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Abstract 

 

In this work, it has been applied two methods for solving the (2+1)-dimensional soliton equation, 

namely, the ansatz method and the F-expansion method. These methods are utilized to provide new 

accurate periodic and soliton solutions to this problem that are more generic. An appropriate 

transformation can be used to convert this nonlinear system into another nonlinear ordinary differential 

equation. In mathematical physics, it is demonstrated that the ansatz method and the F-expansion method 

give a strong mathematical tool for solving a large number of systems of nonlinear partial differential 

equations. 
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1. Introduction 
 

There are numerous complex natural occurrences in this world that have a wide range of 

mathematical applications. The nonlinear evaluation equations (NLEEs), which have a 

significant impact on the exploration of nonlinear sciences, are mathematical models of 

nonlinear physical events. Obtaining accurate soliton solutions to NLEEs using computer 

programs that make repetitive and monotonous mathematical computations simpler has been a 

wonderful field for analysts and researchers in recent years. In fluid mechanics, optical fibers, 

material science, geochemistry, ocean engineering, geophysics, mathematical physics, plasma 

physical science, and several other logical fields, NLEEs play a crucial role in representing the 

actual behavior of genuine phenomena and dynamical processes.In this cutting-edge era of 

science, nonlinear science is one of the most fascinating fields for researchers. Because of its 

primary devotion to analyze the genuine part of the frameworks, researchers have focused on 

tracking down analytically or exact results. 

 

https://orcid.org/0000-0002-3948-1943


142 

One of the fundamental subjects of perpetual interest in mathematics and physics has long been 

the search for accurate solutions to NLEEs. Many powerful methods for finding exact solutions 

have been proposed with the development of symbolic computation packages like Maple and 

Mathematica, such as the trial equation technique [1], the Adomian decomposition method [2], 

the variation iteration method [3], the direct algebraic method [4], the extended Fan sub-

equation method [5], the generalized exponential rational function method [6], the Sine-Gordon 

expansion method [7], the Jacobi elliptic expansion method [8], the Extended Jacobian elliptic 

expansion method [9], the 2( / )G G -expansion method [10], the solitary wave ansatz method 

[11] and the ( / )G G expansion method [12,13]. 

 

The main goal of this research is to use the ansatz method, and the F-expansion method to 

generate a range of soliton solutions in the (2+1)-dimensional soliton equation. In this study, 

we will regard the (2+1)-dimensional soliton equation presented by [14] 

 
2

2

*

0,

( ) 0

i
t x

t y x

 


 


 
  

 

  
  

  

              

(1) 
 

where * denotes the complex conjugate, 1, ( , , )i x y t     is a complex function and 

( , , )x y t  is a real function. The spatial domains and time are represented by x, y, and t, 

respectively. The governing equation is related to the integrable Zakharov equation in plasma 

physics, which regulates the behavior of weakly nonlinear ion-acoustic waves in a plasma and 

plays a significant role in various practical applications. The interaction of Langmuir and ion-

acoustic waves in plasmas is the most physically significant example. There have been several 

investigations of the (2+1)-dimensional soliton in the literature [15-21]. The authors discovered 

a few solutions to this equation. Two recommended methods will be used to create the more 

effective, innovative solitary wave solutions of this equation. 

 

The flow of this article is organized as follows: Description of the Ansatz method and the F-

Expansion method are discussed in section 2. Finding analytical solutions for both methods 

(Soliton solutions, trigonometric and hyperbolic solutions) is given in section 3. The main 

conclusions is captured in Section 4. 

 

2. Description of the methods for partial differential equation 
 

In this section, we give a brief overview of the recommended methods. Let's consider the 

following type of nonlinear partial differential equation (PDE): 

 
2 2 2

1 2 2 2

1 2 3 1 2 3

, , , ..., , , , ,... 0( )u u u u u u u
H u

x x x t x x x

      


      
           

(2) 
 

where 1 2 3( , , , ,...)u u t x x x  and 1H  is a polynomial of u and its partial derivatives. The 

following wave transform is used first to find the wave solutions of the equations 
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1 2 3 1 1 2 2 3 3( , , , ,...) ( ), ...u t x x x U a x a x a x kt                 

(3) 

 

where 1 2 3, , ,...,a a a k  are non-zero constants. Substituting (3) to (2), the following nonlinear 

ordinary differential equation (ODE) is obtained, 

 
2 3

2 2 3
, , , ... 0( )dU d U d U

H U
d d d  

                   

(4) 
 

2.1 The ansatz method 

  

 The ansatz method has been given as follows [22]: 

 
1

1 2 3 1 1( , , , ,...) ( ) sech ( ),
p

u t x x x U                      

(5) 
2

1 2 3 2 2( , , , ,...) ( ) tanh ( ),
p

u t x x x U                       

(6) 
3

1 2 3 3 3( , , , ,...) ( ) csch ( )
p

u t x x x U                       

(7) 

 

are solitary wave ansatzes of the forms bright, dark and singular solitons in searched for, 

respectively and  

1 1 2 2 3 3 ...a x a x a x kt                                  

(8) 

 

is the wave transformation where; , ( 1, 2,3)i i i    and k are, respectively, the amplitude, the 

inverse width and the velocity of the soliton, 1 2 3, , ,...a a a  are non-zero constants, and ( 1, 2,3)ip i    

is an unknown exponent that will be found. It is feasible to get required derivatives from the 

given ansatzes with equalities. We get a set of algebraic equations for ,i i  and k when we 

replace the acquired derivatives in equation (4), collect all terms with the same order of required 

terms, and equal each coefficient of the resultant polynomial to zero. Finally, we can find the 

exact solution of (4), computing the system of equations. 

 

2.2  The F-expansion method 

 

In this section, the detailed description of the F-expansion method is given below [23,24]: 

 

1. By taking Eq.(3), the traveling wave solutions of Eq.(2) are sought and it is transformed into 

an ordinary differential equation as in Eq.(4). 

 

2. Suppose that, the solution ( )U  of  (4) can be described as 

 

0

1

( ) ( )
( )

( )
N

i i
i i

i

b
U a a f

f
 



                     

(9) 
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where 0a  and    1,2 3, , , ,i ia b i N   are constants to be determined, ( )f   is a solution of 

ODE 

 
2 4 2

2 1 0[ ( )] [ ( )] [ ( )]f K f K f K                    

(10) 

 

where K0, K1 and K2 are special values in Table 1. N is positive integer which can be determined 

from Eq.(10) as follows where ( ( ))deg U N   is degree of ( )U   

 

, ( ).[ ] [ ( ) ]
q q

r s

q q

d U d U
deg N q deg U Nr s q N

d d 
       

 

3. By substituting (9) with (10) into (4) and gathering the coefficients of ( ) ( 0, 1, 2,...)jf j   

, a set of specified algebraic equations consisting of 0 , , ( 1, 2,..., )i ia a b i N . These parameters 

may be clearly identified by solving these algebraic equations. The Jacobi elliptic function 

solutions for (10) are known to be as Table 1. 

 

4. Eq. (10) have Jacobi elliptic function solutions in Table 1. In Table 1, sn( )=sn( ,m),     cd(

 )=cd( ,m), cn( )=cn( ,m), dn( )=dn( ,m), ns( )=ns( ,m), cs( )=cs( ,m),               

ds( )=ds( ,m), sc( )=sc( ,m), sd( )=sd( ,m) are the Jacobi elliptic functions with the 

modulus 0 1m  . When 0m   and 1m   are used, these functions turn into trigonometric 

and hyperbolic functions, as shown in Table 2. 

 

5. By using the parameters found in step3 and the known values in step4 into (9), the solutions 

of (2) are obtained. 

 

Table 1. Jacobi elliptic function solutions. 

 

Case K0 K1 K2 ( )f   

1 1 2(1 )m   2m  sn( ) or cd( ) 

2 21 m  
22 1m   

2m  cn( ) 

3 2 1m   
22 m  -1 dn( ) 

4 2m  
2(1 )m   1 ns( ) or dc( ) 

5 2m  
22 1m   

21 m  nc( ) 

6 -1 22 m  
2(1 )m   nd( ) 

7 1 22 m  
21 m  sc( ) 

8 1 22 1m   
2 2(1 )m m   sd( ) 

9 21 m  
22 m  1 cs( ) 

10 2 2(1 )m m   22 1m   1 ds( ) 

11 2(1 4)m  
2(1 ) 2m  

2(1 4)m  nc( )±sc( ) or 
cn( ) 1 sn( )   
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12 22 )(1 4m   2(1 ) 2m  1 4  m cn( )±dn( ) 

13 1 4  2(1 2 2)m  1 4  sn( ) 1 cn( )   

14 1 4  2(1 ) 2m  2 2(1 4)m  sn( ) dn( ) cn( )    

 

 

Table 2. Conversion of Jacobian elliptic functions to trigonometric and hyperbolic functions. 

 

0m   1m   

sn(ε)=sin(ε) sn(ε)=tanh(ε) 

cd(ε)=cos(ε) cn(ε)=sech(ε) 

cn(ε)=cos(ε) dn(ε)=sech(ε) 

ns(ε)=csc(ε) ns(ε)=coth(ε) 

cs(ε)=cot(ε) cs(ε)=csch(ε) 

ds(ε)=csc(ε) ds(ε)=csch(ε) 

sc(ε)=tan(ε) sc(ε)=sinh(ε) 

sd(ε)=sin(ε) sd(ε)=sinh(ε) 

nc(ε)=sec(ε) nc(ε)=cosh(ε) 

dn(ε)=1 cd(ε)=1 

 

 

3. Mathematical analysis 
 

In this section, analytical solutions will be found for the (2+1)-dimensional soliton equation 

given in Eq. (1) by applying the two different methods mentioned. Firstly, to search for 

solutions of Eq. (1), it is supposed that 

 

1 2( , , ) ( ) ,  ( , , ) ( ),

( 2 ),  ,

ix y t G e x y t G

A x By kt kx ny ct

   

 

 

     
              

(11) 

 

where 1( )G   and 2 ( )G   are real functions, A, B, k, n and c are real constants. By substituting 

(11) into (1), it is attained 

 
2

2 21
1 1 22

( )
( ) ( ) ( ) ( ) 0,

d G
A c k G G G

d


  


                 

(12) 

22
1

( )
( 2 ) ( ( )) 0.

dG d
B k G

d d




 
                  

(13) 

 

By integrating once with respect to   and equaling the integration constants to zero, it is 

obtained  

 

2

2 1 , ( 2 )
1

( ) ( ( ))
( 2 )

G G B
k

k
B

 


              

(14) 
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By substituting Eq. (14) into Eq. (12), it is found 

 
2 2

31
1 12 2 2

( ) ( ) 1
( ) ( ( )) 0.

( 2 )

d G c k
G G

d A A B k


 




  


             

(15) 
 

3.1 Application of the ansatz method 

 

Firstly, to solve Eq. (15), let’s take 

2

2

( )c k
K

A


   and 2

1

( 2 )
L

A B k



. Thus, the equation 

becomes 

 
2

31
1 12

( )
( ) ( ( )) 0.

d G
K G L G

d


 


                  

(16) 

 

For the bright soliton, it is regarded as the ansatz  

 
1

1 1 1( ) sech ( )
p

G                (17) 

 

and it is obtained  

 
1 1 22 2 2

11 1 1 1 1 1 11 1( ) sech ( ) sech ( )'' ( 1)
p p

G p p p        
            (18) 

and 

 
1

1 1

3 3

1

3( ) sech ( )
p

G     .          (19) 

 

Substituting (17)-(19) into Eq. (16),  the equation that follows  

 
1 1 1 12 3

1 1 1 1 1 1 1 1

2 2 2 3

1 1 1 1 1sech ( ) sec( 1) h ( ) sech ( ) sech ( ) 0
p p p p

p p Kp L             
    

 

is found. It is achieved 1 1p   by equating the exponents p1 + 2 and 3p1 in this equation using 

the balancing principle. It is obtained the algebraic equation system below by comparing the 

different powers of 1sech( )  . 

 

1 1 1

3

1

2

2

1 1

0

0

2 L

K

  

  

 

 


           (20) 

By solving this system (20), it is attained 1 1

2
= and

K
K

L
      .  By replacing the 

previously accepted expressions K and L,  

 

2 2

1 12( )( 2
1

= and)c k B k
A

k c       

are gained. Therefore, 
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2 2

1

2

2 2

2

( ) 2( )( 2 )sech

1
( ) 2( )( 2 )sech

( 2

1

1
, ( 2 )

)

G c k B k c k

G

A

B k
A

c k B k c k
B k

 

 

 
    

 

  
     

  







  


    

(21) 

 

are written. Finally, the bright soliton solutions of Eq. (1) are as follows 

 

 

 

2 2 ( )

2 2 2

( , , ) 2( )( 2 )sech ( 2 ) , 

( , , ) 2( )sech ( )) 2 .2 , (

i kx ny ctx y t c k B k c k x By kt e

x y t c k c k x B kBy kt





      

 



    

         

(22) 

 

For the singular soliton, it is regarded as the ansatz  

 
2

21 2( ) csch ( )
p

G               (23) 

 

and it is found  

 
22 22 2 2

1 2 2 2 2 2 2 2 2 2( ) ch ( )'' cs ( 1) ch )cs (
p p

p p pG         
             (24) 

and 

 
23

1 2 2

33cs( ) ch ( )
p

G     .          (25) 

 

Substituting (23)-(25) into Eq. (16),  the equation that follows  

 
2 2 2 222 2 2 3

2 2 2 2 2 2 2 2 2 2 2

3

2 2ch ( ) ch ( ) csch ( ) sech ( ) 0cs ( 1) cs
p p p p

Kp p p L             
    

 

is gained. The balancing principle is used by equating the exponents p2 + 2 and 3p2 in this 

equation. So, It is attained 2 1p  . By comparing the different powers of 2csch( )  , the algebraic 

equation system below is found. 

 
2

2 2 2

2 3

2 2 2

0

02

K

L

  

  

 

 
           (26) 

By solving this system (26), it is gained 2 2

2
= and

K
K

L
     .  By replacing the 

previously accepted expressions K and L,  

 

2

2

2

22( )( 2
1

= and)c k B k c k
A

       

are found. Hence, 
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2 2

1

2

2 2

2

( ) 2( )( 2 )csch

1
( ) 2( )( 2 )csch

( 2

1

1
, ( 2 )

)

G c k B k c k

G c k

A

B k
A

B k c k
B k

 

 

 

 

 
     

 

  
      

 


 

    

(27) 

 

are written. Eventually, the singular soliton solutions of Eq. (1) are as follows 

 

 

 

2 2 ( )

2 2 2

( , , ) 2( )( 2 )csch ( 2 )

, ( 2 ).

, 

( , , ) 2( )csch ( 2 )

i kx ny ctx y t c k B k c k x By kt e

x y t c k c k x By k Bt k





       

     

 

 

   

   (28) 
 

For the dark soliton, it is regarded as the ansatz  

 
3

1 3 3( ) tanh ( )
p

G                (29) 

 

and it is found  

 

 3 3 32 22

1 3 3 3 3 3 3 3 3 3( ) h ( ) 2'' ( 1) tan tanh ( 1) hta) (n( )
p p p

p p p pG          
      (30) 

and 

 
33

3 3 3

33cs( ) ch ( )
p

G     .          (31) 

 

Substituting (29)-(31) into Eq. (16), the equation that follows  

 
3 33 3

3

2 22 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3

3

( 1) tan tan (h ( ) 2 h ( ) h ( ) tanh (1) tan

cs

)

ch ( ) 0

p p p p

p

Kp p p p p

L

             

  

 
  









 

is found. The balancing principle is applied in this equation by equating the exponents p3 + 2 

and 3p3. As a result, 3 1p   has been achieved. The algebraic equation system below is 

determined by comparing the different powers of 3tanh( )  .  
2

3 3 3

2 3

3 3 3

2

2

0

0

K

L

  

  

 

 


           (32) 

By solving this system (32), it is gained 3 3= and
2

K K

L
 


   .  By replacing the 

previously accepted expressions K and L,  

 

2

3

2
2

3

1 ( )
= and( ) , (( 2 ) 0, )

2
2

c k
c k B k c k

A
B k    

 
     

are found. Hence, 
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2
2

1

2
2

2 2

2

1 )

2

1 )
, ( 0

(
( ) ( )( 2 )tanh

1 (
( ) )( 2 )tanh , )

2
2

( 2 )

c k
G c k B k

c k
G c

A

A
k B k c k B k

B k

 

 

  
    

 
 

   
     

 

  
  
  

   

(33) 

 

are written. Eventually, the dark soliton solutions of Eq. (1) are as follows 

 

2
2 ( )

2
2 2 2

(
( , , ) ( )( 2 )csch ( 2 ) , 

(
( , , )

)

2

)
,( )tanh ( 2 ) ( 0, ).

2
2

i kx ny ctc k
x y t c k B k x By kt e

c k
x y t c k x By kt c k B k





 
  

     
 
 

  
      

 






 



     

(34) 

 

3.2 Application of the F-expansion method 

 

In this section, the solution of equation (1) with the F-expansion method will be investigated 

by using equations (14) and (15). Using the balancing principle between 

2

1

2

( )d G

d




and  3

1( ( ))G   

in (15) gives N = 1. Hence, from (9), the solution of (15) can be written  

 

1 0
1

1( ) ( )
( )

b
G a a f

f
 


   .                    

(35) 

 

where 0a , 1 1,a b are constants to be determined, ( )f   meets the elliptic equation  (10). The 

sixth order polynomial in ( )f   is obtained by substituting (35) and (10) into (15). The 

following nonlinear system of equations is found by equating all coefficients of ( )f   to zero. 

 

3

1 2 12

1
0

( 2 )
2 K

A B k
a a


   

2

0 12

3
0

( 2 )
a

k
a

A B



 

2 2

1 0 1 12 2 2

2

1 1 1

3 3
0

( 2 ) ( 2 )A A B k A B

c k
a K a a a b

k
a 







  

3

02 2

2

1 12 0 0

1 6
0

( 2 ) ( 2 )

c
b

A A B k A B k

k
a a a a


 





 

2 2

1 0 1 12 2 2

2

1 1 1

3 3
0

( 2 ) ( 2 )
b

A A B k A B

c k
K b b a a

k
b  







  
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2

0 12

3
0

( 2 )
a b

A B k



 

3

1 0 12

1
0

( 2 )
2 K

A B k
b b


   

It is acquired the following two sets of solutions for unknown coefficients by solving this 

system with Maple. 

Set 1 Set 2 

2

1k K A c    
2

1k K A c    

0 0a   0 0a   

1 0a   2

1 2 2 12 4a K B K K A c      

2

1 0 0 12 4b K B K K A c      1 0b   

 

Substituting (Set 1)–(Set 2) into (35), it is obtained the following solutions for Equation (15): 

 

Set 1:  

2

1 0 0 1

1
( ) 2 4

( )
G K B K K A c

f




 
     

 
  

and from Eq. (14),  
2

2

0 02 1

1 1
( ) 2 4

( 2 ) ( )
G K B K K A c

B k f




  
      

   
 

are gained. 

Eventually, the exact solutions of equation (1) have the form below. 

 

 
 

2

0 0 1

2

0 1

2
2

1

1
( , , ) 2 4 , 

( )

2 4 1
( , , )

( ( ))2
,

ix y t K B K K A c e
f

K B K A c
x y t

fB K A c







 
     
 

  


  

           

(35) 

 

where     2 2

1 1( 2 ), A x By K A c t K A c x ny ct           . 

 

Set 2:  

2

1 2 2 1( ) ( ) 2 4G f K B K K A c 
 

     
 

  

and from Eq. (14),  
2

2

2 2 12

1
( ) ( ) 2 4

( 2 )
G f K B K K A c

B k
 

  
      

   
 

are gained. 

Eventually, the exact solutions of equation (1) have the form below. 

 



151 

 
 

 

2

2 2 1

2

2 1 2

2

1

( , , ) 2 4 ( ) , 

2 4
( , , ) ( )

2
,

ix y t K B K K A c f e

K B K A c
x y t f

B K A c

 

 

 
     
 

  


  

           

   (36) 

 

where     2 2

1 1( 2 ), A x By K A c t K A c x ny ct           . 

The exact solutions of (1) are obtained by combining (35) and (36) with Table 1 and Table 2. 

Some of them can be expressed for Set 1 and Set2 as follows: 

 

For Set 1: 

Case 1.  2 2

2 1 0, ), 1, ( ) ( )( ;1 fK m K m K sn       

When 0m  , the solution of (1) is 

 

 

  
  

 

2

2

2 2

2

( , , ) 2 4 csc( ) , 

2 4
( , , ) csc ) 0

2
,(

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
      
 

   
  

   

       

(37) 

where       2 2( 2 ), A x By A c t A c x ny ct             . 

When 1m  , the solution of (1) is 

 

 

  
  

 

2

2

2 2

2

( , , ) 2 4 2 coth( ) , 

2 4 2
( , , ) coth ,( ) 2 0

2 2

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
      
 

   
  

   

      

(38)  

where       2 2( 2 2 ),  2A x By A c t A c x ny ct             . 

 

Case 7.  2 2

2 1 0, , 1, ( ) (2 ;1 )K m K m K f sc       

When 0m  , the solution of (1) is 

 

 
 

 

2

2

2 2

2

( , , ) 2 4 2 cot( ) , 

2 4 2
( , , ) cot ( ) 2 0

2 2
,

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
     
 

  
  

  

       

(38) 
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where     2 2( 2 2 ),  2A x By A c t A c x ny ct           . 

When 1m  , the solution of (1) is 

 

 
 

 

2

2

2 2

2

( , , ) 2 4 csch( ) , 

2 4
( , , ) csch ( ) , 0

2

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
     
 

  
  

  

        

(39)  

where     2 2( 2 ), A x By A c t A c x ny ct           . 

 

For Set 2: 

Case 3.  2 2

2 1 021, , 1, ( ) ( );K K m K m f dn        

When 0m  , the solution of (1) is 

 

 
 

 

2

2

2

2

( , , ) 2 4 2 , 

2 4 2
( ,, , ) 2 0

2 2

ix y t B A c e

B A c
x y t A c

B A c





 
    
 

 
  

  

                    

   (40) 

where     2 2( 2 2 ),  2A x By A c t A c x ny ct           . 

When 1m  , the solution of (1) is 

 

 
 

 

2

2

2 2

2

( , , ) 2 4 sech( ) , 

2 4
( , , ) sech ( ) 0

2
,

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
    
 

 
  

  

         

(41)  

where     2 2( 2 ), A x By A c t A c x ny ct           . 

 

Case 2.  2 2 2

2 1 02 1, 1, , ( ) ( );K m K m K f cnm         

When 1m  , the solution of (1) is 
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 
 

 

2

2

2 2

2

( , , ) 2 4 sec h( ) , 

2 4
( , , ) sec h ( ) 0

2
,

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
    
 

 
  

  

       

(42) 

 

where     2 2( 2 ), A x By A c t A c x ny ct           . 

Case 8.  2 2

2 1 0, 1, 1, (2 ( );1 )K m sK m f dK        

When 0m  , the solution of (1) is 

 

 

  
  

 

2

2

2 2

2

( , , ) 2 4 sin( ) , 

2 4
( , , ) sin ( ) , 0

2

ix y t B A c e

B A c
x y t A c

B A c

 

 

 
     
 

  
  

   

       

(43) 

where       2 2( 2 ), A x By A c t A c x ny ct             . 

 

4. Conclusion 
 

The ansatz method and the F-expansion method were utilized to solve the (2+1)-dimensional 

soliton problem in this study. The symbolic computing system verified these solutions. This 

study gave that these methods were a reliable and strong strategy to find new exact solutions. 

When the results of these methods are compared to those of earlier studies, it is evident that 

they are original. One of the most distinguishing features of the methods we utilize is their 

variety in comparison to other methods [14- 21]. 

 

The findings of this study are useful in describing various nonlinear systems and provide useful 

additions to the existing literature. To the best of our knowledge, the novel type of solutions 

discovered in this work have never been achieved previously. Furthermore, the results show 

that the suggested methods are an effective mathematical tool and that they are easier, stronger, 

and quicker thanks to the symbolic program computation system. These methods might be used 

to address a lot more nonlinear evolution problems. It's worth mentioning that the proposed 

method may be used for a variety of nonlinear evolution problems in mathematical physics. 

The findings of this study might have implications for the meaning of various physical 

problems. 
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