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Abstract: This paper considers various estimation methods to estimate the
unknown parameters of the DUS Inverse Weibull (DIW) distribution using
the maximum likelihood (ML), least squares (LS), weighted least squares
(WLS), Cramer-von Mises (CVM) and the Anderson-Darling (AD)
estimators. A Monte-Carlo simulation study is conducted to determine the
most preferable estimators in terms of their efficiencies. Furthermore, the
distribution of the error terms in the simple linear regression is assumed to
be DIW to show the implementation of it to the linear models. We also carry
out a simulation study for comparing the performances of the estimators of
the unknown regression parameters.

DUS Inverse Weibull Dagilimi ve Lineer Regresyonda Parametre Tahmini

Anahtar Kelimeler

DUS doniistimd,

Inverse Weibull,
Parametre tahmini,
Lineer regresyon,
Monte-Carlo simiilasyonu

0z: Bu calisma, en ¢ok olabilirlik (ML), en kiiciik kareler (LS), agirhikh en kiigiik
kareler (WLS), Cramer-von Mises (CM) ve Anderson-Darling (AD) tahmin
edicilerini kullanarak DUS Inverse Weibull (DIW) dagiliminin bilinmeyen
parametrelerini tahmin etmek igin cesitli tahmin ydntemlerini ele almaktadir.
Etkinlikleri ac¢isindan en c¢ok tercih edilen tahmin edicileri belirlemek icin bir
Monte-Carlo simiilasyon ¢alismasi yapilmistir. Ayrica, lineer modellere
uygulanisini géstermek icin basit lineer regresyonda hata terimlerinin dagiliminin
DIW oldugu varsayillmistir. Bilinmeyen regresyon parametrelerinin tahmin
edicilerinin performanslarinin karsilastirilmasi i¢in de bir simiilasyon ¢alismasi
yapilmistir.

1. Introduction

g() = = f(x)e™® (1

In recent years, there is a great interest on defining
new distributions in order to obtain flexibility for
modelling purposes. Therefore, transformations
and generalizations depending on the idea of adding
a new one or several parameters to the baseline
distribution are mostly used in the related
literature. Although the additional parameters
provide more flexibility to the resulting distribution,
computational difficulties arise in the estimation
process of the parameters of interests. However, the
DUS transformation formulated as follows;
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contains the same parameters with the baseline
distribution [1]. Here, f(x) and F(x) are the
probability density function (pdf) and cumulative
distribution function (cdf) of the baseline
distribution, respectively. The DUS transformation
is not a generalization, so it generates a
parsimonious distribution in terms of computation
and interpretation, see Kumar etal. [1].
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In this study, we consider the DUS Inverse Weibull
(DIW) which is proposed by Gul et al. [2], see also
Gul [3]. The DIW distribution is obtained by using
DUS transformation, in other words, the pdf and
cdf of the well-known Inverse Weibull (also known
as the Frechet) distribution are incorporated into
the equation (1). Then, the pdf of the DIW
distribution is given by

o=y ()

lo~
N1
X exp exp(—(;) ) ,x>0,>0,0>0

(2)

where ¢ and S are the scale and shape parameters,
respectively. It should be realized that there are
various extensions of Inverse Weibull distribution
including many parameters in the literature, see
e.g. Nadarajah and Gupta [4], Nadarajah and Kotz
[5], De Gusmao [6], Mahmoud and Mandouh [7]
and Krishna et. al. [8]. Unlike the other extensions
of Inverse Weibull distribution, the DIW
distribution has just two parameters similar to the
baseline distribution. The density plots of the DIW
distribution for some values of the shape
parameter § and o0 = 1 are provided in Figure 1.
We refer to Gul [3] for further details on the
statistical properties of DIW distribution.
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Figure 1. The density plots of DIW distribution for some
valuesof 8 (0 = 1)

The aim of this study is to compare the
performances of the different estimation methods
used for estimating the parameters of DIW
distribution. We use the well-known maximum
likelihood (ML) estimator along with the least
squares (LS), weighted LS (WLS) and some
minimum distance estimators such as Cramer-von
Mises (CM) and Anderson-Darling (AD)
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estimators. The efficiencies of these estimators are
evaluated via Monte-Carlo simulation study with
different parameter settings for the DIW
distribution.

In estimating the unknown parameters in a simple
linear regression model, it is generally assumed
that the distribution of the error terms is Normal
with mean 0 and variance 2. However, there are
many studies in which the distribution of the error
terms does not follow a Normal distribution in
literature. For example, Tiku et. al. [9] and Islam et.
al. [10] considered the distribution of the error
terms as non-normal symmetric and skew in the
context of simple linear regression model,
respectively. Therefore, in this study, the DIW
distribution is also used in the context of simple
linear regression model to demonstrate the
implementation of the proposed distribution to
the linear models, see Gul et. al. [11].

The reminder of the article is planned as follows.
Section 2 is reserved to brief descriptions of the
ML, LS, WLS, CM and AD estimation methods in the
context of estimating the unknown parameters of
DIW distribution and considered two methods for
estimation of the parameters in the simple linear
regression model whose error terms is distributed
as DIW. Section 3 includes the Monte Carlo
simulation study with its results. The paper is
ended with conclusion section.

2. Material and Method

In this section, we consider five different
estimation methods for estimating the unknown
parameters of the proposed DIW distribution. In
the rest of the paper, X;, X5, ..., X, is a random
sample drawn from a DIW distribution and X(;) <
X2y <+ < X(n) denotes the corresponding order
statistics.

2.1. Parameter estimation methods
2.1.1. Maximum likelihood

There are various parameter estimation methods
in the statistical literature. Among them, the ML is
the most widely used one due to its properties,
e.g., consistency, asymptotic efficiency and
invariance. In this subsection, we consider the ML
methodology to estimate the parameters of the
DIW distribution.
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It is well known that the ML estimators are
obtained by maximizing the corresponding
likelihood function with respect to the parameters
of interest.

The corresponding likelihood function is given by

L(B.o12) = ()" BroP Ty x)~F+0)
<o (24 (=) )
con(en(-() ) @

Then the log-likelihood function (InL) is obtained
as follows

lnL(ﬁ, o| g) =nln (i) + nin(B) + Bnin(o)
B A DE )~ T ()

+xen (- (2)7) @

Differentiating (4) with respect to  and o and
equating them to zero, the following likelihood
equations are obtained

dinL(B,0 | x n
W12 _ 24 nin(0) - By

+3 () 1 3)
3L () @ew(-() ) =0 ©
nL(Bo|x) n n (x\P71(x
= ps(3) ()

3 () (@ ew(-(©) ) =0 ©

Simultaneous solutions of these equations give the
ML estimators of the parameters  and o.

2.1.2. Least squares and weighted least squares
The LS estimators and WLS estimators are first
suggested by Swain et. al. [12] in the context of
estimating the parameters of Beta distribution.

LS method

The LS estimators of § and o can be obtained by
minimizing the following expression

LS@B,o10 =38 (6(Ko)-=) @)

n+1
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with respect to unknown parameters. Here and in
the rest of the parameter G (.) denotes the cdf of
the DIW distribution which is formulated as
follows:

G(x,0,B) = ﬁ(exp (exp <— (E)_ﬁ’)) - 1). (8)

Then, in this case, the LS estimators of $ and ¢ are
obtained by minimizing

w012 =2 2o (e (-2) )

) 2
o) o

with respect to the parameters f and o,
respectively. Resulting estimators are denoted as

ﬁLS and 6.
WLS method

The WLS estimators of £ and o are defined as
solution of the following minimization problem

R - 1
B,6) = argmingg » 27
(5.6) = argmingo) ), 7e o

x (6 (X)) =) (10)

where

in—-i+1)

4 (G(X(i))) = n+1)2(n+2)’

Therefore, in this case, the WLS estimators of 8
and o are minimizers of the following objective
function

S (n+ 1)%(n + 2)
L in—i+ 1)

x (fl <exp <exp (— (";)_B>> - 1) - #ﬂ)z (11)

Resulting estimators are denoted as B¢ and

WLS(B,0 | x) =

OwLs-
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2.1.3. The Cramer-von Mises and the Anderson-
Darling estimators

In this subsection, we obtain the CM and AD
estimators of the parameters of the DIW
distribution. These estimators were first
considered by Wolfowitz [13,14]. They are also
known as minimum distance estimators, see e.g.
Luceno [15].

CM estimators

The solution of the following minimization
problem are the CM estimators of § and o

2n

(12)

(B,6) = argmingg 5 {ﬁ +3, (G(X(i),ﬁ, o) - 2i—1)2}

Therefore, in this case, the CM estimators of § and
o are minimizers of the following objective
function

1
CM(0 | x) =+

(o (o (-07)) 1))

(13)

The CM estimators are shortly denoted by S, and
6-\CM-

AD estimators

The solution of the following minimization
problem are called as AD estimators of § and o:

AD(B,0|x) = —n—3L,Q2i~ 1)
X log [G(X(i),,[?, a) (1 - G(X(n—i+1)' B, 0))] (14)

Therefore, in this case, the AD estimators of § and
o are obtained by minimizing

AD(B,0|x) = —n—=T1L,(2 - 1)log

<_(p (e (-)7))- 1))
x (1 - i(exp (exp (— (%)_ﬁ» - 1))

(15)

with respect to § and 0. Resulting estimators are
denoted as 4, and 6.
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It should be mentioned that we use fminsearch
function which is available in MATLAB software to
calculate the ML, LS, WLS, CM and AD estimates of
B and o since their explicit solutions cannot be
obtained.

2.2. Parameter estimation for simple linear
regression

In this section, we consider the following simple
linear regression model

Vi = Po + Bix; + &, i=12,..,n (16)
Where x; is the explanatory variable, y; is the
response variable, 3, is the intercept and g, is the
slope parameter. Traditionally, in simple linear
regression model, the error terms ¢; are assumed
to be independent and identically distributed (iid)
NormalN(O,JZ). However, we here assume that
the random error terms ¢; follow the DIW
distribution. We consider two methods of
estimation for obtaining the estimators of the
model parameters under this assumption.

2.2.1. ML estimation

L and InL functions for the simple linear
regression model for which the distribution of the
error terms is assumed to be DIW can be obtained
as follows

L(Bo,B1,0) = (1) Ty — Bo — Bux) 0D

e—1

X exp (_ n (}’i—ﬁo—ﬁlxi)_y)

g

enp (exp (- 2 (222) )

g

(17)
and
InL(By, B1,0) = —nin(e — 1) + nin(y) + nyin(o)
4D ) 00~ fo— i)
_yn ((yi—m;—ﬁlxi):y) o exp (- (yi—ﬁz—ﬁlxi)‘y)
(18)

respectively. Differentiating (18) with respect to
the parameters 8y, 5, and ¢ and setting them
equal to zero, we get the likelihood equations
given below,
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dlnL
= 1 _r
=r+1) Z ﬁ'o B1x;

_Zzi_l(m Bo- ﬁlxl) y-1
po)

g

- EZ?=1 (M)_y_l

g

X exp (— (@)_y) =0 (19)
(filgf =+ 1)2 — Bix;
JRp— —_ . -1
R d ﬁ“‘l)
n -y
EINICELEL)
X exp (— (W)_y) =0 (20)
and
=
( i — ﬁoo_z_ ﬁl%’) _ VZ ( i~ ﬁoo-_ ﬁlxi>_y_1

i=1

x (Jﬁ“ﬁz;lﬁxi) exp (_ (yi—ﬁo—ﬁ1xi)_y) =0 (21)

g

Since these likelihood equations are non-linear,
they can be routinely solved using the fminsearch
function.

2.2.2. LS estimation

In the simple linear regression model, LS is the
most widely used estimation method. Here, it is
assumed that the random error terms ¢; have the
DIW distribution. The estimators of the
parameters [, and f; are the values which
minimizing the following function
Yiiel =X i — Bo — Buxi)?

LS estimators of the parameters 5, and j3; are
obtained as follows
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5 _ L (=D i-y) 5 _ 5 N
b1 ZW and fo =y —p1x—E(é)

where x = Z{Ll%, y=Xr Yiand E(€) = E(2)é is

the bias correction term. E(z) and & are as follows

E2) = £F(1 —%) T,
and
~ s2
R )
respectively. Here, s? = 2imy 0790 and T, =

n-2
1 1

Y=o i (e =By €€ Gul [3] for further details.

3. Results

In this paper, two different Monte Carlo simulation
studies are performed. First is done to compare
the efficiencies of the estimators described in
Section 2. Second is conducted to compare the
efficiencies of ML and LS estimators of the
unknown parameters of the simple linear
regression model in which the random error terms
follow the DIW distribution.

Casel

In this part of the Monte Carlo simulation study,
we compare the performances of the ML, LS, WLS,
CM and AD estimators with respect to their means,
mean-squared errors (MSEs) and deficiencies
(DEFs) for different parameter values and sample
sizes. The scale parameter o is fixed at 1.0 without
loss of generality. We consider = 0.5, 1.0, 1.5, 2.0,
3.0 and 4.0 and n= 30, 50 and 100. The means,
MSEs and DEFs of the estimators are computed
based on 10,000 Monte Carlo runs. DEF is the
natural measure of the joint efficiency of the pair
(3,6) and is formulated as DEF(f;5)=
MSE(B) + MSE(6), see e.g. Kantar and Senoglu

[16]. The simulation results are reported in Table
1.
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Mean MSE DEF
B n B G B g
ML 0.523 1.142 0.006 0.285 0.291
LS 0.498 1.079 0.008 0.298 0.306
30 WLS 0.502 1.086 0.007 0.272 0.279
AD 0.508 1.097 0.006 0.263 0.269
CM 0.525 1.152 0.010 0.357 0.367
ML 0.515 1.078 0.003 0.134 0.137
LS 0.499 1.047 0.004 0.154 0.158
0.5 50 WLS 0.503 1.053 0.004 0.138 0.142
AD 0.504 1.052 0.003 0.132 0.135
CM 0.514 1.082 0.005 0.168 0.173
ML 0.507 1.036 0.001 0.057 0.058
LS 0.499 1.020 0.002 0.068 0.070
100 WLS 0.503 1.030 0.001 0.060 0.061
AD 0.501 1.035 0.001 0.060 0.061
CM 0.506 1.042 0.002 0.072 0.074
ML 1.050 1.048 0.026 0.051 0.077
LS 0.997 1.010 0.032 0.055 0.087
30 WLS 1.009 1.017 0.029 0.051 0.080
AD 1.014 1.025 0.024 0.051 0.075
CM 1.046 1.044 0.039 0.062 0.101
ML 1.028 1.027 0.014 0.028 0.042
LS 0.996 1.008 0.018 0.032 0.050
1 50 WLS 1.006 1.011 0.015 0.028 0.043
AD 1.009 1.014 0.014 0.029 0.043
CM 1.030 1.030 0.021 0.034 0.055
ML 1.012 1.012 0.006 0.013 0.019
LS 0.998 1.002 0.008 0.015 0.023
100 WLS 1.003 1.009 0.007 0.014 0.021
AD 1.003 1.006 0.007 0.014 0.021
CM 1.014 1.014 0.009 0.016 0.025
ML 1.570 1.025 0.057 0.020 0.077
LS 1.498 1.001 0.073 0.023 0.096
30 WLS 1.511 1.005 0.063 0.021 0.084
AD 1.525 1.009 0.056 0.020 0.076
CM 1.579 1.026 0.093 0.025 0.118
ML 1.541 1.016 0.031 0.012 0.043
LS 1.499 1.002 0.042 0.013 0.055
1.5 50 WLS 1.506 1.004 0.035 0.012 0.047
AD 1.510 1.006 0.031 0.012 0.043
CM 1.541 1.016 0.046 0.014 0.060
ML 1.522 1.007 0.014 0.006 0.020
LS 1.497 0.999 0.020 0.006 0.026
100 WLS 1.506 1.003 0.016 0.006 0.022
AD 1.504 1.002 0.015 0.006 0.021
CM 1.520 1.007 0.021 0.007 0.028
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Table 1 (continued)

Mean MSE DEF
B n B G B 4
ML 2.100 1.017 0.107 0.011 0.118
LS 1.999 1.001 0.134 0.013 0.147
30 WLS 2.013 1.003 0.116 0.012 0.128
AD 2.027 1.007 0.098 0.011 0.109
CM 2.098 1.017 0.160 0.014 0.174
ML 2.058 1.009 0.054 0.006 0.060
LS 1.996 0.999 0.076 0.007 0.083
2 50 WLS 2.014 1.003 0.062 0.007 0.069
AD 2.016 1.004 0.055 0.007 0.062
CM 2.058 1.009 0.085 0.007 0.092
ML 2.026 1.004 0.024 0.003 0.027
LS 1.999 0.999 0.036 0.003 0.039
100 WLS 2.007 1.001 0.030 0.003 0.033
AD 2.010 1.002 0.027 0.003 0.030
CM 2.029 1.005 0.037 0.003 0.040
ML 3.144 1.010 0.239 0.004 0.243
LS 2.995 0.997 0.299 0.005 0.304
30 WLS 3.027 1.001 0.258 0.005 0.263
AD 3.042 1.004 0.220 0.005 0.225
CM 3.150 1.008 0.367 0.005 0.372
ML 3.083 1.005 0.124 0.002 0.126
LS 2.990 0.999 0.166 0.003 0.169
3 50 WLS 3.020 1.001 0.144 0.003 0.147
AD 3.019 1.002 0.127 0.003 0.130
CM 3.101 1.005 0.192 0.003 0.195
ML 3.042 1.002 0.056 0.001 0.057
LS 2.995 0.999 0.080 0.001 0.081
100 WLS 3.013 1.001 0.066 0.001 0.067
AD 3.008 1.001 0.062 0.001 0.063
CM 3.042 1.002 0.088 0.001 0.089
ML 4.194 1.008 0.427 0.002 0.429
LS 3.990 0.997 0.525 0.003 0.528
30 WLS 4.022 1.001 0.442 0.003 0.445
AD 4.057 1.001 0.398 0.002 0.400
CM 4.191 1.005 0.630 0.003 0.633
ML 4.119 1.004 0.223 0.001 0.224
LS 3.994 0.998 0.297 0.001 0.298
4 50 WLS 4.025 1.001 0.254 0.001 0.255
AD 4.032 1.001 0.225 0.001 0.226
CM 4.115 1.004 0.334 0.002 0.336
ML 4.052 1.002 0.100 0.001 0.101
LS 3.995 0.998 0.143 0.001 0.144
100 WLS 4.019 1.001 0.118 0.001 0.119
AD 4.019 1.001 0.111 0.001 0.112
CM 4.055 1.001 0.150 0.001 0.151

The simulation results given in Table 1 show that
the LS, WLS and AD estimators of o and {8 are
almost unbiased for all values of the shape
parameter 3 and sample size n. The ML and CM
estimators of o have slight biases except B = 0.5

48

and n = 30. On the other hand, the ML and CM
estimators of  have larger bias values especially
for small and moderate sample sizes. According to
the MSE criterion, performances of all estimators
of o are quite close to each other for all values of
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the shape parameter  and sample size n, except § =
0.5. For estimating the shape parameter 5, it is
observed that the ML and AD estimators have the
smallest MSE values and they are followed by WLS
estimator. In view of the DEF values, ML estimator is
the best for n =50 and 100, AD estimator is the most
preferable among the others for n = 30. They are
followed by WLS estimator. According to the MSE and
DEF values of f, LS and CM estimators did not
perform well for all sample sizes and shape
parameters.

Case Il

Here, we compare the performances of the ML and LS
estimators of the unknown regression parameters
with respect to the mean, MSE and DEF criteria for
different sample sizes and parameter values when
the error terms ¢; have the DIW distribution.

We consider g as 3.0, 4.0, 5.0 and 6.0 and sample size
n as 25, 50, 100, 300 and 500. Without loss of
generality 8, B, and o are taken to be 0, 1 and 1,
respectively. The Monte Carlo simulation is repeated
for 10.000 times to evaluate the mean, MSE and DEF
values of the estimators. The simulation results are
reported in Table 2.

Table 2. Simulated Mean, MSE and DEF values for the estimators f3,, §; and 6

Mean MSE DEF
B L Bo B g Bo B g
25 ML 0.068 1.016 0.933 0.038 0.006 0.043 0.087
LS 0.255 0.988 0.835 0.555 0.051 0.343 0.951
50 ML 0.049 1.011 0.953 0.016 0.005 0.020 0.041
LS 0.180 0.998 0.883 0.586 0.025 0.328 0.939
3 100 ML 0.014 0.996 0.975 0.007 0.001 0.009 0.017
LS 0.156 0.999 0.898 0.298 0.011 0.162 0.472
300 ML 0.001 0.999 1.006 0.003 0.000 0.003 0.006
LS 0.080 0.999 0.948 0.210 0.004 0.101 0.315
500 ML 0.001 1.000 0.996 0.001 0.000 0.002 0.004
LS 0.074 1.000 0.951 0.177 0.002 0.085 0.265
25 ML 0.080 0.997 0.934 0.035 0.004 0.038 0.077
LS 0.119 0.998 0.911 0.233 0.016 0.174 0.424
50 ML 0.057 0.998 0.948 0.019 0.002 0.021 0.042
LS 0.077 0.999 0.943 0.202 0.007 0.140 0.350
4 100 ML 0.010 1.002 0.999 0.007 0.001 0.007 0.015
LS 0.047 1.000 0.964 0.102 0.001 0.062 0.165
300 ML 0.005 1.003 0.997 0.002 0.000 0.003 0.005
LS 0.029 0.999 0.977 0.056 0.001 0.036 0.094
500 ML 0.003 0.999 0.998 0.001 0.000 0.001 0.002
LS 0.017 1.000 0.986 0.051 0.000 0.032 0.085
25 ML 0.073 1.002 0.934 0.035 0.005 0.037 0.077
LS 0.087 0.998 0.930 0.143 0.008 0.117 0.268
50 ML 0.038 0.999 0.966 0.015 0.003 0.016 0.034
LS 0.044 0.998 0.964 0.118 0.004 0.092 0.214
5 100 ML 0.020 0.999 0.983 0.007 0.000 0.007 0.014
LS 0.032 1.001 0.974 0.061 0.001 0.047 0.110
300 ML 0.007 1.000 0.994 0.002 0.000 0.002 0.004
LS 0.009 1.000 0.992 0.028 0.000 0.020 0.048
500 ML 0.005 1.000 0.995 0.001 0.000 0.001 0.002
LS 0.007 1.000 0.994 0.019 0.000 0.014 0.033
25 ML 0.071 0.998 0.941 0.032 0.002 0.033 0.067
LS 0.056 0.999 0.953 0.122 0.004 0.105 0.231
50 ML 0.037 0.999 0.966 0.013 0.001 0.015 0.029
LS 0.038 0.999 0.967 0.071 0.002 0.060 0.133
6 100 ML 0.020 0.999 0.982 0.007 0.000 0.007 0.014
LS 0.018 1.000 0.984 0.041 0.000 0.034 0.075
300 ML 0.006 1.000 0.994 0.002 0.000 0.002 0.004
LS 0.007 1.000 0.993 0.019 0.000 0.015 0.034
500 ML 0.004 1.000 0.997 0.001 0.000 0.001 0.002
LS 0.005 1.000 0.996 0.010 0.000 0.008 0.018
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The value of the shape parameter 8 is taken to be
greater than or equal to 3. The reason of this is that
the moments of the DIW distribution do not exist
unless f = 3. Simulation results given in Table 2
show that the ML estimators of B, f; and &
performed better than the LS estimator for all values
of the shape parameter ff and sample size n according
to the bias, the MSE and the DEF values.

4., Discussion and Conclusion

In this paper, estimation of the parameters of the
DIW distribution and its implementation to simple
linear regression are considered. Two different
Monte Carlo simulation studies are performed. First
is to compare the efficiencies of the estimators of the
unknown parameters of the DIW distribution using
five different estimation methods. Simulation results
show that the ML and AD estimators are more
preferable according to the MSE and DEF criteria in
most of the cases. Second is to compare the
estimators of the unknown parameters in a simple
linear regression model by using two different
estimation methods when the random error terms
have the DIW distribution. Simulation study shows
that the ML method performs better than the LS
method for all sample sizes in terms of MSE and DEF
criteria.
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