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Abstract
We provide estimates for the periodic and antiperiodic eigenvalues of non-self-adjoint Sturm–Liouville
operators with a family of complex-valued trigonometric polynomial potentials. We even approximate
complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover,
we give a numerical example with error analysis.
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1. Introduction
In the present paper, we consider the operators Ts(v), for s = 0, 1, generated in L2[0, π] by the differential

expression
− y′′(x) + v(x)y(x) (1.1)

and the boundary conditions
y(π) = eiπsy(0), y′(π) = eiπsy′(0), (1.2)

which are periodic and antiperiodic boundary conditions, where v is the complex-valued trigonometric polynomial
potential of the form

v(x) = v−1e
−i2x + v2e

i4x, v−1, v2 ∈ C. (1.3)

Note that, the trigonometric polynomial potential (1.3) is a PT-symmetric potential if v−1, v2 ∈ R. For the properties
of the general PT-symmetric potentials, see [1–6] and references therein. Here, we only note that, the investigations
of PT-symmetric periodic potentials were begun by Bender et al. [7].
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It is well known that the spectra of the operators T0(v) and T1(v) are discrete and for large enough n, there are
two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues (counting with multiplicities) in the neighborhood
of n2. See the basic and detailed classical results in [8–11] and references therein.

The eigenvalues of the operators T0(0) and T1(0) are (2n)2 and (2n + 1)2, for n ∈ Z, respectively and all
eigenvalues of T0(0) and T1(0), except 0, are double. The eigenvalues of T0(v) and T1(v) are called the periodic and
antiperiodic eigenvalues and they are denoted by µn(v), for n ∈ Z and λn(v), for n ∈ Z− {0}, respectively.

It is well known that (see [10–12]), if v is real-valued, then all eigenvalues of the operator Ts(v) are real, for all
s ∈ (−1, 1], and the spectrum σ(T (v)) of the Hill operator T (v), generated in L2(−∞,∞) by expression (1.1) with
the real-valued potential (1.3), consists of the real intervals

Γ1 := [µ0(v), λ−1(v)], Γ2 := [λ+1(v), µ−1(v)], Γ3 := [µ+1(v), λ−2(v)], Γ4 := [λ+2(v), µ−2(v)], . . . ,

where µ0(v), µ−n(v), µ+n(v), for n = 1, 2, . . . are the eigenvalues of T0(v) and λ−n(v), λ+n(v), for n = 1, 2 . . . are the
eigenvalues of T1(v) and the following inequalities hold:

µ0(v) < λ−1(v) ≤ λ+1(v) < µ−1(v) ≤ µ+1(v) < λ−2(v) ≤ λ+2(v) < µ−2(v) ≤ µ+2(v) < · · · .

The bands Γ1, Γ2, . . . of the spectrum σ(T (v)) of T (v) are separated by the gaps

∆1 := (λ−1(v), λ+1(v)), ∆2 := (µ−1(v), µ+1(v)), ∆3 := (λ−2(v), λ+2(v)), . . .

if and only if the eigenvalues at the endpoints of the intervals are simple. In other notation, Γn = {γn(s) : s ∈ [0, 1]},
where γ1(s), γ2(s), . . . are the eigenvalues of Ts(v), called as Bloch eigenvalues corresponding to the quasimomentum
s. The Bloch eigenvalue γn(s), continuously depends on s and γn(−s) = γn(s).

Obviously, µ−n(v) and µ+n(v), for n = 1, 2, . . . are the (2n)th and (2n+ 1)th periodic eigenvalues; λ−n(v) and
λ+n(v), for n = 1, 2, . . . are the (2n− 1)th and (2n)th antiperiodic eigenvalues, respectively.

If one of the numbers v−1 and v2 is zero and the other is real in (1.3), then all eigenvalues of the operator T0(v),
except 0, are double and they are equal to (2n)2. This fact was proved for the first time in [13]. This case was
investigated also in [14–16].

In this paper, we provide estimates for the eigenvalues of T0(v), when v−1, v2 ∈ C. We even approximate
complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Finally, we give a
numerical example with error analysis using Rouche’s theorem.

It is well known that [17]

|µ±n(v)− µ±n(0)| ≤ sup
x∈[0,π]

|v(x)| = M,

|λ±n(v)− λ±n(0)| ≤ sup
x∈[0,π]

|v(x)| = M,

for n = 1, , 2 . . ., where
µ±n(0) = (2n)2, λ±n(0) = (2n− 1)2

and M ≤ |v−1|+ |v2| ≤ 2c, c = max{|v−1|, |v2|}. Moreover, for n = 0, |µ0(v)| ≤M holds. Therefore, we have

(2n)2 −M ≤ |µn| ≤ (2n)2 +M (1.4)

and
|µn − (2k)2| ≥ |(2n)2 − (2k)2| −M = 4|n− k||n+ k| −M ≥ 4|2n− 1| −M,

for n ∈ Z and k 6= ±n. In particular, if n = 1, we have |µ±1| ≤ 4 +M and

|µ±1 − (2k)2| ≥ ||µ±1| − (2k)2| ≥ 16− |µ±1| ≥ 12−M, (1.5)

for k ≥ 2. Besides, if |n| ≥ 2, we have |µn| ≥ |µ−2| ≥ 16−M and

|µn − (2k)2| ≥ ||µ−2| − (2k)2| ≥ |µ−2| − 4 ≥ 12−M, (1.6)

for k 6= ±n. The analogous inequalities can be written for the antiperiodic eigenvalues from

(2n− 1)2 −M ≤ |λ±n| ≤ (2n− 1)2 +M,

for n = 1, 2, . . ..
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2. Main results
We shall focus only on the operator T0(v) which is associated with the periodic boundary conditions. The

investigation of T1(v) is similar. From now on, when we use the notation µn, we mean the (2n)th and (2n+ 1)th
periodic eigenvalues µ−n(v) and µ+n(v), for n = 1, 2, . . .. In order to obtain iteration formulas, we use the equations

(µN − (2n)2)(ΨN , e
i2nx) = (vΨN , e

i2nx), (2.1)

(µN − (2n)2)(ΨN , e
−i2nx) = (vΨN , e

−i2nx), (2.2)

which are obtained from
−Ψ′′N (x) + v(x)ΨN (x) = µNΨN (x),

by multiplying both sides of the equality by ei2nx and e−i2nx, respectively, where ΨN (x) is the eigenfunction
corresponding to the eigenvalue µN . Iterating equation (2.1) k times, the way it was done in the paper [18], we
obtain (

µn − (2n)2 −
k∑
j=1

aj(µn)
)
(Ψn, e

i2nx)−
(
v2n +

k∑
j=1

bj(µn)
)
(Ψn, e

−i2nx) = rk(µn), (2.3)

where

aj(µn) =
∑

n1,n2,...,nj

vn1
vn2
· · · vnj

v−n1−n2−···−nj

[µn − (2(n− n1))2] · · · [µn − (2(n− n1 − n2 − · · · − nj))2]
,

bj(µn) =
∑

n1,n2,...,nj

vn1
vn2
· · · vnj

v2n−n1−n2−···−nj

[µn − (2(n− n1))2] · · · [µn − (2(n− n1 − n2 − · · · − nj))2]
,

rk(µn) =
∑

n1,n2,...,nk+1

vn1
vn2
· · · vnk

vnk+1
(vΨn, e

i2(n−n1−···−nk+1)x)

[µn − (2(n− n1))2] · · · [µn − (2(n− n1 − · · · − nk+1))2]
.

Here, the sums are taken under the conditions nl = −1, 2,
l∑
i=1

ni 6= 0, 2n for l = 1, 2, ..., k + 1. Note that, for the

trigonometric polynomial potential of the form (1.3), we have vi = 0 for i 6= −1, 2.
Similarly, iterating equation (2.2) k times, we obtain

(
µn − (2n)2 −

k∑
j=1

a∗j (µn)
)
(Ψn, e

−i2nx)−
(
v−2n +

k∑
j=1

b∗j (µn)
)
(Ψn, e

i2nx) = r∗k(µn), (2.4)

where

a∗j (µn) =
∑

n1,n2,...,nj

vn1
vn2
· · · vnj

v−n1−n2−···−nj

[µn − (2(n+ n1))2] · · · [µn − (2(n+ n1 + · · ·+ nj))2]
,

b∗j (µn) =
∑

n1,n2,...,nj

vn1
vn2
· · · vnj

v−2n−n1−n2−···−nj

[µn − (2(n+ n1))2] · · · [µn − (2(n+ n1 + · · ·+ nj))2]
,

r∗k(µn) =
∑

n1,n2,...,nk+1

vn1vn2 · · · vnk
vnk+1

(vΨn, e
−i2(n+n1+···+nk+1)x)

[µn − (2(n+ n1))2] · · · [µn − (2(n+ n1 + · · ·+ nk+1))2]
.

Here, the sums are taken under the conditions nl = −1, 2,
l∑
i=1

ni 6= 0,−2n for l = 1, 2, ..., k + 1. Since the potential v

is the trigonometric polynomial potential of the form (1.3), we have the followings, after some calculations:

a∗3j−1(µn) = a3j−1(µn), a∗3j−2(µn) = a3j−2(µn) = a∗3j(µn) = a3j(µn) = 0, (2.5)

for j = 1, 2, . . .. Now, in order to give the main results, we prove the following lemma. Without loss of generality,
we assume that Ψn(x) is the normalized eigenfunction corresponding to the eigenvalue µn.
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Lemma 2.1. The statements
(a) |pn|2 + |qn|2 > 0, where pn = (Ψn, e

i2nx) and qn = (Ψn, e
−i2nx),

(b) limk→∞ rk(µn) = 0, limk→∞ r∗k(µn) = 0,
hold in the following cases:
(i) if max{|v−1|, |v2|} = c ≤ 97/50, for n = 1,
(ii) if c < 2t− 1, for n ≥ t, t = 2, 3, . . ..

Proof. (a) Assume the contrary, pn = 0 and qn = 0. Since the system of the root functions {e2ikx/
√
π : k ∈ Z} of

T0(0) forms an orthonormal basis for L2[0, π], we have the decomposition

πΨn = pne
i2nx + qne

−i2nx +
∑

k∈Z,k 6=±n

(
Ψn, e

i2kx
)
ei2kx

for the normalized eigenfunction Ψn corresponding to the eigenvalue µn of T0(v). By Parseval’s equality, we obtain∑
k∈Z,k 6=±n

|(Ψn, e
i2kx)|2 = π.

On the other hand, by (1.4)-(1.6), we have

|µ1 − 16| ≥ 12−M, |µ1 − 36| ≥ 32−M, |µ1 − 64| ≥ 60−M, (2.6)
16−M ≤ |µ2| ≤ 16 +M, |µ2 − 4| ≥ 12−M, |µ2 − 36| ≥ 20−M. (2.7)

First, we consider the case n = 1, namely, the case (i). Using the relations (2.1) and (2.6), the Bessel inequality, and
taking

(vΨ1, 1) = v−1(Ψ1, e
i2x) + v2(Ψ1, e

−i4x) = v2(Ψ1, e
−i4x),

(vΨ1, e
−i4x) = v−1(Ψ1, e

−i2x) + v2(Ψ1, e
−i8x) = v2(Ψ1, e

−i8x)

into account, we obtain ∑
k∈Z,k 6=±1

|(Ψ1, e
i2kx)|2 =

|(vΨ1, 1)|2

|µ1|2
+

∑
k 6=0,±1

|(vΨ1, e
i2kx)|2

|µ1 − (2k)2|2

<
|v2|4|(vΨ1, e

−i8x)|2

|µ1|2|µ1 − 16|2|µ1 − 64|2
+

∑
k 6=0,±1

|(vΨ1, e
i2kx)|2

|µ1 − 16|2

≤ c4π(2c)2

(4− 2c)2(12− 2c)2(60− 2c)2
+

1

(12− 2c)2

∑
k 6=0,±1

|(vΨ1, e
i2kx)|2

≤ 4π(97/50)6

(3/25)2(203/25)2(1403/25)2
+
π(97/50)2

(203/25)2
<

13π

100
< π,

which contradicts
∑
k∈Z,k 6=±1 |(Ψ1, e

i2kx)|2 = π.
Now, we consider the case (ii), namely the case c < 2t− 1, for n ≥ t, t = 2, 3, . . .. Using

(2n)2 − 2c ≤ |µn| ≤ (2n)2 + 2c,

we obtain

|µn − (2k)2| ≥ |µn − (2(n− 1))2| ≥ (2n)2 − 2c− (2(n− 1))2

= 4(2n− 1)− 2c > 4(2t− 1)− 2(2t− 1) = 4t− 2.

Therefore, ∑
k∈Z,k 6=±n

|(Ψn, e
i2kx)|2 =

∑
k∈Z,k 6=±n

|(vΨn, e
i2kx)|2

|µn − (2k)2|2

<
1

(4t− 2)2

∑
k∈Z,k 6=±n

|(vΨn, e
i2kx)|2 ≤ π(2c)2

(4t− 2)2
< π,
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which contradicts
∑
k∈Z,k 6=±n |(Ψn, e

i2kx)|2 = π and completes the proof of (a).
(b) By the definition of rk(µn) and the conditions imposed on the summations, the number of each of the greatest

summands
(v−1)2k−1(v2)k+1(vΨ1, e

−i4x)

µ1(µ1 − 16)k+1(µ1 − 36)k−1(µ1 − 64)k−1

and
(v−1)2k−1(v2)k+1(vΨ2, e

−i2x)

µk2(µ2 − 4)2k

of r3k−1(µ1) and r3k−1(µ2) in absolute value, is not greater than 4k. Therefore, using (2.6), (2.7) and M ≤ |v−1| +
|v2| ≤ 2c and considering the greatest summands of r3k−1(µn) in absolute value, we obtain for case (i)

|r3k−1(µ1)| < 4k|v−1|2k−1|v2|k+1M
√
π

|µ1||µ1 − 16|k+1|µ1 − 36|k−1|µ1 − 64|k−1
≤ 4kc2k−1ck+12c

√
π

(4− 2c)(12− 2c)k+1(32− 2c)k−1(60− 2c)k−1

≤ 2
√
π4k(97/50)3k+1

(3/25)(203/25)k+1(703/25)k−1(1403/25)k−1
< 6284

√
π(

1

438
)k, k ≥ 2

and for case (ii)

|r3k−1(µn)| ≤ |r3k−1(µ2)| < 4k|v−1|2k−1|v2|k+1M
√
π

|µ2|k|µ2 − 4|2k
≤ 4kc3k+12

√
π

(16− 2c)k(12− 2c)2k

<
4k33k+12

√
π

10k62k
= 6
√
π

4k27k

10k36k
= 6
√
π(

3

10
)k.

Thus, in any case |r3k−1(µn)| < αak, for some constant α > 0 and 0 < a < 1, which implies limk→∞ rk(µn) = 0.
Similarly, we prove that limk→∞ r∗k(µn) = 0.

Now, we consider the statements of Lemma 2.1 for the case n = 0:

Lemma 2.2. If max{|v−1|, |v2|} = c ≤ 36/25, for n = 0, then the statements (a) |(Ψ0, 1)| > 0 and (b) limk→∞ rk(µ0) = 0
are valid.

Proof. (a) Assume the contrary (Ψ0, 1) = 0. Isolating the terms |(Ψ0, e
−i2x)|2 and |(Ψ0, e

i2x)|2 in Parseval’s equality,
we can write

|(Ψ0, e
−i2x)|2 + |(Ψ0, e

i2x)|2 +
∑

k 6=0,±1

|(Ψ0, e
i2kx)|2 = π.

First, we estimate |(vΨ0, e
−i2x)|2 + |(vΨ0, e

i2x)|2. Using (2.1), the relations

|µ0 − 4| ≥ 4−M, |µ0 − 16| ≥ 16−M, |µ0 − 36| ≥ 36−M, (2.8)

and

(vΨ0, e
−i2x) = v−1(Ψ0, 1) + v2(Ψ0, e

−i6x) = v2(Ψ0, e
−i6x),

(vΨ0, e
i2x) = v−1(Ψ0, e

i4x) + v2(Ψ0, e
−i2x),

(vΨ0, e
i4x) = v−1(Ψ0, e

i6x) + v2(Ψ0, 1) = v−1(Ψ0, e
i6x),

we obtain

|(vΨ0, e
−i2x)| ≤ |v2(vΨ0, e

−i6x)|
|µ0 − 36|

≤ 2c2
√
π

(36− 2c)
≤ 2(36/25)2

√
π

(828/25)
<

13
√
π

100

and

|(vΨ0, e
i2x)| ≤ |(v−1)2(qΨ0, e

i6x)|
|µ0 − 16||µ0 − 36|

+
|(v2)2(qΨ0, e

−i6x)|
|µ0 − 4||µ0 − 36|

≤ 2c3
√
π

(16− 2c)(36− 2c)
+

2c3
√
π

(4− 2c)(36− 2c)

≤ 2(36/25)3
√
π

(328/25)(828/25)
+

2(36/25)3
√
π

(28/25)(828/25)
<

3
√
π

10
,
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and hence,
|(vΨ0, e

−i2x)|2 + |(vΨ0, e
i2x)|2 < π/9. (2.9)

Using (2.1), (2.8), (2.9) and the Bessel inequality, we obtain

∑
k∈Z,k 6=0

|(Ψ0, e
i2kx)|2 =

|(vΨ0, e
−i2x)|2

|µ0 − 4|2
+
|(vΨ0, e

i2x)|2

|µ0 − 4|2
+

∑
k 6=0,±1

|(vΨ0, e
i2kx)|2

|µ0 − (2k)2|2

<
π

9(4− 2c)2
+

1

(16− 2c)2

∑
k 6=0,±1

|(vΨ0, e
i2kx)|2

≤ π

9(28/25)2
+

4(36/25)2π

(328/25)2
<

π

11
+

π

20
=

31π

220
< π,

which contradicts
∑
k∈Z,k 6=0 |(Ψ0, e

i2kx)|2 = π and completes the proof of (a).
(b) The number of the greatest summand

2(v−1)2k−1(v2)k+1(vΨ0, e
−i6x)

(µ0 − 4)k+1(µ0 − 16)k−1(µ0 − 36)k

of r3k−1(µ0) in absolute value, is not greater than 4k. Hence, using (2.8) and M ≤ |v−1|+ |v2| ≤ 2c, we obtain

|r3k−1(µ0)| < 4k2|v−1|2k−1|v2|k+1M
√
π

|µ0 − 4|k+1|µ0 − 16|k−1|µ0 − 36|k
≤ 4k+1c3k+1

√
π

(4− 2c)k+1(16− 2c)k−1(36− 2c)k

≤
√
π4k+1(36/25)3k+1

(28/25)k+1(328/25)k−1(828/25)k
< 68

√
π(

1

40
)k, k ≥ 2,

which implies limk→∞ rk(µ0) = 0.

Now, letting k tend to infinity in the equations (2.3) and (2.4), we obtain the following results. First, we consider
the case n ≥ 2.

Theorem 2.1. If max{|v−1|, |v2|} = c < 2t− 1, for n ≥ t, t = 2, 3, . . ., then µ is an eigenvalue of T0(v) if and only if it is a
root of the equation (

µ− (2n)2 −
∞∑
j=1

a3j−1(µ)
)2− ∞∑

j=1

bj(µ)

∞∑
j=1

b∗j (µ) = 0 (2.10)

lying inside the circle Cn := {µ ∈ C : |µ− (2n)2| = 2c} and each of the series in equation (2.10) converges uniformly to an
analytic function on the disk Dn := {µ ∈ C : |µ− (2n)2| ≤ 2c}.

Proof. (a) By Lemma 2.1, letting k tend to infinity in the equations (2.3) and (2.4), we obtain

(
µn − (2n)2 −

∞∑
j=1

a3j−1(µn)
)
pn =

(
v2n +

∞∑
j=1

bj(µn)
)
qn, (2.11)

(
µn − (2n)2 −

∞∑
j=1

a∗3j−1(µn)
)
qn =

(
v−2n

∞∑
j=1

b∗j (µn)
)
pn, (2.12)

where pn = (Ψn, e
i2nx) and qn = (Ψn, e

−i2nx). If one of the numbers pn and qn is zero, then the proof is obvious.
If they are both different from zero, multiplying these equations side by side and then cancelling the term pnqn,
by (2.5), we have

(
µn − (2n)2 −

∞∑
j=1

a3j−1(µn)
)2−(v2n +

∞∑
j=1

bj(µn)
)(
v−2n

∞∑
j=1

b∗j (µn)
)
= 0. (2.13)

Since v2n = v−2n = 0 for n ≥ 2, the eigenvalue µ of T0(v) is a root of (2.10).
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Now, we prove that the roots of (2.10) lying in the disk Dn are the eigenvalues of T0. The equation f(µ) :=
(µ− (2n)2)2 = 0, has two roots in the disk Dn and

|f(µn)| = |µn − (2n)2|2 = 4c2,

for all µn ∈ Cn. Define the function

g(µ) :=
(
µ− (2n)2 −

∞∑
j=1

a3j−1(µ)
)2− ∞∑

j=1

bj(µ)

∞∑
j=1

b∗j (µ) = 0.

Estimating the summands of |a3j−1(µn)|, |bj(µn)| and |b∗j (µn)| for n = 2, we obtain

|a3j−1(µ2)| < 2j |v−1|2j |v2|j

|µ2|j |µ2 − 4|2j−1
, |b3j−2(µ2)| < 2j−1|v−1|2j−2|v2|j+1

|µ2|j |µ2 − 4|2j−2
, |b∗3j(µ2)| < |v−1|

2j+2|v2|j−1

|µ2|j |µ2 − 4|2j
, (2.14)

for j ≥ 1. Using the relations |µ2| ≥ 16− 2c and |µ2 − 4| ≥ 12− 2c, it follows by the geometric series formula that

∞∑
j=1

|a3j−1(µn)| ≤
∞∑
j=1

|a3j−1(µ2)| < 2c3

(16− 2c)(12− 2c)
+

22c6

(16− 2c)2(12− 2c)3
+

23c9

(16− 2c)3(12− 2c)5
+ · · ·

=
2c3

(16− 2c)(12− 2c)
(1 +

2c3

(16− 2c)(12− 2c)2
+

22c6

(16− 2c)2(12− 2c)4
+ · · · )

=
2c3

(16− 2c)(12− 2c)

1

1− 2c3

(16−2c)(12−2c)2
=

2c3(12− 2c)

(16− 2c)(12− 2c)2 − 2c3
<

12.33

360− 54
=

18

17
,

∞∑
j=1

|bj(µn)| ≤
∞∑
j=1

|b3j−2(µ2)| < c2

(16− 2c)
+

2c5

(16− 2c)2(12− 2c)2
+

22c8

(16− 2c)3(12− 2c)4
+ · · ·

=
c2

(16− 2c)
(1 +

2c3

(16− 2c)(12− 2c)2
+

22c6

(16− 2c)2(12− 2c)4
+ · · · )

=
c2

(16− 2c)

1

1− 2c3

(16−2c)(12−2c)2
=

c2(12− 2c)2

(16− 2c)(12− 2c)2 − 2c3
<

18

17
,

and that
∞∑
j=1

|b∗j (µn)| ≤
∞∑
j=1

|b∗3j(µ2)| < c4

(16− 2c)(12− 2c)2
+

c7

(16− 2c)2(12− 2c)4
+

c10

(16− 2c)3(12− 2c)6
+ · · ·

=
c4

(16− 2c)(12− 2c)2
(1 +

c3

(16− 2c)(12− 2c)2
+

c6

(16− 2c)2(12− 2c)4
+ · · · )

=
c4

(16− 2c)(12− 2c)2
1

1− c3

(16−2c)(12−2c)2
=

c4

(16− 2c)(12− 2c)2 − c3
<

34

360− 27
=

9

37
.

Hence,

|g(µn)− f(µn)| ≤ 2|µn − (2n)2|
∞∑
j=1

|a3j−1(µn)|+
( ∞∑
j=1

|a3j−1(µn)|
)2

+

∞∑
j=1

|bj(µn)|
∞∑
j=1

|b∗j (µn)|

<
8c4(12− 2c)

(16− 2c)(12− 2c)2 − 2c3
+
( 2c3(12− 2c)

(16− 2c)(12− 2c)2 − 2c3
)2

+
c2(12− 2c)2

(16− 2c)(12− 2c)2 − 2c3
c4

(16− 2c)(12− 2c)2 − c3
< 4c2.

Therefore, |g(µ) − f(µ)| < |f(µ)| holds for all µ ∈ Cn. By Rouche’s theorem, g(µ) has two roots inside the circle
Cn. Hence, T0 has two eigenvalues (counting with multiplicities) lying inside Cn, which are the roots of (2.10). On
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the other hand, equation (2.10) has exactly two roots (counting with multiplicities) inside Cn. Thus, µ ∈ Cn is an
eigenvalue of T0 if and only if, it is a root of (2.10) and the roots of (2.10) coincide with the eigenvalues µ−n and µ+n

of T0.

Now, in order to estimate
∞∑
j=1

|a′3j−1(µn)|,
∞∑
j=1

|b′j(µn)| and
∞∑
j=1

|b∗′j (µn)|, first we estimate the summands |a′3j−1(µ2)|,

|b′j(µ2)| and |b∗′j (µ2)|, by differentiating a3j−1(µ2), bj(µ2) and b∗j (µ2) with respect to µ2:

∣∣d(a3j−1(µ2))

dµ2

∣∣< 2j+1|v−1|2j |v2|j

|µ2|j |µ2 − 4|2j
,

∣∣d(b∗3j(µ2))

dµ2

∣∣< 3j+1|v−1|2j+2|v2|j−1

2j |µ2|j |µ2 − 4|2j+1
, , j ≥ 1

∣∣d(b1(µ2))

dµ2

∣∣< |v2|2
|µ2|2

,
∣∣d(b3j−2(µ2))

dµ2

∣∣< 2j+1|v−1|2j−2|v2|j+1

|µ2|j |µ2 − 4|2j−1
, j ≥ 2,

and hence, we have

∞∑
j=1

|a′3j−1(µn)| ≤
∞∑
j=1

|a′3j−1(µ2)| < 22c3

(16− 2c)(12− 2c)2
+

23c6

(16− 2c)2(12− 2c)4
+

24c9

(16− 2c)3(12− 2c)6
+ · · ·

=
22c3

(16− 2c)(12− 2c)2
(1 +

2c3

(16− 2c)(12− 2c)2
+

22c6

(16− 2c)2(12− 2c)4
+ · · · )

=
4c3

(16− 2c)(12− 2c)2
1

1− 2c3

(16−2c)(12−2c)2
=

4c3

(16− 2c)(12− 2c)2 − 2c3
<

4.33

360− 54
=

6

17
,

and

∞∑
j=1

|b′j(µn)| ≤
∞∑
j=1

|b′3j−2(µ2)| < c2

(16− 2c)2
+

8c5

(16− 2c)(12− 2c)[(16− 2c)(12− 2c)2 − 2c3]
<

7

37
,

∞∑
j=1

|b∗′j (µn)| ≤
∞∑
j=1

|b∗′3j(µ2)| < 9c4

(12− 2c)[2(16− 2c)(12− 2c)2 − 3c3]
<

27

142
.

Therefore, each of the series
∞∑
j=1

a3j−1(µn),
∞∑
j=1

bj(µn) and
∞∑
j=1

b∗j (µn), converges uniformly to an analytic function

on the disk Dn.

Now, to estimate the periodic eigenvalues µ−1 and µ1, we consider the case n = 1. In this case, substituting

b3j−1(µ1) = 0, b3j−2(µ1) = 0, for j ≥ 1, and
∞∑
j=1

b∗j (µ1) = b∗1(µ1) = (v−1)2/µ1, in (2.3) and (2.4) as k → ∞, by

Lemma 2.1, we obtain (
µ1 − 4−

∞∑
j=1

a3j−1(µ1)
)2− (v−1)2

µ1

(
v2 −

∞∑
j=1

b3j(µ1)
)
= 0. (2.15)

Therefore, we have the following results.

Theorem 2.2. If max{|v−1|, |v2|} = c ≤ 97/50, for n = 1, then µ is an eigenvalue of T0(v) if and only if it is a root of the
equation (

µ− 4−
∞∑
j=1

a3j−1(µ)
)2− (v−1)2v2

µ
− (v−1)2

µ

∞∑
j=1

b3j(µ) = 0 (2.16)

lying inside the circle C1 := {µ ∈ C : |µ| = 4 + 2c} and each of the series in equation (2.16) converges uniformly to an
analytic function on the disk D1 := {µ ∈ C : |µ| ≤ 4 + 2c}.

Proof. (a) Equation (2.16) follows from (2.15). Let F (µ) := (µ− 4)2 = 0 and

G(µ) :=
(
µ− 4−

∞∑
j=1

a3j−1(µ)
)2− (v−1)2v2

µ
− (v−1)2

µ

∞∑
j=1

b3j(µ) = 0.
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Then, |F (µ1)| = |µ1 − 4|2 ≥ (|µ1| − 4)2 = 4c2, for all µ1 ∈ C1. Using the estimations

∞∑
j=1

|a3j−1(µ1)| <
∞∑
j=1

(3/2)j |v−1|2j |v2|j

|µ1||µ1 − 16|j |µ1 − 36|j−1|µ1 − 64|j−1
(2.17)

<
3c3(32− 2c)(60− 2c)

(4 + 2c)[2(12− 2c)(32− 2c)(60− 2c)− 3c3]
<

9

50
,

∞∑
j=1

|b3j(µ1)| <
∞∑
j=1

2j−1|v−1|2j |v2|j+1

|µ1||µ1 − 16|j+1|µ1 − 36|j−1|µ1 − 64|j−1
(2.18)

<
c4(32− 2c)(60− 2c)

(4 + 2c)(12− 2c)[(12− 2c)(32− 2c)(60− 2c)− 2c3]
<

7

250
,

and

∞∑
j=1

|a′3j−1(µ1)| <
∞∑
j=1

2j+1|v−1|2j |v2|j

|µ1|2|µ1 − 16|j |µ1 − 36|j−1|µ1 − 64|j−1

<
4c3(32− 2c)(60− 2c)

(4 + 2c)2[(12− 2c)(32− 2c)(60− 2c)− 2c3]
<

3

50
,

∞∑
j=1

|b′3j(µ1)| <
∞∑
j=1

2j+1|v−1|2j |v2|j+1

|µ1|2|µ1 − 16|j+1|µ1 − 36|j−1|µ1 − 64|j−1

<
4c4(32− 2c)(60− 2c)

(4 + 2c)2(12− 2c)[(12− 2c)(32− 2c)(60− 2c)− 2c3]
<

7

500
,

for all µ1 ∈ C1, and arguing as in the proof of Theorem 2.1, by Rouche’s theorem, we complete the proof.

Finally, in order to estimate the first periodic eigenvalue µ0, we consider the case n = 0. By Lemma 2.2, we have:

Theorem 2.3. If max{|v−1|, |v2|} = c ≤ 36/25, for n = 0, then µ is an eigenvalue of T0(v) if and only if it is the root of the
equation

µ− (v−1)2v2
(µ− 4)2

− 2(v−1)2v2
(µ− 4)(µ− 16)

−
∞∑
j=2

a3j−1(µ) = 0 (2.19)

lying inside the circle C0 := {µ ∈ C : |µ| = 2c} and the series in equation (2.19) converges uniformly to an analytic function
on the disk D0 := {µ ∈ C : |µ| ≤ 2c}.

Proof. (a)Iterating µN (ΨN , 1) = (vΨN , 1), for N = 0, k times, by isolating the terms containing (Ψ0, 1) gives

(
µ0 −

k∑
j=1

aj(µ0)
)
(Ψ0, 1) = rk(µ0). (2.20)

Letting k tend to infinity in (2.20), by Lemma 2.2 and (2.5), we obtain (2.19). Let

H(µ) := µ− (v−1)2v2
(µ0 − 4)2

= 0

and

K(µ) := µ−
∞∑
j=1

a3j−1(µ) = µ− (v−1)2v2
(µ− 4)2

− 2(v−1)2v2
(µ− 4)(µ− 16)

−
∞∑
j=2

a3j−1(µ) = 0.

Then,

|H(µ0)| ≥
∣∣|µ0| −

|v−1|2|v2|
|µ0 − 4|2

∣∣≥ 2c− c3

(4− 2c)2
,
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for all µ0 ∈ C0. Using the estimations

|K(µ0)−H(µ0)| ≤ 2|v−1|2|v2|
|µ0 − 4||µ0 − 16|

+

∞∑
j=2

|a3j−1(µ0)|

<
2|v−1|2|v2|

|µ0 − 4||µ0 − 16|
+

∞∑
j=2

2j |v−1|2j |v2|j

|µ0 − 4|j+1|µ0 − 16|j−1|µ0 − 36|j−1

<
2|v−1|2|v2|

(4− 2c)(16− 2c)
+

∞∑
j=2

2j |v−1|2j |v2|j

(4− 2c)j+1(16− 2c)j−1(36− 2c)j−1
(2.21)

<
2c3

(4− 2c)(16− 2c)
+

4c6

(4− 2c)2[(4− 2c)(16− 2c)(36− 2c)− 2c3]
<

47

100

and

∞∑
j=2

|a′3j−1(µ0)| <
∞∑
j=2

2j+1|v−1|2j |v2|j

|µ0 − 4|j+2|µ0 − 16|j−1|µ0 − 36|j−1

<

∞∑
j=2

2j+1|v−1|2j |v2|j

(4− 2c)j+2(16− 2c)j−1(36− 2c)j−1

<
8c6

(4− 2c)3[(4− 2c)(16− 2c)(36− 2c)− 2c3]
<

11

100

and arguing as in the proof of Theorem 2.1, by Rouche’s theorem, we complete the proof.

In order to estimate eigenvalues numerically, we take finite summations instead of the infinite series in the
equations (2.10), (2.16) and (2.19). When we say the (3k)th approximations, we mean the equations containing
k∑
j=1

a3j−1(µ),
3k∑
j=1

bj(µ) and
3k∑
j=1

b∗j (µ) instead of
∞∑
j=1

a3j−1(µ),
∞∑
j=1

bj(µ) and
∞∑
j=1

b∗j (µ). For instance, in the cases n = 0,

n = 1 and n = 2, the (3k)th approximations of (2.19), (2.16) and (2.10) are

µ− (v−1)2v2
(µ− 4)2

− 2(v−1)2v2
(µ− 4)(µ− 16)

−
k∑
j=2

a3j−1(µ) = 0, (2.22)

(
µ− 4−

k∑
j=1

a3j−1(µ)
)2− (v−1)2v2

µ
− (v−1)2

µ

k∑
j=1

b3j(µ) = 0, (2.23)

and (
µ− 16−

k∑
j=1

a3j−1(µ)
)2− 3k∑

j=1

bj(µ)

3k∑
j=1

b∗j (µ) = 0,

respectively. Then, by (2.14), (2.17), (2.18) and (2.21), we have the following estimations for the remaining terms of
the series in these equations:

∣∣ ∞∑
j=k+1

a3j−1(µ0)
∣∣≤ ∞∑

j=k+1

|a3j−1(µ0)| <
∞∑

j=k+1

2j |v−1|2j |v2|j

(4− 2c)j+1(16− 2c)j−1(36− 2c)j−1

<
2k+1c3k+3

(4− 2c)k+1(16− 2c)k−1(36− 2c)k−1[(4− 2c)(16− 2c)(36− 2c)− 2c3]
< 2.41(

1

162
)k,
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for n = 0;∣∣ ∞∑
j=k+1

a3j−1(µ1)
∣∣≤ ∞∑

j=k+1

|a3j−1(µ1)| <
∞∑

j=k+1

(3/2)j |v−1|2j |v2|j

(4− 2c)(12− 2c)j(32− 2c)j−1(60− 2c)j−1

<
2(3/2)k+1c3k+3

(4− 2c)(12− 2c)k(32− 2c)k−1(60− 2c)k−1[2(12− 2c)(32− 2c)(60− 2c)− 3c3]
< 11.25(

1

1170
)k,

∣∣ ∞∑
j=k+1

b3j(µ1)
∣∣≤ ∞∑

j=k+1

|b3j(µ1)| <
∞∑

j=k+1

2j−1|v−1|2j |v2|j+1

(4− 2c)(12− 2c)j+1(32− 2c)j−1(60− 2c)j−1

<
2kc3k+4

(4− 2c)(12− 2c)k+1(32− 2c)k−1(60− 2c)k−1[(12− 2c)(32− 2c)(60− 2c)− 2c3]
< 1.8(

1

877
)k,

for n = 1; and ∣∣ ∞∑
j=k+1

a3j−1(µ2)
∣∣≤ ∞∑

j=k+1

|a3j−1(µ2)| <
∞∑

j=k+1

2j |v−1|2j |v2|j

(16− 2c)j(12− 2c)2j−1

<
2k+1c3k+3

(16− 2c)k(12− 2c)2k−1[(16− 2c)(12− 2c)2 − 2c3]
<

18

17
(

3

20
)k,

∣∣ ∞∑
j=k+1

b3j−2(µ2)
∣∣≤ ∞∑

j=k+1

|b3j−2(µ2)| <
∞∑

j=k+1

2j−1|v−1|2j−2|v2|j+1

(16− 2c)j(12− 2c)2j−2

<
2kc3k+2

(16− 2c)k(12− 2c)2k−2[(16− 2c)(12− 2c)2 − 2c3]
<

18

17
(

3

20
)k,

∣∣ ∞∑
j=k+1

b∗3j(µ2)
∣∣≤ ∞∑

j=k+1

|b∗3j(µ2)| <
∞∑

j=k+1

|v−1|2j+2|v2|j−1

(16− 2c)j(12− 2c)2j

<
c3k+4

(16− 2c)k(12− 2c)2k[(16− 2c)(12− 2c)2 − c3]
<

9

37
(

3

40
)k,

for n = 2. Obviously, we have better approximations as k grows.
Now, we approach the periodic eigenvalues by the roots of the polynomials derived from the (3k)th approxi-

mations (2.22) and (2.23), the way it was done in [19]. For example, for n = 0 and n = 1, the sixth approximations
are

Q0(µ) := µ− (v−1)2v2
(µ− 4)2

− 2(v−1)2v2
(µ− 4)(µ− 16)

− 2(v−1)4(v2)2

(µ− 4)3(µ− 16)(µ− 36)

− 2(v−1)4(v2)2

(µ− 4)2(µ− 16)2(µ− 36)
− 2(v−1)4(v2)2

(µ− 4)(µ− 16)2(µ− 36)(µ− 64)
= 0,

and

Q1(µ) :=
(
µ− 4− (v−1)2v2

µ(µ− 16)
− (v−1)2v2

(µ− 16)(µ− 36)
− (v−1)4(v2)2

µ(µ− 16)2(µ− 36)(µ− 64)

− (v−1)4(v2)2

(µ− 16)2(µ− 36)2(µ− 64)
− (v−1)4(v2)2

(µ− 16)(µ− 36)2(µ− 64)(µ− 100)

)2
− (v−1)2v2

µ
− (v−1)4(v2)2

µ2(µ− 16)2
− 2(v−1)6(v2)3

µ2(µ− 16)3(µ− 36)(µ− 64)
= 0,

respectively. Then, the corresponding polynomials are

P0(µ) := (µ− 4)3(µ− 16)2(µ− 36)(µ− 64)Q0(µ), (2.24)

and
P1(µ) := µ2(µ− 16)4(µ− 36)4(µ− 64)2(µ− 100)2Q1(µ), (2.25)

respectively. By the same token, we can derive polynomials to approximate the other periodic eigenvalues, as well.
Now, we present a numerical example.
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Example 2.1. Consider the potential v(x) = ei4x + e−i2x. In this case, v−1 = v2 = 1, and we have the following
approximations for the first periodic eigenvalues µ0, µ−1 and µ−1:

First, we show that µ0 is the eigenvalue lying inside the circle

c0 := {µ ∈ C : |µ− 0.0978293068037| = 8.8× 10−8}.

The root of the polynomial P0(µ) defined by (2.24), lying in the disk D0 = {µ ∈ C : |µ| ≤ 2}, is

z1 = 0.0978293068037.

The other roots of P0(µ) are

z2 = 3.43962569257, z3 = 3.99479646224, z4 = 4.45733974252,

z5 = (16.0052043612− 0.00233054592651i), z6 = (16.0052043612 + 0.00233054592651i),

z7 = 36.0000000654andz8 = 64.0000000081.

Using the decomposition

Q0(µ) =
(µ− z1)(µ− z2) · · · (µ− z8)

(µ− 4)3(µ− 16)2(µ− 36)(µ− 64)
,

we obtain by direct calculation |Q0(µ)| > 7.0297×10−8, for all µ ∈ c0. On the other hand, again by direct calculations,
we have

|K(µ)−Q0(µ)| ≤
∞∑
j=3

|a3j−1(µ)| < 6.8948× 10−8,

for all µ ∈ c0. Therefore, by Rouche’s theorem, equation (2.19) has only one root inside the circle c0. Thus, using
Theorem 2.3, we conclude that µ0 is the eigenvalue lying inside the circle c0.

Now, we show that µ−1 and µ1 are the complex eigenvalues lying inside the circles

c−1 := {µ ∈ C : |µ− (3.9817022865− 0.00000193582494331i)| = 2.4× 10−11}.

and
c1 := {µ ∈ C : |µ− (3.9817022865 + 0.00000193582494331i)| = 2.4× 10−11}.

respectively. The roots of the polynomial P1(µ) defined by (2.25), lying in the disk D1 = {µ ∈ C : |µ| ≤
6} are x1 = (3.9817022865 − 0.00000193582494331i), x2 = (3.9817022865 + 0.00000193582494331i) and x3,4 =
(0.0156946762466± 0.00000000103890273399i). The other roots of P1(µ) are

x5,6 = (15.6169913038± 0.443784473665i), x7,8 = (16.1045835081± 0.60324291928i),

x9 = 15.4238418891, x10,11 = (16.5675433687± 0.291363414949i), x12 = 35.6520094578,

x13,14 = (35.8640598326± 0.342968435657i), x15,16 = (36.3114986519± 0.241842187319i),

x17,18 = (63.9746729986± 0.044045369207i), x19 = 64.0506554041,

x20 = 99.9999172995, x21 = 100.000082697.

Using the decomposition

Q1(µ) =
(µ− x1)(µ− x2) · · · (µ− x21)

µ2(µ− 16)4(µ− 36)4(µ− 64)2(µ− 100)2
,

by direct calculations, we obtain |Q1(µ)| > 1.0992 × 10−11, for all µ ∈ c−1 and |Q1(µ)| > 1.0992 × 10−11, for all
µ ∈ c1. On the other hand, one can easily calculate that

|G(µ)−Q1(µ)| ≤ 2(|µ− 4|+ |a2(µ)|+ |a5(µ)|)
∞∑
j=3

|a3j−1(µ)|+
( ∞∑
j=3

|a3j−1(µ)|
)2

+

∞∑
j=3

|b3j(µ)|
|µ|

< 4.7184× 10−12,

for all µ ∈ c−1 ∪ c1. The proof follows from Rouche’s theorem and Theorem 2.2; equation (2.16) has one root inside
each of the circles c−1 and c1 and µ−1 and µ+1 are the complex eigenvalues lying inside c−1 and c1, respectively.
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3. Conclusion
In this paper, we have given estimates for the periodic eigenvalues, when v−1, v2 ∈ C. We have even approx-

imated complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Finally,
we have given a numerical example with error analysis using Rouche’s theorem. In this paper, we have given a
practical way to calculate the eigenvalues of the operator T0(v). The method used in this paper can be extended to
compute the periodic eigenvalues of the Hill operator for different classes of potentials.
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