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ABSTRACT 

Due to the increasing data capacity, low power consumption, and high-speed data processing expectations of 
systems in our daily lives today, the Von Neumann bottleneck has become a more important problem than in 
the past. For these reasons, conventional computer architectures can no longer fully meet today's 
requirements. Neuromorphic designs have been considered an alternative solution for all, as they can mimic 
the human brain in terms of processing large amounts of data quickly with low power consumption. Although 
the success of traditional Artificial Neural Network methods is satisfactory, biological systems are still much 
more advantageous in terms of power consumption. Neuromorphic hardware architectures based on Spiking 
Neural Network (SNN), which are the most biologically plausible and are referred to as third-generation neural 
networks, overcome the Von Neumann bottleneck and provide a more suitable hardware structure for 
intelligent systems. The use of reconfigurable hardware for the implementation of neuromorphic architectures 
creates a faster and more updatable research field than integrated circuits and computational approaches. 
Therefore, this study has reviewed FPGA-based reconfigurable implementations of Spiking Neural Networks 
(SNN) in the literature and compared these studies in terms of power consumption, learning capability, 
resource consumption, and accuracy. 

 Keywords: Spiking Neural Networks, Reconfigurable Implementations, FPGA, Neuromorphic 
 

ÖZET 

Günümüzde, günlük hayatımızda sistemlerin artan veri kapasitesi, düşük güç tüketimi ve yüksek hızlı veri işleme 
beklentileri nedeniyle Von Neumann darboğazı geçmişe göre daha önemli bir sorun haline gelmiştir. Bu 
nedenle, geleneksel bilgisayar mimarileri artık günümüzün gereksinimlerini tam olarak karşılayamamaktadır. 
Nöromorfik tasarımlar, düşük güç tüketimi ile büyük miktarda veriyi hızlı bir şekilde işleme açısından insan 
beynini taklit edebildiklerinden, alternatif bir çözüm olarak görülmektedir. Geleneksel Yapay Sinir Ağı 
yöntemlerinin başarısı tatmin edici olsa da, biyolojik sistemler güç tüketimi açısından hala çok daha avantajlıdır. 
Biyolojik olarak en gerçekçi ve üçüncü nesil sinir ağları olarak anılan İğnecikli Sinir Ağlarına dayalı nöromorfik 
donanım mimarileri, Von Neumann darboğazını aşarak akıllı sistemler için daha uygun bir donanım yapısı 
sağlamaktadır. Nöromorfik mimarilerin uygulanması için yeniden yapılandırılabilir donanımın kullanılması, 
entegre devreler ve hesaplama yaklaşımlarından daha hızlı ve güncellenebilir bir araştırma alanı yaratmaktadır. 
Bu sebeple, bu çalışma kapsamında, literatürdeki İğnecikli Sinir Ağlarının FPGA tabanlı yeniden yapılandırılabilir 
uygulamaları gözden geçirilmiş ve bu çalışmalar güç tüketimi, öğrenme yeteneği, kaynak tüketimi ve doğruluk 
oranları açısından karşılaştırılmıştır. 

 Anahtar Kelimeler: İğnecikli Sinir Ağları, Yeniden Yapılandırılabilir Uygulamalar, FPGA, Nöromorfik 

   
   
  

1. INTRODUCTION 

The foundations of computers are usually based on the traditional Von Neumann 
architecture, where the processing unit and the memory units are separated 
(Neumann,1993). Hardware with this structure works by taking the data from the 
memory unit before the calculation of the processing unit and then sending it back to 
this unit. Artificial intelligence applications, which contain very complex operations and 
use large datasets, are faced with the Von Neumann bottleneck today. The fact that the 
data is received from a separate memory unit over a limited speed bus and reaches the 
processing unit and the results are sent back to the memory unit, in the same way, limits 
the artificial intelligence applications performed on the hardware in terms of energy 
consumption and data transfer rate (Xiong et. al., 2020). As intelligent systems using 
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artificial neural networks are becoming more common in our lives, new methods that 
can overcome this bottleneck are needed to be examined. (Sun et. al., 2021; Schuman 
et. al., 2017).  Digital or analog hardware that implements neural systems is commonly 
referred to as neuromorphic structures. To solve the bottleneck issue, neuromorphic 
structures are used as the hardware to provide solutions for face recognition, object 
classification, speech recognition, and natural language processing (Lemaire et. al., 2020; 
Miró-Amarante et. al., 2017; Pasupathi et. al., 2014). Spiking Neural Networks (SNN), 
referred to as third-generation ANN, are commonly used in neuromorphic designs 
(Maas,1997). Due to their biological plausibility, SNN algorithms have the advantages of 
processing speed and low power consumption similar to the human brain. As the novel 
intelligent system architectures are required to keep memory and processing units 
together, implementing neuromorphic structures will help them to be successfully 
realized by silicon-based solutions on hardware (Yan et. al., 2019). To reduce the 
compelling impact of silicon-based designs in the process, some studies have been 
conducted on FPGA. Moreover, various problems such as feature extraction, 
autonomous vehicles, and letter recognition are solved on FPGA using SNN (Sun et. al., 
2017; Zhao et. al.,2022; Humaidi et. al., 2020). Another reason for using FPGA-based SNN 
studies can be seen in Table1, where it is clearly shown that SNN achieves higher 
classification results than traditional ANN methods on the same dataset (Si et. al., 2022; 
Fang et. al., 2020). In this study, FPGA-based implementations of SNN have been perused 
and examined in terms of power consumption, learning ability, resource consumption, 
and accuracy. The overall flow of this paper is organized as follows; Section 2 mainly 
focuses on explaining the SNN used in the related works, while Section 3 demonstrates 
the reconfigurable implementations of SNN. Section 4 presents the application areas of 
the reconfigurable studies, and finally, Section 5 summarizes the conclusions about 
FPGA-based implementations of SNN. 

Table 1. Comparison of FPGA Based 
Implementations of MLP and SNN 

 

 
  

2. SPIKING NEURAL NETWORKS (SNN) 

In the biological nervous system, information is carried by chemical elements between 
neurons through synaptic connections and accumulates in the form of electrical spikes in 
the neurons. Briefly, the information between neurons in the brain is carried by spikes 
through synaptic connections. The currents which are transmitted across the synaptic 
connections are weighted according to learning and then accumulated in the neurons. If 
the accumulated membrane potential exceeds the threshold value, then a spike occurs 
at the postsynaptic neuron. Neurons that fire together during the learning make stronger 
or higher weighted connections and enable the network to produce outputs that are 
close to real values. Spiking Neural Networks (SNN) implements mathematical and 
electrical models of biological neurons and learning algorithms inspired by the human 
brain. The neuron models mostly used in studies of FPGA-based implementations of SNN 
are derived from the Leaky-Integrate Fire and Izhikevich neuron models, and the 
commonly used learning algorithm is Spike Time Dependent Plasticity (STDP) (Markram 
et. al., 2012). 

  
2.1. Neuron Models 

The Izhikevich model is a simplified neuron model, which is developed to generate spike 
voltages in different patterns of membrane potential. In the Izhikevich model, the 
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membrane potential is a dimensionless variable, represented by ݒ in (1) and formulated 
with the synaptic currents supplied to the neuron and the membrane recovery variable 
 in (2). When the membrane potential reaches 30 mV, the neuron fires the spike and ݑ
returns to its resting state, as shown in (3). a, b, c, and d are dimensionless parameters 
that have been used to generate different firing patterns (Izhikevich, 2003). 

ᇱݒ = ଶݒ0.04 + ݒ5 + 140 − ݑ +  (1)                ܫ

ᇱݑ = ݒܾ)ܽ −  (2)                              (ݑ

ݒ ݂݅ ≥ 30ܸ݉, ℎ݁݊ ቄݐ ← ݒ ܿ
← ݑ ݑ + ݀                (3) 

  In the Leaky-Integrate-Fire model, the membrane potential is generated by a simple RC 
circuit. The current, coming from the synapses generates the voltage u as charge and 
discharge across the capacitance.  ߬௠, represents the membrane time constant of the 
neuron and ݑ௥௘௦௧  refers to the reverse voltage for leakage in (4). In the absence of 
cumulative input currents, (ݐ)ܫ, the membrane potential drops exponentially to the 
resting potential, and then spikes occur (Gerstner et. al., 2014). 

߬௠
ௗ௨
ௗ௧

= (ݐ)ݑ]−  − [௥௘௦௧ݑ  +  (4)                   (ݐ)ܫܴ

  
2.2. Learning Rule 

Spike Timing Dependent Plasticity, which is based on the firing times of neurons, is the 
most commonly used learning algorithm for SNN (Mark et. al., 2012). The STDP learning 
rule increases or decreases the weights between presynaptic and postsynaptic neurons 
according to the difference between the firing times and strengthens the connection 
between neurons that fired together and vice versa. The equation (5) gives results 
corresponding to the exponential change in the difference of spike firing times (ݐ௣௢௦௧ −
 ௣௥௘) with constants, and this function is used to determine the weight difference to beݐ
updated in (6). Consequently, the weights are updated upwards as in (7) when the 
postsynaptic neuron fired after the presynaptic neuron, otherwise, they are updated 
downwards (Iakymchuk et. al., 2015). 

 

(ݔ)ݓ =  ቐ
−) ାexpܣ    ௫

தశ
), ݔ > 0          

ିܣ exp ቀ ௫
தష

ቁ ݔ     , < 0
  (5) 

 

߂ ௝߱ = ∑ ∑ ௜ݐ൫ݓ
௞ − ௝ݐ

௟൯ ே
௟ୀଵ

ே
௞ୀଵ                             (6) 

 

߱௡௘௪ = ߱௢௟ௗ + ௠௔௫߱)߱∆ߪ  − ߱௢௟ௗ), if ∆߱ >  0       (7) 

    ߱௡௘௪ = ߱௢௟ௗ + ௢௟ௗ߱)߱∆ߪ  −  ߱௠௜௡), if ∆߱ ≤  0 
  

2.3. Network 

According to the definition of the problem, the number of features, and the expected 
output value of the network; neural networks can be created through different numbers 
of neurons, which are formed by connecting series as various layers. Therefore, 
implementing SNN on FPGA provides the advantage of self-repeating structures being 
reconnected without the complexity and in a fault-tolerant manner. Figure 1 shows an 
example of a simple two-layer SNN network with two input neurons and one output 
neuron, where the neuron between each layer runs along a synapse that is the 
presynaptic neuron of the previous layer. Time-dependent spike trains, coming from the 
previous layer are collected on the postsynaptic neuron after being multiplied by the 
weight through the synapses. Once the collected spike trains exceed the membrane 
potential, post-synaptic neuron produce a spike. 
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Figure 1. Simple two-layered Spiking 
Neural Network (SNN) 

 

 
  

3. RECONFIGURABLE IMPLEMENTATIONS OF SNN 

To overcome the complexity and time-consuming difficulties, encountered in the VLSI 
design processes of neuromorphic circuits, the reconfigurable FPGA structure can be 
considered as the most fitting solution. Reconfigurable implementations allow the 
algorithms to be computed quickly on the hardware and provide debugging capabilities 
in a shorter time. Although some of the hardware studies about SNN in literature have 
been implemented as ASIC (Chen et. al., 2018), FPGA plays a different role in terms of 
reconfigurability and energy efficiency. Thanks to the reconfigurable and parallel 
structure, FPGA implementations require significantly less time for both designing and 
testing, especially compared to ASIC design. Neuron implementations at the FPGA level 
are done using operation blocks, as shown in Figure 2, which implements an Izhikevich 
neuron with adders, multipliers, and comparators (Ambroise et. al., 2013). 
Reconfigurable implementations provide the ability to keep adding neurons and synapse 
blocks for creating a network in a much easier way, as shown in Figure 3. FPGA-based 
reconfigurable implementations of SNN have been created using different neuron 
models, learning algorithms, and network topologies (Liu et. al., 2019; Heidarpur et. al., 
2019; Murali et. al., 2016; Grassia et. al., 2016). 
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Figure 2. FPGA implementation of 
Izhikevich neuron (Ambroise et. al.,2013) 

 

 
  

3.1. Network Structure 

Different results can be obtained in the FPGA-based SNN studies even for the same 
dataset by using different neuron models and network structures. For example, in one of 
those studies conducted on the hardware, a pattern recognition study was performed 
with 1591 LIF neurons, 87.7% success was achieved on the MNIST dataset by 
implementing the STDP learning rule on-chip, and power consumption was detailed with 
respect to different levels of parallel architectures (Wang et. al., 2017). Similarly, the 
training has been completed on-board for the network, which has been designed by using 
the LIF neuron model, STDP learning algorithm and MNIST dataset and the success rate 
has been calculated as 85.28% on Virtex 7 (Li et. al., 2021). Examining the FPGA and 
software environment in terms of speed and performance rates, the network designed 
with the LIF neuron model and trained with STDP achieved 13.5% faster pattern 
recognition on the FPGA and 25.8% faster training time, compared to computational 
simulation of the same network (Wang et. al., 2017). 
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Figure 3. Reconfigurable implementation 
of SNN for pattern recognition (Lammie 
et. al.,2018) 

 

 
  Furthermore, SNN networks are also used for different datasets for classification. Two 

separate networks were created for different studies; one using the Izhikevich neuron 
model with application-specific 24x24 pixel images as the dataset, while the other was 
created using IF neurons along with edge detection, performed over custom datasets. 
The network structure was first simulated in the software environment and then 
implemented on the Xilinx XC4VFX60 (Rice et. al., 2009; Glackin et. al., 2009). 

  

3.2. Learning Method 

Two different training methods are preferred for FPGA-based implementations of SNN: 
Off-chip and on-chip training for hybrid or ordinary models. It has been observed that 
using the MNIST dataset and custom datasets, results in different performance rates for 
each character recognition application. From this perspective, a study using 5x5-pixel 
custom images as the dataset has achieved 94% accuracy with on-chip learning (Lammie 
et. al., 2018). The STDP learning algorithm is also used on FPGA for Spatio-temporal 
pattern recognition problems (Wang et. al., 2013). Moreover, with the studies in SNN, 
the classical ANN learning algorithms can be modified and used for off-chip training. For 
example, during an off-chip training study, where a feed-forward back-propagation 
algorithm was used for training on MNIST dataset, Izhikevich neuron model have been 
used to implement SNN on the Xilinx VC707 FPGA, the accuracy rate of 98% was reached 
and the power consumption was measured as 0.36W (Zhang et. al., 2019). 

Similarly, the network created using LIF was applied to Xilinx ZC706, and the weighting 
was determined by threshold matching via MATLAB as off-chip learning. An accuracy rate 
of 97.06% was achieved and the power consumption was measured as 0.477W (Han et. 
al., 2020). In another study implements on-chip learning, which still uses the MNIST 
dataset, an accuracy rate of 90.70% was achieved with the network trained by back-
propagation. Also, the power consumption was calculated as 161mW (Losh & Llamocca, 
2019). Moreover, some studies try different training algorithms to achieve application-
specific results. The use of the FORCE training algorithm, 510 Izhikevich Neuron shows 
the compatibility of FPGA with the memory-intensive structure (Sherbaf et. al., 2020). An 
accuracy rate of 96% was achieved in a study classified on Virtex 7 using Tempotron 
Supervised training algorithm with 1000 images mimicking LIF neurons and the human 
eye (Zhang et. al., 2020). It is possible to modify the performance rate and energy 
consumption factors using hybrid training models. 
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4. APPLICATION AREAS 

FPGA implementation of SNN is studied in terms of pattern recognition and classification, 
which are the most common research areas for SNN. 

  

4.1. Pattern Recognition 

Considering neuromorphic reconfigurable pattern recognition studies, it is apparent that 
most studies were conducted with the MNIST dataset. Most of the SNN studies using 
FPGAs deal with the classification of MNIST dataset (LeCun et. al., 2012). The MNIST 
dataset consists of handwritten number images from 0 to 9. This dataset contains 60000 
training and 10000 test data, which is a total of 70000 images in form of 28x28 pixels. 
Using different learning rules, SNN and MNIST can classify the dataset with 95% accuracy, 
showing that the pattern recognition can be performed on neuromorphic hardware with 
a high performance (Diehl & Cook, 2015). Considering the pattern recognition in terms 
of power consumption and accuracy; 90.70% accuracy rate and 69mW power 
consumption (without static power) were observed (Losh & Llamocca, 2019). While 
supervised learning based on a temporal coding algorithm achieved a 3.02% error rate, 
another SNN algorithm which was created by switching CNN network, achieved 90.2% 
recognition accuracy (Mostafa et. al., 2017; Tang et. al., 2020). When the SNN is created 
with back-propagation, the success rate increases to 99.42%, with the power 
consumption being measured as 4.5W (Fang et. al., 2020). In a study including the LIF 
neuron model and conducted on the Xilinx Spartan 6, the success rate was calculated as 
92% with the power consumption as 1.5W (Neil & Liu, 2014). Reducing power 
consumption while increasing the pattern recognition performance rate could be 
considered future work. 

  

4.2. Classification 

FPGA-based SNN implementations are also used to solve classification issues other than 
pattern recognition with MNIST. Apart from the MNIST dataset, FPGA-based SNN 
implementations are also used in areas such as solving classification problems with 
satellite imagery (Lemaire et. al., 2020). In addition, in a study for vowel recognition, the 
recognition of Spanish words was completed successfully (Miró-Amarante, 2017). Unlike 
other studies, the spiking neurons and the spikes generated in response to the musical 
notes were sent to the computer through FPGA and classified on CNN which is generated 
on MATLAB. In the study using a Virtex 5 FPGA, accuracy rate and power consumption 
were measured as 97.5% and 29.7mW (Cerezuela-Escudero,2015). 

  

5. CONCLUSION 

Many factors such as the neuron model and the number of neurons used in FPGA 
applications; the designed network architecture, the spike coding technique, the learning 
algorithm, the platform, whether it is a hybrid network or not, and the dataset, affect the 
learning accuracy and power consumption. Therefore, while considering the studies in 
the literature, we aim to examine the publications with similar characteristics in terms of 
the dataset and the application platforms. All the applications in Table 2 use the MNIST 
dataset, but due to the different methods and platforms, differences in power 
consumption and accuracy rates were observed.  

Comparing the studies in Table 2, we can see that different studies targeting the same 
application purpose give different results depending on the application method. As can 
be seen from this comparison, high accuracy rates were obtained, while the power 
consumption remained in terms of milliwatt level. As a result, the research on algorithms 
aiming to reduce the power consumption of FPGA-based SNN implementations still 
needs further improvement.  

Since classical computers are very power-hungry due to their separate memories, 
neuromorphic implementations are very promising in terms of this power consumption 
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aspect. Thanks to the configurable structures of reconfigurable implementations, the 
difficulties encountered by researchers in neuromorphic hardware design are 
circumvented. In this review, reconfigurable implementations of SNN are investigated in 
terms of learning accuracy, neuron models, learning methods, and power consumption. 
It is possible to conclude that this rapidly evolving field of study is likely to continue 
presenting challenges in terms of power consumption. 

Table 2. Comparison of Power 
Consumption and Learning Accuracy on 
Pattern Recognition With MNIST 
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