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Abstract 

For years in gamma-ray spectrometry, there have been numerous numeric methods implemented and dedicated to integrate the 

photopeak areas. With the advance of new technology and software, determination of peak areas has been digitized. In addition, new 

statistical approaches have given diverse perspectives in analysing the experimental data. In this case study, Maestro software was 

used to extract the experimental gamma-ray data from radioactive 60Co source. In general, analysts have been challenged by the 

calculation of background area under certain gamma-ray peaks when there are especially low counts. For instance, this problem leads 

them to find different net area values in various accuracies for the same peak. Therefore the precision of determination based on 

different statistics might affect the results. The systematic error, which is caused by the shapes and models of the background 

estimation, has been investigated by CERN’s ROOT software. This detailed analysis of digital data from NaI(Tl) scintillation detector 

has been tabulated with its comparisons in various modern analytic methods and numeric approaches dated back to 1960s and 1970s.  

Keywords: Gamma-ray spectrometry, photopeak, Maestro, ROOT, background estimation, net area. 

Farklı Analitik ve Nümerik Yöntemlerle Fotopiklerdeki Gama Işını 

Miktarının CERN’ün ROOT Analiz Programıyla Hesaplanması  
Öz 

Yıllardır gama ışını spektroskopisinde, fotopik alanlarının integrasyonu için birçok nümerik yöntem geliştirilmiştir. Yeni gelişen 

teknoloji ve yazılımlarla, fotopik alanlarının hesaplanması dijital ortama aktarılmıştır. Ek olarak, yeni istatistiksel yöntemlerde deneysel 

verinin analiz edilmesinde farklı bakış açıları sağlanmıştır. Bu örnek çalışmada, Maestro yazılımı radyoaktif 60Co kaynağından deneysel 

verinin alınması için kullanılmıştır. Genel olarak, düşük sayım sayısı olan durumlar belirli piklere ait taban sayımı hesaplamalarında 

analiz yapanların işini zorlaştırmaktadır. Örneğin, bu sorun onların aynı pik için farklı duyarlılıklarda net alan hesaplamalarına yol 

açmıştır. Bu yüzden, farklı istatistiksel yaklaşımlara bağlı bulunan doğruluk paylarının sonuçlara etkileri olacaktır. Taban sayımının 

hesabında kullanılan şekiller ve modellerden kaynaklanan sistematik hatalar, CERN tarafından geliştirilen ROOT yazılımı ile 

araştırılmıştır. NaI(Tl) sintilasyon detektörü ile yapılan bu dijital verinin detaylı analizi, 1960 ve 1970’lere uzanan nümerik metotlar ve 

modern analitik metotlarla karşılaştırılmalı olarak tablo halinde verilmiştir. 

 

Anahtar Kelimeler: Gama ışını spektroskopisi, fotopik, Maestro, ROOT, tabansayımı tahmini, net alan. 
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1. Introduction 

Statistics in counting gamma-rays in specific are unavoidable 

mathematical concept which nuclear physicists will encounter 

naturally. In most laboratories, nuclear physicists investigate 

randomly decaying radioactive substances. In addition to the 

counting process, this randomness also requires a statistical 

approach by nature. Therefore, all measurements become indeed 

just an estimate of a decay rate. In gamma-ray spectroscopy, 

counts versus channel number plots in a raw data are the first to 

analyse. Then, this raw data can be calibrated in terms of energies. 

For this study, analysis will be processed on channel numbers for 

the simplicity. Every measured rate in each event can be related 

directly and proportionally to the number of atoms in the 

radioactive source to define the activity. The integration of peak 

area measurements, namely the total counts under full gamma-ray 

peaks, is the main input to reach the activity of any radioactive 

substance. Some of the theoretical tools for this investigation have 

been different versions of Covell methods [1,2,4,5,8] and Total 

Peak Area (TPA) methods [2,3, 4, 6,7,8]. For this study, the ROOT 

coding via fittings by using Gaussian functions for the peak and 

polynomial functions for the background will be used to 

modernize the old procedures. For this perspective, standard 

deviation, coverage factor and confidence limit concepts will be 

introduced to make the future analyses more efficient and user 

friendly. 

2. Methods 

In general, main issue of integrating a peak area in gamma-

ray spectroscopy was the background estimations for the peaks 

under overlapping circumstances. It is because statistics takes 

place in error calculations and every method has pros and cons in 

this perspective. However, gross area calculation is quite 

straightforward as it suggests taking all the counts under certain 

peak limits. For the rest of the article, the letter A will stand for 

either net count or net area under a photopeak. To show the count 

number, the letter a with subscript to denote the corresponding bin 

number will be used. The lower and upper limits of the peak 

region are shown as L and U.  

Covell Method 

In early years of statistical analysis digital gamma-ray 

spectrometry, Covell introduces us a pretty straight forward 

method to estimate the net counts under a photopeak. Then, this 

simple but elegant formula transformed itself to new forms. Let’s 

start with Covell’s original idea. According to Gilmore [6], Covell 

suggested to locate the highest counts in channel at first and then 

marking the lower and upper limits of the peak region as equal 

number of channels away from the centremost channel. However, 

this method had its own obstacles when there are overlapping 

peaks nearby in the usage of detectors with low resolutions. The 

spectrum in this article was also taken from NaI(Tl) detector. In 

the original Covell’s method, the formulation was summarized as 

follows [1]: 

a) 𝐴 = 𝑎0 + ∑ 𝑎𝑖
𝑛
𝑖=1 + ∑ 𝑏𝑖

𝑛
𝑖=1 − [(2𝑛 + 1) ×

(𝑎𝑛+ 𝑏𝑛)

2
] 

where a0 is the highest number of accumulated counts in the 

centermost channel, ai is the count in channel i in the low 

amplitude side of the peak whereas bi corresponds to the count in 

channel i in the high amplitude side of the peak. Covell estimated 

the peak in approximately Gaussian shape with the total of 2n+1 

independent bins. Then, the variance of the A term can be 

calculated as follows: 

𝑉𝑎𝑟(𝐴) = 𝑎0 + ∑ 𝑎𝑖

𝑛

𝑖=1

+ ∑ 𝑏𝑖

𝑛

𝑖=1

+ [(
2𝑛 + 1

2
)2 × (𝑎𝑛 +  𝑏𝑛)] 

However, Gilmore’s interpretation of the Covell method was 

slightly different than the original approach as follows [6]: 

b) A=  ∑ 𝑎𝑖
𝑈
𝑖=𝐿 − [(𝑈 − 𝐿 + 1) ×

(𝑎𝐿−1+ 𝑎𝑈+1)

2
]  

Thus, the variance of the net area can be stated as below. 

𝑉𝑎𝑟(𝐴) =  ∑ 𝑎𝑈
𝑖=𝐿 − [

(𝑈−𝐿+1)2

4
× (𝑎𝐿−1 +  𝑎𝑈+1)].  

Here, the gross area was the sum of all counts under the bin 

interval between L and U on the uncalibrated spectrum as shown 

in Figure 1 for the guidance. On the other hand, the background 

area was calculated by taking the mean count of one adjacent bin 

outside the peak region instead of the last bins on both end of the 

peak. Since the different interpretation and the perspective of the 

formula matters in statistics, other forms of the Covell’s equation 

should be emphasized here. One of them was as follows [5]: 

a)   𝐴 = ∑ 𝑎𝑖
𝑛
𝑖=−n − [(2𝑛 + 1) ×

(𝑎𝑛+ 𝑎−𝑛)

2
] 

where n is the number of channels on each side of the channel 

zero with maximum number of counts (a0). Thus, this equation 

suggests that the variance can be written as below: 

𝑉𝑎𝑟(𝐴) = ∑ 𝑎𝑖

𝑛

𝑖=−𝑛

+ [(
2𝑛 + 1

2
)2 × (𝑎𝑛 + 𝑎−𝑛)] 

Then, the second interpretation was shown as below [5]: 

b) A = [𝑎0 + ∑ (𝑎−𝑖 + 𝑎𝑖)]𝑛−1
𝑖=1 − [(2𝑛 − 1) ×

(𝑎𝑛+ 𝑎−𝑛)

2
] 

Then, the variance may be written as: 

𝑉𝑎𝑟(𝐴) =  N + [ (n −
1

2
)  × (n +

1

2
) × (𝑎𝑛 +  𝑎−𝑛)] or 

 𝑉𝑎𝑟(𝐴) = [𝑎0 + ∑ (𝑎−𝑖 + 𝑎𝑖)]𝑛−1
𝑖=1 + [(

2𝑛−1

2
)2 × (𝑎𝑛 +  𝑎−𝑛)] 

Lastly, the third variation of the Covell’s formula was [5]: 

c) 𝐴 = [∑ 𝑎𝑖
𝑛−1
𝑖=−(n−1) ] − [(2𝑛 − 1) ×

(𝑎𝑛+ 𝑎−𝑛)

2
]. 

which leads to the variance in a new form as shown below:         

𝑉𝑎𝑟(𝐴) = [ ∑ 𝑎𝑖

𝑛−1

𝑖=−(n−1)

] + [(
2𝑛 − 1

2
)

2

× (𝑎𝑛 +  𝑎−𝑛)] 

In all these forms of the same Covell method tries to gives 

diverse forms of the intensity of the radiation detected by the 

detection system. It’s clear that all agrees on the total number of 

the counts under the peak, namely the gross area. In terms of 

background counts, all the calculations are following the same 

procedure except method b.
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Figure 1: Visualization of different digital methods on an uncalibrated spectrum in various perspectives.

At this step, Gilmore proposes taking the first bin immediately 

beyond the peak limits. Ultimately, they all use the trapezium area 

beneath the peak. The interesting fact is the way how the variances 

are constructed differently as a formula. They all left the last bins 

on both ends of the peak separately, so the weight of the term (an+ 

a(-n)) manifests itself among the other equally weighted bin 

contents in evaluating the relative precision of the magnitude of 

the net area, i.e. (
√𝑉𝑎𝑟(𝐴)

𝐴
). For instance, the ratio of (

2𝑛−1

2
)2 shows 

the disproportion in statistical weight. If the statistics and the ratio 

of the signal to background in the experiment are low, it’s proven 

that the relative precision is better with more channel number 

covered by the peak. However, it’s also known that the precision 

of the net area will not be badly affected by the accidental 

fluctuations of the weights in these extreme channels if the 

statistics are good enough [5]. In addition to Covell’s original 

method stated here in equation 1, he also suggested the stripping 

method and the fraction method in his article [1], but these details 

will not be mentioned here. More advance calculations for finding 

the net area done by Sterlinski in 1968 [5] suggested to represent 

the radiation intensity in different size of discrete blocks of n where 

it represents the total channel number on both sides of the peak. 

The details can be found in its article. In conclusion, all these 

efforts are to decrease the coefficient of variation, namely the 

precision, in calculations.  

TPA Method 

Similarly to the Covell, the TPA method may give similar results 

and equations when the peak shape is assumed to have symmetrical 

Gaussian distribution. Here is the first suggested TPA formula 

[3,4,7,8]: 

d) A=  ∑ 𝑎𝑖
𝑈
𝑖=𝐿 − [(𝑈 − 𝐿 + 1) ×

(𝑎𝐿+ 𝑎𝑈)

2
]  

The variance of this equation is as stated below:              

𝑉𝑎𝑟(𝐴) = ∑ 𝑎𝑖

𝑈

𝑖=L

+ [(
U − L + 1

2
)2 × (𝑎𝐿 +  𝑎𝑈)] 

At first sight, it looks the same as the equation c for the Covell’s 

method. The upper (U) and the lower (L) channel number at both 

hand of the photopeak were used to determine the total counts 

under the photopeak. However, it doesn’t clearly state that the 

channel (bin) numbers have to be equal on both side of the centroid 

of the peak as symmetric Gaussian shape suggests. Since testing 

the shape of a peak is not the aim of this article, there will be no 

comment on a symmetry or asymmetry of a peak shape at this time. 

Later on, TPA method was modified by Wasson [4, 7] in private 

discussions as written below. 

e) A =  ∑ 𝑎𝑖
𝑛
𝑖=−n − [(2𝑛 + 1) ×

(𝑏𝑛+ 𝑏−𝑛)

2
] 

where (bn+ b(-n)) notation was used to differentiate the background 

counts in the last channels, denoted by ±n as subscript, on both side 

of the peak as determined from a straight line fit between the left 

and the right end channels. This was the detailed part of Wasson’s 

modification because previous calculations took directly the 

content of the last bins as an example of (an+ a(-n)). That’s one 

comparison aspect of it. The variance of the Wasson’s 

modification can be stated as below: 

𝑉𝑎𝑟(𝐴) = ∑ 𝑎𝑖

𝑛

𝑖=−n

+ [(
2𝑛 + 1

2
)2 × (𝑏𝑛 +  𝑏−𝑛)] 

Another detail was that this method clearly indicated the 

symmetrical shape of a Gaussian function due to equal number (n) 

of channels on both side of the centremost channel of the peak. On 

the other hand, Gilmore came up with more flexible approach in 

the case of peak overlapping for low energy resolution detectors. 

In this method, the background count approximation was done by 

the user dependent channel number on both side of the peak region 
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beyond its limits. Therefore, it might resemble the extended 

version of the equation b as the following [6]: 

f) A=  ∑ 𝑎𝑖
𝑈
𝑖=𝐿 − [(𝑈 − 𝐿 + 1) ×

(∑ 𝑎𝑖
𝐿−1
𝑖=L−𝑚𝐿

+ ∑ 𝑎𝑖
𝑈+𝑚𝑈
𝑖=U+1

)

(𝑚𝐿+𝑚𝑈)
]  

The variance of this equation is shown as indicated below:      

𝑉𝑎𝑟(𝐴) = ∑ 𝑎𝑖
𝑈
𝑖=L + [(

U−L+1

𝑚𝐿+𝑚𝑈
)2 × (∑ 𝑎𝑖

𝐿−1
𝑖=L−𝑚𝐿

+  ∑ 𝑎𝑖
𝑈+𝑚𝑈
𝑖=U+1 )]              

Here, Gilmore’s TPA method introduces two new parameters as 

mL and mU to describe the extended bin numbers outside the peak 

area depending on the user’s choice. This choice should be made 

by an investigation of neighbouring peaks. Thus, the analyst could 

be somehow flexible in terms of choosing different bin numbers 

on each side of the peak of interest. Another difference from the 

original Covell method was that Covell’s background bins were 

the last bins within the peak region instead of outside the peak 

limits. While Figure 1 indicates how to perform the Gilmore’s TPA 

method shown in equation h, it also emphasizes the effect of 

different bin numbers, namely mL and mU, for the estimation of the 

background region for a peak. It’s known that the uncertainty after 

3 bins starts to be stable [6, 10]. Therefore, the percentage in 

relative standard deviation when selecting more than 3 bins for the 

background calculations will not alter the results so much. For that 

reason, software like MAESTRO uses 3 channels symmetrically 

on both sides of the peak by default for its background calculation. 

Maestro gives also the option to set this number differently, but it’s 

not variable as in the mL and mU values. They are always equal. 

The Calculation behind the Maestro Software 

The details of the working principle and the usage of Maestro 

software can be checked from its manual [9]. Here, only the 

calculations written by the Maestro manual will be mentioned. 

Note that the Maestro software results from its region of interest 

(ROI) report given by the program itself does not match with its 

manual calculations as stated below! This has to be checked by 

their authorities. For the net counts under the selected ROI was 

calculated as follow [9]:               

g) 𝐴 = ∑ 𝑎𝑖
𝑈−3
𝐿+3 − [(𝑈 − 𝐿 − 5) × (

∑ 𝑎𝑖
𝐿+2
𝑖=𝐿 +∑ 𝑎𝑖

𝑈
𝑖=𝑈−2

6
)] 

Thus, the variance of the net counts was written as below: 

𝑉𝑎𝑟(𝐴) = ∑ 𝑎𝑖

𝑈−3

𝐿+3

− [(
(𝑈 − 𝐿 − 5)

6
)

2

× (∑ 𝑎𝑖

𝐿+2

𝑖=𝐿

+ ∑ 𝑎𝑖

𝑈

𝑖=𝑈−2

)] 

As said earlier, the Maestro software set the total number of 

channels as 3 on both sides of the peak region. For this reason, the 

software calculated the net area within the channel range of U-

L+1-6. In that way, it removes the 6 channels in total from the 

user’s peak limit selection in the case of overestimation while there 

is a neighbouring peak. Note that the Maestro software starts its 

channel number from zero. Thus, make sure the channel numbers 

in all other analysis match with each other. 

Background Knowledge in Data Counting in Gamma-ray 

Spectroscopy 

In the contemporary methods, the first assumption was about the 

shape of the curves in gamma-ray spectroscopy. Statistically in 

worldwide, the Gaussian shape for the signal was regarded as the 

most common function to implement. However, the Binomial and 

the Poisson distributions can be tested if needed. There are 

possibilities these distributions may also apply sometimes [6]: By 

nature, the radioactive decay possesses binomial character due to 

its duality about decaying or not decaying in a given time. Also, 

the frequency of the observation does not affect the probability of 

a radioactive source throughout counting. Each atom is 

independent from each other’s decaying. As a contribution to this 

statement, Sterlinski [5] stated that one of the approximations was 

the events were independent in each channel of the detection 

system. At this diversity, Gilmore also stated if the total decay 

number is unknown, then the Poisson distribution may statistically 

apply to these events. However, there is mathematically surprising 

fact which suggests the expected count will be non-zero in the case 

of no detection [6].  

 

Figure 2. Visualization of a peak selection and its report in 

Maestro software on an uncalibrated spectrum. 

Finally after some approximations and the details in counting time, 

total counts, signal to background ratio and detection efficiency, 

the agreement in representing the signal function can be settled 

down mostly on the Gaussian form. According to some papers 

mentioned in Kokta’s article [7], the analyst should trust more on 

the real measurements by the analysis device and the detectors in 

the spectrum. It’s because there might be undistinguishable 

theoretical impracticability due to time instability of the measuring 

device, Compton scatterings structure in counts contributed from 

higher energetic areas on to the low energy region, possible energy 

calibration errors and many others. Therefore, some modifications 

on Gaussian function were even suggested and experimented on 

the data in that article. 

Suggested Contemporary Method in This Study  

One important thing was that the peaks under investigation should 

normally be tested for their statistics in count numbers, so that the 

desired functions can be fitted. For instance, if the background to 

signal ratio is high, then we may have no sufficient statistics to fit 

the data as Maestro software is designed to give warning at this 

kind of occasions. Here in Table 1, the data does not have problem 

about this issue. For the analysis, some scientists do the analytical 

analysis through the data via the histogram, and others model the 

data distribution for a given channel limits via functions. All the 

methods explained above are regarded as the analytical bin to bin 

analysis. In gamma-ray spectrometry, many methods and 

perspectives were devoted to find either the integration of the net 

peak area or the approximation of the accurate and precise 

background area. While the real data calculations in discrete values 

as counts of each individual bins at certain channels in a histogram 

of a spectrum stay on the more trustworthy side, the 

approximations in numerical calculations by fitting some well 

modelled functions give much broader flexibility and 

predictability to some very complex calculations. In this sense, 

both methods have their own advantages. Particularly, suggested 

method in this article is based on to model the signal shape as a 

normalized Gaussian function (gausn) and background shape as a 

polynomial function (polN) at different degrees depending on the 

user’s preference. This is because different shapes of background 

other than the straight line can significantly alter the accuracy of 

the integrated net area values [5]. In conclusion, a computer 

program in C++ is written to run by the ROOT as a data 

visualization tool created by CERN. In this open-source data 
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analysis framework, everything can be coded as a user friendly and 

interchangeable way by the coder. The ROOT has predefined and 

user defined functions already given out for the convenience. For 

fitting, it has also various techniques and classes to test different 

results for the best of the analyst’s interest. Before explaining the 

procedure, I’d like to emphasize that there might be two common 

cases to encounter in the gamma-ray spectrum. In the first scenario, 

there might be one solely standing peak. For the rest of the 

situation, there will be more peaks in a close range with overlaps. 

In this later case, it’s hard to eliminate the extra contributions from 

each other while there are already other technical details, but only 

the digital integration issues and ideas will be dealt with here. One 

single peak case will be skipped here due to its simplicity. Firstly, 

the mathematical model which the code was implemented on has 

one total function constituted by two normalized Gaussian 

functions and one polynomial function at adjustable degree. This 

code is tested on two well-known peaks of 60Co around 1173keV 

and 1332keV gamma-ray energies. All the analysis is processed on 

uncalibrated data, so the abscissa throughout he analysis represents 

the channel number, namely the bin number of the histogram in the 

spectrum. For the background estimation, the broken line method 

with the first order polynomials was used. Thus, there will be two 

separate straight lines individually, which will be seen in Figure 3, 

for each peak’s background. In this method, three coordinates were 

recorded as x and y data points. First x1 and y1 coordinates 

represent where the left limit of the first peak started. Then, the 

second x2 and y2 coordinates are where the two peaks intersect 

together. The last x3 and y3 coordinates show the point where the 

second peak in higher energy fades out before stabilizing with the 

background level. This is namely the right edge of the second peak. 

This coordinates can be captured even by eye after zooming the 

corresponding area in the spectrum. This is also called an 

initialization step for the parameters, so the fit will go smoothly.  

 

Figure 3. Broken line method with first order polynomials in the 

ROOT. 

As a second step, the initialization values of the parameters for the 

two normalized Gaussian functions (gausn) should be set. The 

values in brackets [] in the equations below indicate certain 

parameters. The gausn function can be written as:  

g𝑎𝑢𝑠𝑛(𝑥) = [𝑎𝑟𝑒𝑎] ×
𝑒

−0.5×(
𝑥−[𝑚𝑒𝑎𝑛]

[𝑠𝑖𝑔𝑚𝑎]
)2

[𝑠𝑖𝑔𝑚𝑎]×√2𝜋
 .  

It’s known that the integration of a Gaussian function can be given 

as follows: 

 ∫ [ℎ𝑒𝑖𝑔ℎ𝑡] × 𝑒
−0.5×(

𝑥−[𝑚𝑒𝑎𝑛]

[𝑠𝑖𝑔𝑚𝑎]
)2+∞

−∞
𝑑𝑥 = [ℎ𝑒𝑖𝑔ℎ𝑡] × [𝑠𝑖𝑔𝑚𝑎] ×

√2𝜋 . 

When this integration is normalized to the value of 1, then the 

[area] in gausn function can be regarded as a new parameter to 

extract from the fit. What fitting gausn instead of gaus on a real 

data gives is the convenient way of retrieving the area and its error 

directly from the new parameter in hand. In addition to that, it will 

correspond to the integration from +∞ to −∞. In the case of 

defining Gaussian functions instead, an integral function has to be 

called in the ROOT for the numerical analysis where we can 

retrieve both the area and its error in a more complicated way. This 

is because the covariance and correlation matrices will be in place 

to get the errors in the calculations. In the programming 

perspective, this only means more lines in the code more than a 

problem. The integral function in the ROOT can be used in the case 

of both Gaussian and gausn function while representing the signal. 

However, the detail of the difference in the usage might matter for 

the efficiency and practicability for the user. In the usage of 

Gaussian, the integral within certain peak limits gives the fraction 

of the area. This part has similarities with the reduction method by 

getting the fraction of the peak mentioned by Covell [1] and 

another method called partial peak area method by Kennedy [10]. 

However, they both used the summation values of discrete values 

in terms of counts in a specific channel range. In the usage of 

gausn, the net area does not need a correction for the full coverage. 

Since the usage of integral symbolise the continuity, any x axis 

range at any two random points can be calculated easily. This x 

values do not need to be integer values unlike channel numbers. 

To correct the fraction of the area while using integral with 

Gaussian function, z score transformation in statistics can be used. 

The z score when finding the proportion of the selected area is 

equal to 
𝑥−𝑚𝑒𝑎𝑛

𝑠𝑖𝑔𝑚𝑎
  [11]. Instead of looking up this value from z score 

tables, some predefined statistical functions in the ROOT can be 

benefited as follows:  

• Cumulative distribution function of the normal distribution for 

the lower tail: 

𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑑𝑓(𝑥) = ∫
1

√2𝜋
× 𝑒−

𝑡2

2 𝑑𝑡
𝑥

−∞

 

• Complement of the cumulative distribution function of the 

normal distribution for the upper tail: 

𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑑𝑓_𝑐(𝑥) = ∫
1

√2𝜋
× 𝑒−

𝑡2

2 𝑑𝑡
+∞

𝑥

 

• Error function:  erf(𝑥) =
2

√𝜋
× ∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
 

• Complementary of error function: erf 𝑐(𝑥) =
2

√𝜋
×

∫ 𝑒−𝑡2
𝑑𝑡

+∞

𝑥
. 

The combination of z scores for the x coordinates of the peak limit 

and the special statistical functions stated above provides the 

correction ratio for the retrieval of the whole area. Usually, this 

alters the outcome a little if there is no adjacent peak nearby in the 

range of interest. However, it matters in the case where the user 

restricts the limits in the integral due to overlaps. This correction 

factor is also mentioned in probability intervals and confidence 

limits section as a table by Gilmore [6]. 

 

Figure 4. Second order polynomial fits for the background in the 

ROOT. 

In the second part of the analysis, second order polynomial 

function was used to represent the background as shown in Figure 

4. Note that the background line in gamma-ray spectra follows the 

declining trend giving the impression of trapezoid area along the x 

axis. This is due to the different contributions from higher 

energetic peaks to the lower part of the spectrum. To estimate the 
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proportion of all these contributions may not be feasible because 

of unequally distributed case in each peak along the way. With 

regard to the broken line method, the usage of a straight line as a 

background might be sometimes either an underestimation or an 

overestimation depending on the shape of a higher degree 

polynomial background. At that point, Sterlinski suggests that 

when the peak limit range is short, the background tends to be the 

straight line [5]. However, it deviates from this structure for the 

increased interval. That also means the curvation from the secant 

between the limits of a photopeak becomes apparent in higher 

energies due to the broadening. Thus, it will be wise to compare 

different polynomial degrees for presenting the background. In this 

article, only first and second degrees (pol1 and pol2) will be 

mentioned. For the ROOT fits, the Migrad algorithm was used by 

default in Minuit2 library. For details, the ROOT website can be 

visited. The total function consisting of 2 gausn and polN function 

was modelled to fit on a real data to extract all information about 

the peaks. For the broken line method, some parameters, such as 

breaking point coordinates between the two peaks and the slopes 

of the background lines under each peak were set as fixed 

parameters for ROOT to handle the fitting procedure correctly. 

Thus, errors of the background parameters were zero, so the 

background integral error was as seen in Table 1. 

3. Conclusions and Comments 

Overall result gives the impression that there might be more 

additional implementations in the future in this field. Especially, 

the combination of C++ and the ROOT has list of other possible 

predefined algorithms for least-square and likelihood fits. They 

also gives the flexibility to a pro-user to build its own algorithms 

if needed. If remembered, the main goal is to reach the estimated 

net area under a desired peak. Despite that, the core issue was 

unpredictable nature of the backgrounds and all the other 

unavoidable contributions to them. In terms of gross counts 

calculated directly from a histogram in methods from a to i, the 

results gave similar values apart from method d and e in the Table 

1. That’s because the coverage range for those was set from bin 

number –(n-1) to +(n-1). Therefore, they rejected the counts in the 

very last bins on each side of the peak by resulting in lower values. 

When these analytical results were compared with the numerical 

results of the ROOT fittings with pol1 and pol2 backgrounds, gross 

area values gave almost equal outcomes. Maestro software, on the 

other hand, deducted 3 bins on both sides of the peak limit. This 

was indeed the adjusted gross area value in its manual rather than 

the same gross area value found in method from a to c and from f 

to h. In terms of errors in gross counts or gross areas, all results 

were consistent on giving the same variances. The same pattern 

was seen on the outcomes of the second peak for the gross area. 

The ROOT fits gave still the similar answers no matter the pol1 or 

pol2 was used in the total function for the fitting procedure. On the 

background side, Gilmore’s method in equation b gave lower 

counts because of the two bins it selected to average the 

background count per bin. Then, it was multiplied by the same total 

bin number as the other methods. However, it gave just 4% less 

result for the background. Method d and e represents the same 

background values. In comparison to method a and c, they consist 

extra counts coming from the last bin numbers on each side of the 

peak. This makes the difference in their background equations.  

While the background coefficient is  
(2𝑛+1)

2
    in method a and c, 

this factor is 
(2𝑛−1)

2
 in method d and e.   However, these will not 

affect the result for the net counts in method a, c, d and e.  This is 

because they are just different forms of the same equation overall. 

For the TPA methods in f, g and two different cases in method h, 

the methods f and g had different interpretations in a way how they 

were constructed. In method f, the symmetric Gaussian shape of 

the data does not appear clearly in the equation. Only the lower and 

upper limits were known. However, the method g gave the 

impression of a symmetrical nature by noting the equal number of 

channels as n on both sides of the mean value. As to background 

counts, method a, f and g have the same values due to the usage of 

the same procedures for the background. One drastic change comes 

about in the calculation of Gilmore’s background equation. 

According to Gilmore’s method, analyst can decide the total 

number of bins on both side of the peak to find the average count 

per channel. They were stated as mL and mU. This decision was 

based on how close other peaks were to the range of interest. If 

there was no adjacent peak nearby, more bins could be averaged 

on both sides. Otherwise, the limitation on the bin number depends 

on the right or left side with overlapping peak. Thus, the left and 

the right side might not always have the same number of bins in 

total for the background calculation. That’s why these two 

different variable as mL and mU were introduced in the equation h. 

Notice that this average value for the background was still 

multiplied by the same total number (U-L+1) similar to the method 

f and g. In Table 1, method h had two options for the mL and mU 

as an example. Even this little change affected the answer in 

background counts. Therefore, it’s safe to say that it will be crucial 

to test some different values until the results give closely related 

comparison with the previous methods from a to g. While 

comparing the results of peak 1 and peak 2, peak 2 gives 

interestingly much closer values to the other methods. Thus, this 

feature might not be generalized to all peaks. It can give better 

approximations in different occasions from peak to peak. For the 

ROOT fit values, background results were pretty good with broken 

line method, namely in the usage of the pol1 function. However, 

the pol2 function in the model gave underestimated values due to 

the downward direction slope instead of declining trapezoid line. 

That means the deviation was too much. Gilmore’s approach in the 

background calculation in method h was closer as the bin number 

for mL and mU increases in total. When that happened, results 

indicated similarity with Maestro method in equation i. This is 

because Maestro method uses 6 bins to estimate the average counts 

per bin for the background. After interpreting gross and 

background counts and their estimations, the net area results were 

reached easily. Except the method h, they all agreed on pretty much 

the same values for the net total. Despite this, method h gave 

around 6% lower estimations in the example. Thus, the best 

solution for this method can only be found by comparing with other 

methods with different mL and mU values. Otherwise, it might 

easily lead to a wrong approximation. In the ROOT fit side, the net 

area results were the same between the one taken from gausn 

parameter and the one calculated directly from corrected integral 

values in a certain range. These results in fitting proved that the 

corrections as stated in the Table 1 were crucial when integrating 

the area with Gaussian function instead of gausn. The net area 

results when pol2 background function was selected approved the 

overestimation in comparison to other methods. It was clear to see 

the fact that pol2 shape lowered the total counts under the peaks. 

Thus, the net area came up as a higher value in the estimations.  

Last but not least, last column in the Table 1 shows the proportion 

of background counts to the signal.
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Table 1. The Results of all the Methods 

 Methods 
Gross 

Counts or 

Area 

√Variance 
Background 

Counts or Area √Variance 

Net 

Area or 

Counts 

√Variance 
Correction 

Factor % 

Background to 

Signal Ratio % 

Peak 1 

Covell (a) 59985 245 12934 618 47051 665 0.99900 27.5 

Covell (b) 59985 245 12402 605 47583 653 0.99900 26.1 

Covell (c) 59985 245 12934 618 47051 665 0.99900 27.5 

Covell (d) 59547 244 12496 597 47051 645 0.99900 26.6 

Covell (e) 59547 244 12496 597 47051 645 0.99853 26.6 

Peak 1 

TPA (f) 59985 245 12934 618 47051 665 0.99900 27.5 

TPA (g) 59985 245 12934 618 47051 665 0.99900 27.5 

TPA (h)                      

mL=4, mU=1 

59985 245 16478 441 43508 505 0.99900 37.9 

TPA (h)                      

mL=4, mU=2 

59985 245 15690 393 44295 463 0.99900 35.4 

Maestro (i) 58603 242 12211 329 46392 408 0.99900 26.3 

Peak 1 

ROOT Pol1 Fit             

from Parameter 

    46977 242 0.998742  

ROOT Pol1 Fit                

from integral 

59968 241 12868 0 46977 241 0.998742 27.4 

ROOT Pol2 Fit              

from Parameter 

    49618 372 0.998085  

ROOT Pol2 Fit             

from integral 

59867 243 10033 314 49618 368 0.998085 20.2 

Peak 2 

Covell (a) 50502 225 8291 487 42211 536 0.99689 19.6 

Covell (b) 50502 225 8863 503 41640 551 0.99689 21.3 

Covell (c) 50502 225 8291 487 42211 536 0.99689 19.6 

Covell (d) 50211 224 8000 470 42211 521 0.99689 19.0 

Covell (e) 50211 224 8000 470 42211 521 0.99689 19.0 

Peak 2 

TPA (f) 50502 225 8291 487 42211 536 0.99689 19.6 

TPA (g) 50502 225 8291 487 42211 536 0.99689 19.6 

TPA (h)                      

mL=4, mU=1 

50502 225 7719 297 42783 373 0.99689 18.0 

TPA (h)                      

mL=4, mU=2 

50502 225 8100 278 42402 358 0.99689 19.1 

Maestro (i) 49488 223 8620 271 40868 351 0.99689 21.1 

Peak 2 

ROOT Pol1 Fit             

from Parameter 

    42210 225 0.996285  

ROOT Pol1 Fit             

from integral 

50533 224 8291 0 42210 224 0.996285 19.6 

ROOT Pol2 Fit 

from Parameter 

    45712 400 0.993846  

ROOT Pol2 Fit 

from integral 

50574 224 4807 332 45712 387 0.993846 10.5 

 

This ratio is around 27% which gives enough statistics to fit any 

function to a peak. All in all, the Table 1 indicates straight forward 

outcomes, self-explanatory, well modelled and trustworthy 

perspective to the issues explained above. 

For the future work and development, the detail background 

estimations with different bin sizes will be tested and presented. 
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