.6) hold. Since fx — 0 uniformly on D, Cauchy

<€ (3.6)

and

< €. (3.7)
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estimate shows that {f,} and {f'} converge to 0 uniformly on compact subsets of D.
There exists a Ny € N such that k > Np implies that

sup (1 |[?)log

_2| ,\(Twl,wz,wfk)/(Z)l

lp(2)|<s 1
< sup (1—|2? )log § W1 (2)(f(e(2))]
lp(2)| < | |
+ sup (1—|z[*)log |(Y1(2)" (2) + ¥5(2)) fr((2)] (3.8)
()< 1- | |
+ sup (1—[2? )log 7 | ||(¢2( 2)¢' (2))fi (p(2))]
lo(2)|<d
<M sup supfre(z)+ N1 sup sup frp(z) + N3 sup sup fre(z) < Ce.
le(2)|<é le(2)|<é le(2)|<é

From (3.1), (3.2), (3.3), (3.8),(1.1) and (2.1),

2
Sgﬂg(l—lz! )log 5 P ,I(Twl,wz,sof)( z)| < Ce

+ sup (1-— !z!2)log 11 (2) )| fl| Lipa
s<lp(z)|<1 ! \
(1~ [2[?) log 12|91 (2) ' (2) + 94 (2))| (3.9)
+ sup e N1 ||f/||Lipa
s<lp(z)]<1 (1= lp(2)?)t
(1 —121%) log 25 92(2) ' (2)]
+ sup f” e, < Ke,
i D e B L

where K is constant. It follows that the operator Ty, 4, : Lipa — Biog is compact.

Conversely it is clear that the compactness of Ty, 4, o : Lipa — Biog implies its bound-
edness. Let {z} be a sequence in D such that |p(z)| — 1 as k — co. We can use the test
functions fi(2) = f,(z,)(2), where f, is defined in (2.7). We have

)
2

/ _ sO(z

Since { fi.} converges to 0 uniformly on D, hence { fi} converges to 0 uniformly on compact
subsets of D. Then {fx} is a bounded sequence in Lip, which converges to 0 uniformly
on D. By Lemma (1.1) we obtain limg_,ec || Ty 4.0 frll5,,, = 0. Thus,

= and  fr(eo(2k) = fo (e(2k)) = 0.

Culle(z0)l(1 = |2l?) log =101 ()¢ (21) + ¥ (2k)]

(1= lp(zr) 2t (3.10)
< ”T%,%,@fknﬁlog — 0, k — oo.

By (3.10) and since |p(zx)| — 1 as k — oo, so

i (1= [2*) log =7 1¥1(2) ¢ (2) + ()| 0
k1 (1 —=le(z)P) = N

Taking fi(z) = 1, we obtain supy(1 — |2z|?)log ﬁhﬁi(zk)] < |’Tw1,¢2,<pfk||931og — 0.
Analogously, (3.3) can be proved by choosing the test function gi(2) = gy(.,)(2), g is
defined in (2.13). This completes the proof of the theorem. O
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4. Essential norm of the operator T}, ,, ., : Lip, — Biog

In this section, we give an estimate for the essential norm of the operator
Ty oo * Lipa — Blog'

Theorem 4.1. Let v1,1)2 € H(D), ¢ be an analytic self-map of D and Ty, 4, : Lipa —
Biog is bounded. Then

|’T¢1,¢2,<pr6,Lipa—>Blog ~ maX{Alv AQ}:

where

i (1 —a?) ‘
S ! (1 —az)i—« =1,2.
J lﬁllilip H ¢1,w2,<p<(1 — Ez)ﬂ—a) ||Blog, 7 ,

Proof. First we prove that max{Ay, A2} < [Ty, s ¢lle,Lipo—sB,- Let a € D. Define

(1 —al?)
(1—az)i—o

fai(2) =

It is easy to check that f,; € Lip, for all @ € D and f,; converges uniformly to 0 on
compact subset of Lip, as |a| — 1 Thus, for any compact operator K : Lip, — Biog, we
have

lim HKfa7j”3]0g =0, j7=12
la]—1

Hence,

| T 20 = Kl Lipa—Brop < Hmsup (T, .0 — K) fa,jllBy,

la|]—1
L M sup | Ty, s o fajl|B10, = limsup [[K fo,jll,, = Aj-
la]—1 |a|—1

Therefore, based on the definition of the essential norm, we obtain
1T 2.0 lle,Lipa—Brog = WE T oo = Kl Lipa—Brog < Ajs 7 =1,2-

Now, we prove that
HT1ZJ1,1Z)2,<,0fHe,Lin—>310g S maX{Al, AQ}_

For r € [0,1), set K, : HD) — H(D) by (K,f)(2) = fr(2) = f(rz). It is obvious
that f, — f — 0 uniformly on compact subsets of D as r — 1. Moreover, the operator
K, is compact on B and |K,|z_s < 1(see[15]). By a similar argument can be proved
that the operator K, is compact on Lip, and || K,| rip.—rLip. < 1. Let {r;} C (0,1) be
a sequence such that r; — 1 as j — oo. Then for all positive integer j, the operator
Ty pa 0 Kr; + Lip, — Biog is compact. By the definition of the essential norm, we get

[T 50,0 e,Lipa—Blog = lim Sup [| Ty a0 — Ty o o K HLipa—>Blog'
j—o0
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For any f € Lip, such that || f||Lip, <1,

I(Tps 020 = T w20 ) | B < 1Ty i o f ()] + 1(f = ) (0(0))9(0))]
+sup(1 — |Z|2)10g & @I = fr)(e(2)]

zeD ‘ |

+sup(l — [2*) log 7= (¥1.(2)¢'(2) + V2 ())(f = fr,) (9(2))]

z€D ‘ |

+sup(1 — [2[*) log |(W2(2)¢" (2))(f = fr,)" ((2))]

zeD 1- ‘ |

<limsup sup (1—|z|2)log
j=00 Jo(=)|<r \ |

WIS = fr,)((2))]

My

%www 1))

+limsup sup (1 —|z|?)log
=% |p(2)>r 1-|

Mo

+limsup - sup (1= [2*)[(v1(2)¢' (2) + ¥5()(f = fr,) (0(2))]

J=oo fp(2)|<rN

M3

+limsup - sup (1= [2*)[(41(2)@' () + ¥2(2))(f = fr,) (2(2))],

d=roo fe(2)|>rN

My

+limsup - sup (1= [2*)[(v2(2)@' (2))(f = fr,)" (0(2))]

J—roo fe(2)|>rN

M

+limsup  sup (1= [2]*)|(¥2(2)¢" (2))(f = fr,)" (9(2))],

j=00 ()| >rx

Mg

where N € N is large enough such that r; > % for all j € N. Since Tip, s, * Lipa — Biog is
bounded, by (2.3) and (2.6), we have

[¥1(2)] < oo,

F, = sup(1 — |2[%) 1o

1 265( |2[*) g1—|z\
Ezsug(l—IZ\ )log 1 | ||¢1( 2)¢'(2) + Pa(2)] < 00
zEe

and
Fy = sup(1 — |2]*) log 7= [¢2(2)¢'(2))| < o0
z€D ‘ |
Since 7 f;j — f’ uniformly on compact subsets of D as j — 00, SO
MlSZ?I:SUP(I*M )log [Y1(2)] =0,
zeD | |
Mséf?;:sug(l—\ZI )log 1 | |\¢1( 2)¢'(2) + ¥2(2)| = 0,
zZ€E
and

M5§E:sgg(1—|z|2)10g | T2 "(2)I =0,

Next we consider Ms. We have My < limsup,_, . (Q1 + Q2), where

[(F (eI (2)];

Qu= sup (1—|z*)log
() >ry

2
1— 7|
and

Q= swp (1—|zP)log 2| NI

le(z)[>rn
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Using the fact that || f||zipo < 1 and (1.2), we obtain

Q1= sup (1—|z°)log _2 ()1 (2)]
()| >rn 1— 1z

L A= le@P) ™ (= a)e(z)
(j—a)p(z) (A—lp(z)?)

(.7 - O‘)”fHLiPa (1 . |Z|2) log
N ()| >rn 1— 7|

W/( )| (] — a)‘ﬁ(z>

2 o G- a)e)
MO TR

PN

< sup (1—|z*)log

lo(2)|>rn 1 — 2] (1= lp(2)[2)t=
= sup “Tl/)l,wz,@(fa:j)”ﬁlog J=12
la|>rN

Taking the limit as N — co, we obtain

lim sup Q1 < Tmsup [Ty, s, (fa,5) | Bro-

Jj—o0 la]—o0

Similarly,

lim sup Qg < limsup [T, 4ps ¢ (fa.j) || B1ox-

Jj—o0 la]—o0

Hence, we get My = max{A;, A2}. Similarly, it can be shown that My =< max{A;, A2} and
Mg < max{A;, As}. This completes the proof of the theorem. a
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