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Abstract. The goal of this paper is to examine invariant submanifolds in metallic Riemannian manifolds with the
help of induced structures on them by the metallic Riemannian structure of the ambient manifold. We obtain a useful
characterization of invariant submanifolds. We also discuss some necessary conditions for invariant submanifolds
to be totally geodesic. Finally, we provide an example of an invariant submanifold.
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1. Introduction

The notion of a metallic structure on differentiable manifolds was first introduced by C.E. Hreţcanu and M.C.
Crâşmăreanu in [17] as a natural extension of golden structures [6]. In [19], M. Özkan and F. Yılmaz analyzed metallic
structures by means of the corresponding almost product structures. In [8], A. Gezer and Ç. Karaman investigated the
integrability conditions and curvature properties of metallic Riemannian structures by using a special operator. In [5],
A.M. Blaga and C.E. Hreţcanu defined and examined the conjugate connections determined by a metallic structure,
called metallic conjugate connections, which are also a generalization of golden conjugate connections [3].

Using the similar approach as in the setting of golden Riemannian manifolds [15, 16], by C.E. Hreţcanu and M.C.
Crâşmăreanu, the study of the differential geometry of submanifolds of a metallic Riemannian manifold was initiated
in [17], particularly, invariant submanifolds were characterized here. A.M. Blaga and C.E. Hreţcanu [4] showed that on
an invariant submanifold of locally decomposable metallic Riemannian manifolds, the Nijenhuis tensor of the tensor
field of the induced structure is identically zero and it preserves the property of the locally decomposability of the
ambient manifold. Later, by the same authors, such a type of submanifold was extended to slant, semi-slant, hemi-
slant and bi-slant submanifolds, respectively, in golden and metallic Riemannian manifolds [4, 13, 14]. Moreover, the
investigation of totally umbilical semi-invariant submanifolds was made in golden and metallic Riemannian manifolds
[7, 10].

On the other hand, inspired by the golden structure [6] and S. Kalia’s definition of the bronze mean [18], B. Şahin
[21] defined and studied a new type of manifold that is not a metallic manifold, called an almost poly-Norden manifold.
In addition, submanifolds of an almost poly-Norden Riemannian manifold were explored by S.Y. Perktaş in [20].

In this work, we continue to investigate invariant submanifolds of a metallic Riemannian manifold. The paper
is devoted to three sections and organised as follows: In section 2, we give some fundamental concepts, formulas
and notations to provide a background for the main results. Section 3 contains some important results on invariant
submanifolds in metallic Riemannian manifolds. For a submanifold in metallic Riemannian manifolds, we get a
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condition equivalent to its invariance under the action of the metallic structure of the ambient manifold. We obtain
some necessary conditions for an invariant submanifold to be totally geodesic. Lastly, we construct an example of an
invariant submanifold in metallic Riemannian manifolds.

2. Preliminaries

An endomorphism F̃ on a differentiable manifold M̃ is said to be a metallic structure [17] if it yields the algebraic
equation

F̃2 = aF̃ + bI
for a, b ∈ N+, where I denotes the Kronecker tensor field on M̃. In this situation, the pair

(
M̃, F̃

)
is called a metallic

manifold. It is known that the metallic structure F̃ has two real characteristic values σa,b and a−σa,b, where σa,b is the
(a, b)-metallic number, which is the positive root of the quadratic equation x2 − ax − b = 0 for positive integer values
of a and b. If

(
M̃, F̃

)
is a metallic manifold admitting an F̃-compatible Riemannian metric g̃, then the triple

(
M̃, g̃, F̃

)
is named a metallic Riemannian manifold.

Let M be an m-dimensional isometrically immersed submanifold of an (m + s)-dimensional metallic Riemannian
manifold

(
M̃, g̃, F̃

)
. If we denote by TpM and TpM⊥ its tangent and normal spaces at a point p ∈ M, respectively, then

the ambient tangent space TpM̃ splits as an orthogonal direct sum given by

TpM̃ = TpM ⊕ TpM⊥

for each point p ∈ M. The induced Riemannian metric g on M is a 2-tensor field defined by

g = i∗g̃,

where i∗ stands for the differential of the isometric immersion i : M −→ M̃. We consider a local orthonormal frame
{N1, . . . ,Ns} of the normal bundle T M⊥. For every vector field X ∈ Γ(T M), the decompositions of the vector fields
F̃ (i∗X) and F̃ (Nλ) on M̃ into tangential and normal components are given by

F̃ (i∗X) = i∗ (FX) +
s∑
λ=1

uλ (X) Nλ (2.1)

and

F̃Nλ = i∗ (ξλ) +
s∑
µ=1

AλµNµ, (2.2)

respectively, where F is a linear transformation on M, ξλ are tangent vector fields on M, uλ are 1-forms on M and
[
Aλµ

]
is a matrice of type s × s of real functions on M for any λ, µ ∈ {1, . . . , s}. Thus, the quintet

∑
=

(
F, g, uλ, ξλ,

[
Aλµ

]
s×s

)
determines a structure induced on M by the metallic Riemannian structure

(̃
g, F̃

)
. Such a structure is said to be a∑

-metallic Riemannian structure on (M, g) (see, e.g., [4, 12, 17], for more details).
We denote by ∇̃ and∇ the Riemannian connections on M̃ and M, respectively. Then, Gauss and Weingarten formulas

of M in M̃ are given, respectively, by

∇̃i∗Xi∗Y = i∗∇XY +
s∑
λ=1

hλ (X,Y) Nλ

and

∇̃i∗XNλ = −i∗AλX +
s∑
µ=1

lλµ (X) Nµ

for all vector fields X,Y ∈ Γ(T M), where hλ are the second fundamental tensors corresponding to Nλ, i.e., h (X,Y) =
s∑
λ=1

hλ (X,Y) Nλ, Aλ are the Weingarten endomorphisms associated with the normal vector fields Nλ and lλµ are the

1-forms on M corresponding to the normal connection ∇⊥ for any λ, µ ∈ {1, . . . , s}, i.e., ∇⊥X Nλ =
s∑
µ=1

lλµ (X) Nµ [12].

Now, we recall the following well known definitions for a submanifold M [2, 22]: If h = 0 (or equivalently hλ = 0
for any λ ∈ {1, . . . , s}), M is called a totally geodesic submanifold; if H = 0, M is named a minimal submanifold; if
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h (X,Y) = g (X,Y) H for all vector fields X,Y ∈ Γ(T M), M is said to be a totally umbilical submanifold, where H stands
for the mean curvature vector of M.

3. Main Results

Any isometrically immersed submanifold M of a metallic Riemannian manifold
(
M̃, g̃, F̃

)
is said to be invariant if

F̃
(
TpM

)
⊆ TpM

for each point p ∈ M. In this situation, it follows that F̃
(
TpM⊥

)
⊆ TpM⊥ for each point p ∈ M.

Let
∑
=

(
F, g, uλ, ξλ,

[
Aλµ

]
s×s

)
be the

∑
-metallic Riemannian structure on an m-dimensional invariant submanifold

M of an (m + s)-dimensional metallic Riemannian manifold
(
M̃, g̃, F̃

)
. In this case, ξλ = 0 (or equivalenty uλ = 0) for

any λ ∈ {1, . . . , s}. Therefore, (2.1) and (2.2) are written as follows:

F̃ (i∗X) = i∗ (F (X))

and

F̃ (Nλ) =
s∑
λ=1

AλµNµ, (3.1)

respectively. For the
∑

-metallic Riemannian structure
∑
=

(
F, g, uλ, ξλ,

[
Aλµ

]
s×s

)
on (M, g), the following relations

hold [17]:
F2X = aFX + bX,

Aλµ = Aµλ,

s∑
ν=1

AλνAµν = aAλµ + bδλµ, (3.2)

g (FX,Y) = g (X, FY)

and
g (FX, FY) = ag (FX,Y) + bg (X,Y)

for all vector fields X,Y ∈ Γ(T M), where δλµ is the Kronecker delta. In addition to these, if ∇̃F̃ = 0, i.e.,
(
M̃, g̃, F̃

)
is a

locally decomposable metallic Riemannian manifold, then we have from [12]:

∇F = 0,

hλ (X, FY) −
s∑
µ=1

hµ (X,Y)Aλµ = 0, (3.3)

F (AλX) −
s∑
µ=1

AλµAµX = 0

and

X
(
Aλµ

)
+

s∑
ν=1

Aλνlνµ (X) +
s∑
ν=1

Aµνlνλ (X) = 0

for all vector fields X,Y ∈ Γ(T M).

Theorem 3.1. Let M be an m-dimensional isometrically immersed submanifold of an (m + s)-dimensional metallic
Riemannian manifold

(
M̃, g̃, F̃

)
. Then, M is an invariant submanifold if and only if the normal bundle T M⊥ admits a

local orthonormal frame consisting of characteristic vectors of the metallic structure F̃.
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Proof. By a suitable transformation [1] of a local orthonormal frame of the normal bundle T M⊥ to another one, Aλµ
can be reduced toA′λµ = σλδλµ, where σλ are the characteristic values of the matrice

[
Aλµ

]
s×s

for any λ, µ ∈ {1, . . . , s}.
If M is an invariant submanifold, i.e., each of the tangent vector fields ξ′λ is zero, then it follows from (3.1) that

F̃
(
N′λ

)
= σλN′λ, λ = 1, . . . , s,

in other words, the normal vector fields N′λ are the characteristic vectors of the metallic structure F̃.
Conversely, if F̃

(
N′λ

)
= σλN′λ for any λ ∈ {1, . . . , s}, then we get from (2.2) that

ξ′λ = 0, λ = 1, . . . , s,

which implies that the submanifold M is invariant. □

Remark 3.2. For an isometrically immersed submanifold of codimension 1, namely a hypersurface, in metallic Rie-
mannian manifolds, Theorem 3.1 was proven by C.E. Hreţcanu and M.C. Crâşmăreanu in [17, Proposition 5.2].

Theorem 3.3. Let M be an m-dimensional isometrically immersed submanifold of an (m + s)-dimensional metallic
Riemannian manifold

(
M̃, g̃, F̃

)
. If

F̃i∗ = σa,bi∗ (3.4)

and
F̃Nλ =

(
a − σa,b

)
Nλ, λ = 1, . . . , s, (3.5)

then M is a totally geodesic invariant submanifold.

Proof. What (3.4) and (3.5) say is that M is an invariant submanifold. By the use, again, of (3.4) and (3.5) in (2.1) and
(2.2), respectively, we have

F = σa,bI

and
Aλµ =

(
a − σa,b

)
δλµ

for any λ, µ ∈ {1, . . . , s}. Thus, we derive from (3.3) that M is a totally geodesic submanifold. □

Theorem 3.4. Let M be an m-dimensional isometrically immersed submanifold of an (m + s)-dimensional metallic
Riemannian manifold

(
M̃, g̃, F̃

)
. If

F̃i∗ =
(
a − σa,b

)
i∗

and
F̃Nλ = σa,bNλ, λ = 1, . . . , s,

then M is a totally geodesic invariant submanifold.

Proof. The proof can be done by a similar technique used in that of Theorem 3.3. □

Theorem 3.5. Let M be an m-dimensional totally umbilical invariant submanifold of an (m + s)-dimensional metallic
Riemannian manifold

(
M̃, g̃, F̃

)
. If

{trace(F)}2 , m {mb + trace(F)a} ,

or equivalently
trace(F) , σm,

then M is a totally geodesic submanifold, where σ = σa,b or σ = a − σa,b.

Proof. Let {e1, . . . , em} be an orthonormal basis of the tangent space TpM at a point p ∈ M. Because M is a totally
umbilical submanifold, it is known that the existence of constants ρλ such that hλ = ρλg for any λ ∈ {1, . . . , s}. In this
case, from (3.3), we get

ρλg (X, FY) =
s∑
µ=1

Aµλρµg (X,Y) (3.6)
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for all vector fields X,Y ∈ Γ (T M). Substituting Xp = Yp = ei for any i ∈ {1, . . . ,m} at the point p ∈ M in (3.6), then
we obtain

ρλg (ei, Fei) = g (ei, ei)
s∑
µ=1

Aµλρµ. (3.7)

It follows by summing over i in (3.7) that
m∑

i=1

ρλg (ei, Fei) = m
s∑
µ=1

Aµλρµ,

from which we have

trace(F)ρλ = m
s∑
µ=1

Aµλρµ. (3.8)

Multiplying (3.8) by the matrice entryAµλ and then summing over λ, we find

trace(F)
s∑
λ=1

Aµλρλ = m
s∑
ν=1

s∑
λ=1

AµλAλνρν. (3.9)

From (3.2), (3.9) can be written in the form

trace(F)
s∑
λ=1

Aµλρλ = mbρµ + ma
s∑
ν=1

Aµνρν,

which implies that

ρµ =
1

mb
(trace(F) − ma)

s∑
λ=1

Aµλρλ. (3.10)

Substituting (3.10) into (3.8), we derive{
trace(F) (trace(F) − ma) − m2b

} s∑
µ=1

Aλµρµ = 0. (3.11)

Using the assumption {trace(F)}2 , m {mb + trace(F)a}, it can be easily seen from (3.11) that
s∑
µ=1

Aλµρµ = 0.

Therefore, we conclude from (3.10) that
ρµ = 0, µ = 1, . . . , s,

which completes the proof. □

Remark 3.6. On golden Riemannian manifolds, Theorems 3.1, 3.3, 3.4 and 3.5 were demonstrated by M. Gök, S.
Keleş and E. Kılıç in [9].

Now, let us give an example.

Example 3.7. We consider the (2k + l)-dimensional Euclidean space E2k+l with the usual scalar product ⟨, ⟩, where k
and l are positive integers. Let us define a tensor field F̃ of type (1, 1) by

F̃
(
Xα,Yα,Zβ

)
=

((
a − σa,b

)
Xα, σa,bYα,

(
a − σa,b

)
Zβ

)
for every tangent vector

(
Xα,Yα,Zβ

)
∈ T(xα,yα,zβ)E2k+l at each point

(
xα, yα, zβ

)
, where(

xα, yα, zβ
)
=

(
x1, . . . , xk, y1, . . . , yk, z1, . . . , zl

)
and (

Xα,Yα,Zβ
)
=

(
X1, . . . , Xk,Y1, . . . ,Yk,Z1, . . . ,Zl

)
.

In this case, it is not difficult to verify that
(
⟨, ⟩ , F̃

)
is a metallic Riemannian structure and

(
E2k+l, ⟨, ⟩ , F̃

)
is a locally

decomposable metallic Riemannian manifold.
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Due to the fact that E2k+l = Ek × Ek × El, we can mention the following three hyperspheres:

S k−1 (r1) =

(x1, . . . , xk
)

:
k∑
α=1

(xα)2
= r2

1

 in Ek,

S k−1 (r2) =

(y1, . . . , yk
)

:
k∑
α=1

(yα)2
= r2

2

 in Ek

and

S l−1 (r3) =

(z1, . . . , zl
)

:
l∑
β=1

(
zβ

)2
= r2

3

 in El.

Thus, as in [11, Example 3], we can build the product manifold S k−1 (r1) × S k−1 (r2) × S l−1 (r3) such that its each point
has the coordinates

(
xα, yα, zβ

)
satisfying the equation

k∑
α=1

(xα)2
+

k∑
α=1

(yα)2
+

l∑
β=1

(
zβ

)2
= R2,

where R2 = r2
1 + r2

2 + r2
3. Also, if we denote this product manifold by M for short, then M is a submanifold of

codimension 3 in the Euclidean space E2k+l and M is a submanifold of codimension 2 in the sphere S 2k+l−2 (R). Hence,
there are successive embeddings such that

M ↪→ S 2k+l−2 (R) ↪→ E2k+l.

Moreover, its tangent space T(xα,yα,zβ)M at each point
(
xα, yα, zβ

)
is given by

T(xα,yα,zβ)M = T(xα,0α,0β)S k−1 (r1) ⊕ T(0α,yα,0β)S k−1 (r2) ⊕ T(0α,0α,zβ)S l−1 (r3) ,

which means that any tangent vector
(
Xα,Yα,Zβ

)
∈ T(xα,yα,zβ)E2k+l lies in T(xα,yα,zβ)M for each point

(
xα, yα, zβ

)
∈ M if

and only if
k∑
α=1

xαXα =
k∑
α=1

yαYα =
l∑
β=1

zβZβ = 0.

Also, since
(
Xα,Yα,Zβ

)
is a tangent vector on the sphere S 2k+l−2 (R), we obtain

T(xα,yα,zβ)M ⊂ T(xα,yα,zβ)S 2k+l−2 (R)

for each point
(
xα, yα, zβ

)
∈ M.

If {N1,N2,N3} is a local orthonormal basis of the normal space T(xα,yα,zβ)M⊥ at any point
(
xα, yα, zβ

)
, then the normal

vectors N1, N2 and N3 can be chosen as follows:

N1 =
1
R

(
xα, yα, zβ

)
,

N2 =
1
R

(
r3

r
xα,

r3

r
yα,−

r
r3

zβ
)

and

N3 =
1
r

(
r2

r1
xα,−

r1

r2
yα, 0β

)
,

where r2 = r2
1 + r2

2. Identifying i∗X with X for any tangent vector X ∈ T(xα,yα,zβ)M, from (2.2), we have

F̃Nλ = ξλ +
3∑
µ=1

AλµNµ (3.12)

for any λ ∈ {1, 2, 3}, which shows that
Aλµ =

〈
F̃Nλ,Nµ

〉
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for any λ, µ ∈ {1, 2, 3}. Hence, by a straightforward computation, the entries of the matriceA =
[
Aλµ

]
3×3

are calculated
as follows:

A11 =
1

R2

((
a − σa,b

)
R2 + r2

2

√
∆
)

,

A12 = A21 =
r3r2

2

√
∆

rR2 ,

A13 = A31 = −
r1r2
√
∆

rR
,

A22 =
1

r2R2

((
a − σa,b

)
r2R2 + r2

2r2
3

√
∆
)

,

A23 = A32 = −
r1r2r3

√
∆

r2R
and

A33 =
1
r2

((
a − σa,b

)
r2 + r2

1

√
∆
)

,

where ∆ = a2 + 4b. Also, by virtue ofAλµ for any λ, µ ∈ {1, 2, 3} given above, it follows from (3.12) that

ξ1 = ξ2 = ξ3 = 02k+l, (3.13)

in other words,
F̃

(
T(xα,yα,zβ)M⊥

)
⊆ T(xα,yα,zβ)M⊥.

Taking into consideration the fact uλ
(
Xα,Yα,Zβ

)
=

〈(
Xα,Yα,Zβ

)
, ξλ

〉
for any λ ∈ {1, 2, 3}, we see from (3.13) that

u1 = u2 = u3 = 0 (3.14)

for any λ ∈ {1, 2, 3}. On the other hand, from (2.1), we have

F̃
(
Xα,Yα,Zβ

)
= F

(
Xα,Yα,Zβ

)
+

3∑
λ=1

uλ
(
Xα,Yα,Zβ

)
Nλ. (3.15)

Thus, by the help of (3.14) and (3.15), we get

F̃
(
Xα,Yα,Zβ

)
= F

(
Xα,Yα,Zβ

)
,

which means that
F̃

(
T(xα,yα,zβ)M

)
⊆ T(xα,yα,zβ)M

and
F2 = aF + bI.

Consequently, we derive an induced structure (F, ⟨, ⟩ , ξλ = 02k+l, uλ = 0,A) on the product of spheres M by the metallic
Riemannian structure

(
⟨, ⟩ , F̃

)
on the Euclidean space E2k+l and (F, ⟨, ⟩) is a metallic Riemannian structure. Thus,

by [17, Proposition 4.3], M is an invariant submanifold of codimension 3 in the Euclidean space E2k+l. Furthermore, [4,
Proposition 3.10] implies that M is a locally decomposable metallic Riemannian manifold.
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[10] Gök, M., Kılıç, E., Totally umbilical semi-invariant submanifolds in locally decomposable metallic Riemannian manifolds, Filomat,

36(8)(2022), 2675–2686.
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[20] Perktaş, S.Y., Submanifolds of almost poly-Norden Riemannian manifolds, Turk. J. Math., 44(1)(2020), 31–49.
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