
1121

Araştırma Makalesi

Müfredat Tabanlı Ders Çizelgeleme Problemi

için Yeni Bir Açgözlü Algoritma

 Batuhan COŞAR
a
, Bilge SAY

b
 , Tansel DÖKEROĞLU

c,*

a
 Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi, Atılım Üniversitesi, Ankara
b

Yazılım Mühendisliği Bölümü, Mühendislik Fakültesi, Atılım Üniversitesi, Ankara
c

Yazılım Mühendisliği Bölümü, Mühendislik Fakültesi, Çankaya Üniversitesi, Ankara

* Sorumlu yazarın e-posta adresi: tdokeroglu@cankaya.edu.tr

DOI: 10.29130/dubited.1113519

ÖZ
Bu çalışma, iyi bilinen Müfredat Tabanlı Ders Çizelgeleme Problemini optimize etmek için yeni bir açgözlü

algoritmayı açıklamaktadır. Açgözlü algoritmalar, en iyi çözümü bulmak için yürütülmesi uzun zaman alan kaba

kuvvet ve evrimsel algoritmalara iyi bir alternatiftir. Birçok açgözlü algoritmanın yaptığı gibi tek bir buluşsal

yöntem kullanmak yerine, aynı problem örneğine 120 yeni buluşsal yöntem tanımlıyor ve uyguluyoruz. Dersleri

müsait odalara atamak için, önerilen açgözlü algoritmamız En Büyük-İlk, En Küçük-İlk, En Uygun, Önce

Ortalama Ağırlık ve En Yüksek Kullanılamaz ders-ilk buluşsal yöntemlerini kullanır. İkinci Uluslararası Zaman

Çizelgesi Yarışması'nın (ITC-2007) kıyaslama setinden 21 problem örneği üzerinde kapsamlı deneyler

gerçekleştirilir. Önemli ölçüde azaltılmış yumuşak kısıtlama değerlerine sahip 18 problem için, önerilen açgözlü

algoritma sıfır sabit kısıtlama ihlali (uygulanabilir çözümler) rapor edebilir. Önerilen algoritma, performans

açısından son teknoloji ürünü açgözlü buluşsal yöntemleri geride bırakıyor.

Anahtar Kelimeler: Ders zaman çizelgesi oluşturma, Açgözlü algoritmalar, buluşsal yöntemler, eniyileme

A New Greedy Algorithm

for the Curriculum-based Course Timetabling Problem

ABSTRACT
This study describes a novel greedy algorithm for optimizing the well-known Curriculum-Based Course

Timetabling (CB-CTT) problem. Greedy algorithms are a good alternative to brute-force and evolutionary

algorithms, which take a long time to execute in order to find the best solution. Rather than employing a single

heuristic, as many greedy algorithms do, we define and apply 120 new heuristics to the same problem instance.

To assign courses to available rooms, our proposed greedy algorithm employs the Largest-First, Smallest-First,

Best-Fit, Average-weight first, and Highest Unavailable course-first heuristics. Extensive experiments are carried

out on 21 problem instances from the benchmark set of the Second International Timetabling Competition (ITC-

2007). For 18 problems with significantly reduced soft-constraint values, the proposed greedy algorithm can report

zero hard constraint violations (feasible solutions). The proposed algorithm outperforms state-of-the-art greedy

heuristics in terms of performance.

Keywords: Course-timetabling, Greedy algorithms, heuristics, optimization

Geliş: 08/05/2022, Düzeltme: 05/07/2022, Kabul: 23/09/2022

Düzce Üniversitesi

Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2023) 1121-1135

https://orcid.org/0000-0001-9972-6300
https://orcid.org/0000-0001-9276-729X
https://orcid.org/0000-0003-1665-5928

1122

I. INTRODUCTION

The course timetabling problem is a well-known optimization problem. Satisfying constraints such as

curriculum compactness, matching classroom size with the number of students, minimizing the

number of used classrooms, minimizing the distance between classrooms and many other such

constraints are some criteria that must be optimized [1]. The Course Timetabling problem has Rooms

and Instructors as resources that must be allocated together simultaneously and placed to schedule an

hour of a course [2]. Greedy algorithms are efficient polynomial-time approaches that work with

heuristics to solve a hard problem. G greedy algorithms often do not provide optimal solutions [3].

However, they are still promising enough to generate approximate solutions in reasonable amounts of

time [4].

This study presents a new greedy algorithm (Greedy-CB-CTT) for optimising the Curriculum-Based

Course Timetabling (CB-CTT) problem. Periods assigned to all courses in the same curriculum must be

distinct as the same student cannot be in two different classrooms on the same day period. The CB-CTT

algorithms try to find the best weekly assignment of university lectures to classrooms and day periods

[5]. The main goal of this study is to minimize the total number of soft constraint violations while

preserving the 28 satisfaction of hard constraints. Since the problem is NP-Hard and large instances of

the problem cannot be solved optimally in practical times, the greedy algorithms are good alternatives

to brute-force and evolutionary algorithms that spend hours of execution times to discover optimal or

best achievable solutions. Instead of using a single heuristic, we simultaneously define and evaluate 120

heuristics on the same problem instance and report the overall best solution [6]. Because according to

the No Free Lunch Theorem (NFL) there cannot be a single heuristic that will give the best results for

all problems [7].

Our proposed greedy algorithm (Greedy-CB-CTT) sorts the courses using Largest-Course-First,

Smallest-Course-First, and Average-Course-First [8], for the number of students enrolled in a course

[9]. Other parameters for ordering courses are the number of unavailable hours, the number of courses

in a curriculum, the number of lecture hours, and the minimum working days. The second set of ordering

heuristics is the availability of the rooms. Their capacity can be ordered according to four criteria:

largest, smallest, average-size and best-fit, matching the number of students enrolled in the course being

assigned to a classroom. To evaluate the performance of our proposed algorithm, we carried out

experiments on 21 problem instances from the Second International Timetabling Competition (ITC-

2007) benchmark set [10]. The results verify that the proposed greedy algorithms can report feasible

solutions (i.e., zero hard constraint violations) with significantly reduced soft-constraint values.

The main contributions of this article are as follows: 120 new heuristics are proposed to solve the CB-

CTT problem. Popular task and page ordering heuristics are combined in the Greedy-CB-CTT

algorithms to select the results of the best heuristic according to the behaviour of the problem instances.

Average course size and average room-size first heuristics are applied to the CB-CTT problem for the

first time, and the results are reported. It was possible to obtain better results than classical

largest/smallest first greedy heuristic algorithms, yielding solutions giving significantly lower hard and

soft constraint violations. In 18 of the 21 problem instances of the ITC-2007 benchmark set, hard

constraint violations are reduced to zero in a few milliseconds during the experiments.

In section 2, related studies for state-of-the-art algorithms are presented. The formal problem definition

is given in section 3. The details of heuristics and the proposed algorithm are introduced in section 4.

The experimental setup obtained results and comparison with state-of-the-art algorithms are reported in

section 5. Concluding remarks and future work are provided in section 6 of the study.

1123

II. RELATED WORK

P.I.Tillet presented the results of the feasibility of determining an optimal assignment of lecturers to

courses using an operations research model in 1975 [11]. It was one of the first applications in this area.

Recent surveys about the university course timetabling problems give detailed information about the

operations research techniques, metaheuristics and other intelligent novel methods for the CB-CTT [12–

15]. MirHassani et al. analyze the primary considerations of recent papers on the university course

timetabling problems and introduce the hard and soft constraints and most currently used objective

functions [16]. Bettinelli et al. give a good classification of problem types in this domain: Examination

Timetabling, Post-Enrollment-based Course Timetabling, and Curriculum-Based Course Timetabling,

the latter being the focus of our study [5]. Initial approaches focused on linear and integer programming

models [17–19], recent variants of which still provide promising results as methods, reducing the

number of integer variables [20] or using minimal perturbation models to minimize the effects of dealing

with the resolution of infeasible parts [21].

Geiger presents local search algorithms for the International Timetabling Competition 2007 (ITC 2007)

[22]. His heuristics are based on threshold acceptance, dealing with local optima by a deterministic

acceptance of inferior solutions. A stochastic search 1 of neighbors is developed by removing some

lecture assignments and reassigning them to new day-period slots randomly. Zhipeng & Jin-Kao develop

an Adaptive Tabu Search algorithm for the CB-CTT problem [23]. Their Tabu Search algorithm

integrates features such as original double Kempe chains (a method used in the study of graph coloring

problems [24]) neighbourhood structure, a penalty-guided perturbation operator and an adaptive search

mechanism. Gulcu & Akkan develop two multi-objective Simulated Annealing (SA) algorithms to

identify a good Pareto front (the best solution set concerning the objective function) defined by the

solution quality (penalty associated with soft-constraint violations) and a robustness measure [25].

Akkan et al. work on a bi-criteria optimisation problem model and solve the CB-CTT problem using a

hybrid Multi-objective Genetic Algorithm (GA), which uses Hill Climbing and SA algorithms [26].

Thepphakorn et al. develop a Particle Swarm Optimization (PSO) timetabling application to solve real-

world datasets [27]. The results verify that the algorithm has a faster convergence speed than classical

GA. Goh et al. combine different local search algorithms into an iterative two-stage procedure, Tabu

Search with Sampling and Perturbation and an improved variant of SA; their reported results are

competitive to best-known solutions reported in the literature [28]. Bagger et al. apply Benders’

decomposition to the solution of the problem to generate cuts that connect the schedule and room

allocation [29]. Combining Great Deluge and Tabu Search, iterative local search algorithms combined

with SA are among the different methods that have been evaluated [30].

Coster et al. prepared an analysis of the CB-CTT instances [31]. They investigated machine learning

methods to automate algorithm selection. They showed how problem space analysis and algorithm

selection cooperate. Akkan et al. formulated the problem as a bi-criteria optimization problem [32]. A

multi-objective simulated annealing algorithm and a surrogate measure are used to calculate the fitness

values. Experiments showed that when the proposed algorithm uses a multi-start approach, it provides

the best Pareto optimal solutions. Colajanni & Daniele formulated a completely new model that satisfies

the planning constraints and the compactness of the curricula [33]. The preferences of the teachers, the

minimum number of working days, maximum capacity, and stability of the classrooms are considered

during the study.

1124

III. PROBLEM DEFINITION

The CB-CTT problem is in the class of NP-hard problems. It includes allocating courses, lectures and

students to a fixed set of time slots and rooms [12]. This problem must obey hard and soft constraints

while performing the allocation of resources. Soft constraints are better satisfied to increase students'

and instructors' quality and satisfaction levels using these timetables [34–36]. Due to its exponential

growth behaviour, the scheduling cannot be solved in polynomial time. The main goal of algorithms is

to minimize the penalties of constraints [12, 35].

 HC1 Each lecture of a course must be scheduled in a distinct time period and a room.

 HC2: Any two lectures cannot be assigned in the same time period and in the same room.

 HC3: an instructor can teach only one course at a given time period, and also, the lectures of

courses in the same curriculum are assumed to be attended by the same set of students.

Therefore, two courses in the same curriculum cannot be scheduled for the same period.

 HC4: If the lecturer of a course is listed as not available for a given period, then no lectures of

the same teacher can be assigned to that period.

 SC1: The number of students registered to a course cannot be greater than the capacity of the

classroom where the lecture is assigned. The penalty calculated for a room smaller than the

number of registered students is given by the formula (RoomSize - NumberOfStudents) × 2.

 SC2: To make it easier for students to remember in which classroom meets, it is preferred to

assign all lectures of a course to the same room.

 SC3: To allow students to attend at least part of a course’s weekly meetings, it is preferred not

to schedule all of the course hours to the same day and distribute its lectures to a minimum

number of days.

 SC4: If possible, a student’s courses are preferred to be on the same day and closely distributed

within the same day. For example, if in a given curriculum, there is one lecture not adjacent to

any other lecture in the same curriculum on the same day, a violation is counted.

We can define the CB-CTT problem in terms of N courses C = c1, c2 ,..., cN all of which must be

scheduled in a set of P periods T =t1, t2,..., tP , and a set of M rooms, R =r1, r2 ,..., rM . Each course ci

contains li lectures that must be scheduled to time periods. A time period is a pair of weekday (D days,

typically Monday through Friday) and a timeslot (P periods 1 consisting of D days and H daily timeslots

(means P = D × H). Also, there are S curricula, CR = Cr1, Cr2,...,CrS where each curriculum Crk is a

group of courses that are assumed to share the same students. Typically these curricula will contain must

courses of a university department (I : day of week, J : time period of the day, K: Group of students,

L: Lecturers, M : Courses, N : Classrooms).

All lecture hours of a given course must be on a different time period. For any given (day, time, course).

Any two lectures cannot be assigned in the same period and to meet in the same room. For the day I,

and time period J, classroom N, the sum of all Xi,j,k,l,m,n (day i , time j , curriculum k , course m, classroom

n) for a certain (day, time, classroom) must be zero or one. An instructor can teach only one course at a

given time period, and also, the lectures of courses in the same curriculum are assumed to be attended

by the same set of students. Therefore, any two courses in the same curriculum cannot be scheduled to

the same time (day, period). Lecturer, L, for a given day I, and time period, J, can be assigned to teach

at most once. The variable Xi,j,k,l,m,n (day i, time j, curriculum k, lecturer l, course m, classroom n) can

have only two values 0 or 1, meaning a lecturer is assigned to teach that course on that day period or

not. The summation below for any given Lecturer must be zero or one. Two courses in the same

curriculum cannot be scheduled to the same time period. For given curriculum K, the day I, and time J,

the below summation must be zero or one. If the lecturer of a course (Lecturer L) is not available at a

given period (day I, time J), then no lectures of that lecturer can be assigned to that period.

1125

IV. PROPOSED HEURISTICS

Our study develops several heuristics to satisfy the hard and soft constraints. It will be very practical to

have several heuristics that can provide solutions satisfying the constraints. Special algorithms reducing

soft constraint violations can also be developed separately and can perform small modifications on the

resulting timetables where all hard constraints have been eliminated. The proposed Greedy Heuristics

are defined in terms of classroom sizes and course sizes [37] as in Tables 1 and 2.

A. COURSE ORDERING HEURISTICS

Highest unavailable hours first heuristic: A high number of unavailable hours listed for a course makes

it very difficult to find a suitable time period for that course. For this reason, one of the course ordering

heuristics sorts courses in non-increasing order of their unavailable hours. Therefore, scheduling such

courses won’t conflict with any other course in the same curriculum becomes easier. The largest,

smallest, and average course first: As the names imply in these course ordering heuristics, the number

of students registered to courses is used to decide which courses are assigned to a classroom first. By

assigning courses that will have a larger impact on the resulting timetables first, there will be no need to

change these first decisions because of conflicts with less important courses (in terms of the number of

registered students). The first course assigned to a classroom can be chosen as the largest size, the

smallest size, or the closest to the average size courses. This is achieved by sorting courses in terms of

course sizes and choosing the first, the last, or the median course in the sorted list. The chosen course is

removed from the list of courses, and the process is repeated until all of the courses are assigned to a

classroom.

B. ROOM ORDERING HEURISTICS

In this heuristic, the classrooms are assigned to courses by considering their student capacities. The best-

fit, the worst-fit (the largest classroom size), and average size, which is the median size classroom among

all of the available classrooms, sorted in order of classroom sizes are used. The Classroom-Heuristics

are combined with Course-Heuristics that determine the course to be assigned to that classroom. Finally,

a timetable is decided by choosing an available day-time period in that classroom. Since there are four

possible ordering choices for Classrooms and ten orders for choosing a Course, there are potentially 40

greedy heuristics that must be investigated to select the one(s) that give the best-expected results. Tables

1 and 2 provide the names of the heuristics used in our proposed algorithm and their ids.

Table 1. Course ordering heuristics.

Id Heuristic Description

1 Course with most students first

2 Course with average number of students first

3 Course with least number of students

4 Course with highest number of unavailable day/periods

5 Course with most number of hours first, if equal then largest unavailable hours

6 Course with most number of unavailable hours first, if equal more students

7 Course in curricula with most courses first, next courses with more students

8 Course in curricula with most unavailable hours first, next more students

9 Courses with highest number of lecture hours

10 Course with highest number of minimum working days, if equal more lecture hours

1126

Table 2. Room ordering heuristics

Id Room ordering heuristics

1 Largest Room First

2 Smallest Room First

3 Average Room First

4 Best Fitting (with enough capacity) Room

C. THE PROPOSED GREEDY ALGORITHM (GREEDY-CB-CTT)

The Greedy-CB-CTT algorithm uses the heuristics given above. Nrooms , Ncourses , and Ncurriculum

depict the number of available classrooms, number of courses to be scheduled, and number of curricula

with a set of courses, respectively. They are the input data of the algorithm. The output of the algorithm

is the list of courses assigned to the classrooms. Mainly, the algorithm works with two main nested loops

of rooms and the courses. The ordering heuristics of the classrooms and courses are selected with 40

different methods because four classroom and ten-course ordering alternatives exist. Inside these two

loops, available classrooms are selected according to the minimum hard and soft violation values of the

assignment choices. We define 120 new heuristics. Ten course ordering heuristics combined with four

room ordering heuristics makes a total of 40 distinct heuristics. Each of these 40 heuristics is used in

three higher-level heuristics, Heur-1, Heur-2, and Heur-3, which use different techniques to group

lectures of courses into minimum working days and curricula.The pseudocode of the Greedy-CB-CTT

is given in Algorithm 2.

Algorithm 1: AssignDayPeriod(RID,CID,LH) Pseudocode for finding a (Day, Period) for given Course and

Room

1127

The AssignDayPeriod 1 Algorithm 1 function uses the given Room and Course identifiers to determine

a suitable (Day,Period) to schedule a lecture that doesn’t violate any of the hard constraints. It is used

in all of the heuristic Algorithms 2-4 as it is a shared functionality. MAXPERIOD is the number of

lecture slots available on all days, which is six or seven for COMP benchmark but can be defined by

problem instance as a dynamic parameter. Algorithm 2 is a naive method that assigns lectures of a course

to the first available (Day,Period) slot without attempting to divide lectures of a course to minimum

working days. Since the restriction for minimum working days is not enforced, this heuristic must find

feasible solutions more easily and acts as a lower bound. Algorithm 3 is intelligent that first decides how

to divide the total lecture hours of a course into the designated minimum working days for that course.

Then, it calls the AssignDayPeriod to assign lectures of a course to a particular day. Since minimum

working days is a soft constraint, the solutions returned by this algorithm will have lower penalty scores

compared to Algorithm 2.

Algorithm 2: Pseudocode of the proposed HEUR-1 Greedy Algorithm

Algorithm 3: Pseudocode of the proposed MinWorkingDays HEUR-2 Greedy Algorithm

1128

Algorithm 4: Pseudocode of the proposed Curriculum-first based HEUR-3 Greedy Algorithm

Algorithm 4 exploits the Curriculum-based structure of the CB-CTT model. Another important soft

constraint that must be minimized in CB-CTT benchmark instances is to ensure that the lectures of

courses belonging to the same Curriculum must be scheduled on the same day, and if possible, the

lectures of all courses in the same curriculum must be scheduled consecutively. Since this heuristic

schedules courses in the same curriculum in a bundle, it attempts to find a day with enough free hours

and can accommodate all of the lectures of the same Curriculum courses assigned to that day. Of course,

the total lecture hours of Curriculum courses assigned to a single day must be at most MAXPERIOD,

which is the maximum available lecture slots on a single day.

In this part, we explain the theoretical complexity analysis of our proposed algorithms. The results can

be achieved in a very short time for all of the 21 benchmark problem instances used in ITC-2007. The

proposed algorithm is greedy and its best advantage is that it produces reasonable solutions in

polynomial times. The steps of our heuristics are given below. NC is the number of Courses and NR is

the number of Rooms.

 Step 1: Sort Courses according to heuristic course order: O(Nlog N) where N is the number of courses.

 Step 2: Sort Rooms according to heuristic room order: O(Nlog N), where N is the number of rooms.

 Step 3: for each Course

 Step 4: for each Room

 Step 5: find (day, period) such that all hard constraints are satisfied: O(1) × O(1)

Steps 1 and 2 are executed in O(N logN) because they require sorting. Steps 3, 4, 5 are O(NC × NR ×

NDays × NPeriods) since each course is considered once, and for each Course each Room is again

considered only once, and NDays × NPeriods is also a constant value. Verifying hard constraints is O(1)

because they involve a simple hash array lookup. The overall time complexity becomes: O(NClogNC)

+ O(NRlogNR) + O(NC × NR) × O(1). The running time of our heuristics are equivalent to sorting

algorithms where problem size is defined by the larger number of courses (NC) and the number of rooms

(NR). However, if NC and NR are comparable in size, then the third term O(NCxNR) becomes O(N2).

1129

V. THE EVALUATION OF EXPERIMENTAL RESULTS

We compare our algorithm with three classical greedy algorithms. Although our algorithm is not in the

class of evolutionary algorithms, we provide a detailed comparison of our study with state-of-the-art

evolutionary algorithms. The results of the evolutionary algorithms are better than our algorithm.

However, since most evolutionary algorithms start with a population generated with greedy algorithms,

we believe our algorithm can be effectively used in this area and significantly improve the convergence

speed of the population-based algorithms. The validator of the competition committee of the ITC-2007

is used to verify our results [10]. Python programming language is used. The PC has eight GB of memory

and an I7 2.4 GHz processor.

The total sum of hard and soft constraints is considered when comparing the proposed heuristics. The

heuristic that outputs the minimum total sum is selected as the best-performing heuristic, whereas the

largest total sum is the worst solution.

A. THE BENCHMARK PROBLEM INSTANCES

The details of the benchmark problem instances used in our experiments are given in Table 3 [10]. The

range of the data provided in the columns is 30 to 121 for #courses, 5 to 20 #rooms, 5 to 6 #days, 5 to 6

#periods_per_day, #curricula varying from 13 to 150. It is called #constraints (the number of unavailable

periods where a given course cannot be scheduled), ranging from 53 to 1368. comp01 is one of the

easiest problem instances with the smallest number of courses, 30, only six classrooms, 14 curricula,

and just 53 unavailable periods in the problem set. Two of the hardest problem instances are comp10

and comp12, which have 115 and 88 courses, 67 and 150 curricula, 18 and 11 rooms, 694 and 1368

constraints, respectively.

We give the average results of our proposed heuristics (Heur-1, Heur-2, Heur-3) in Table 4. Heur-1

obtained the maximum number of feasible solutions (6.2). The total sum of Heur-2 is the minimum

(84238.1). The worst solutions are generally reported by Heur-3. The execution time of each heuristic

is reported to be not more than a few milliseconds during the experiments.

Table 5 reports the best results and the algorithms that have obtained the best result. We obtained a

feasible solution (the total sum of the hard constraints is zero) for 18 of 21 benchmark problem instances.

The overall hard constraint value is observed to be 0.19 for 21 problem instances. We obtained one or

two hard constraint violations for the problem instances that we have not reported any zero hard violation

values. The total sum of hard and soft constraints is 867.62 and 867.81, respectively. Heur-1 were the

best heuristic, with eight reported best results.

We present the solution of three classical greedy algorithms commonly used in the literature. Our main

goal was to outperform these heuristics. The algorithms are the largest course to the largest room first,

1 the smallest course to the smallest room first, and the best-fit greedy algorithms. Table 6 gives the

results of the largest course to the largest room first greedy algorithm. In Table 7, we give the results of

the smallest course to the smallest room first greedy algorithm. Table 8 presents the result of the best-

fit greedy algorithm that assigns the courses to the rooms with minimum empty spaces. No solution has

been found among these three algorithms with zero hard violations. It can be observed that the largest

course to largest room first algorithm is the one that reports the best solutions in average. This algorithm

reports a total point of 713.4 for 21 problem instances. The smallest course to the smallest room first

algorithm is the worst among the three algorithms, with the highest 3390.4 points. When a comparison

is made with the algorithms we have developed, it can be seen that the performance of our algorithm is

much better, with a general average score of 867.1 and the ability to find feasible solutions for 18

problem instances. The execution time of each algorithm was not more than ten milliseconds during the

experiments.

1130

Table 3. The details of the ITC-2007 benchmark problem instances.

problem name #courses #rooms #days #periods/day #curricula #constraints

comp01 Fis0506-1 30 6 5 6 14 53

comp02 Ing0203-2 82 16 5 5 70 513

comp03 Ing0304-1 72 16 5 5 68 382

comp04 Ing0405-3 79 18 5 5 57 396

comp05 Let0405-1 54 9 6 6 139 771

comp06 Ing0506-1 108 18 5 5 70 632

comp07 Ing0607-2 131 20 5 5 77 667

comp08 Ing0607-3 86 18 5 5 61 478

comp09 Ing0304-3 76 18 5 5 75 405

comp10 Ing0405-2 115 18 5 5 67 694

comp11 Fis0506-2 30 5 5 9 13 94

comp12 Let0506-2 88 11 6 6 150 1368

comp13 Ing0506-3 82 19 5 5 66 468

comp14 Ing0708-1 85 17 5 5 60 486

comp15 Ing0203-1 72 16 5 5 68 382

comp16 Ing0607-1 108 20 5 5 71 518

comp17 Ing0405-1 99 17 5 5 70 548

comp18 Let0304-1 47 9 6 6 52 594

comp19 Ing0203-3 74 16 5 5 66 475

comp20 Ing0506-2 121 19 5 5 78 691

comp21 Ing0304-2 94 18 5 5 78 463

Table 4. The average results obtained with Heur-1, Heur-2, and Heur-3 for 21 problem instances.

ALG Total Hard Total Soft Total Sum Feasible Found Min at Max at

Heur-1 94.7 86471.4 86566.1 6.2 0.2 0.0

Heur-2 165.9 84072.2 84238.1 4.0 0.4 0.0

Heur-3 114.9 86759.6 86874.5 5.4 0.1 0.5

Table 5. The best results and the algorithms that report the solutions.

problem ALG Total Hard Total Soft Total Penalty

comp01 Heur-1: 1/5 0 234 234

comp02 Heur-2: 4/8 2 800 802

comp03 Heur-3: 4/1 0 600 600

comp04 Heur-2: 4/7 0 574 574

comp05 Heur-1: 4/8 0 1287 1287

comp06 Heur-3: 4/4 0 838 838

comp07 Heur-1: 1/1 0 1005 1005

comp08 Heur-3: 4/5 0 580 580

comp09 Heur-2: 1/5 0 629 629

comp10 Heur-3: 4/1 0 796 796

comp11 Heur-1: 4/3 0 190 190

comp12 Heur-2: 4/8 0 1129 1129

comp13 Heur-3: 4/3 0 612 612

comp14 Heur-2: 4/7 0 668 668

comp15 Heur-3: 4/1 0 600 600

comp16 Heur-1: 4/1 0 899 899

comp17 Heur-1: 1/8 0 2776 2776

comp18 Heur-2: 4/5 0 426 426

comp19 Heur-3: 4/4 1 607 608

comp20 Heur-1: 4/7 0 953 953

comp21 Heur-1: 1/6 1 2017 2018

Avg 0.19 867.62 867.81

1131

Table 6. The results of the greedy algorithm which matches the largest course, in terms of number of students, to

the largest room.

problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total

comp01 0 30 13 0 4 285 20 3 312

comp02 0 96 64 0 0 635 74 11 720

comp03 0 56 59 0 0 570 76 6 652

comp04 0 58 44 0 0 515 92 10 617

comp05 0 47 65 0 0 405 230 3 638

comp06 0 105 82 0 0 785 114 9 908

comp07 0 144 84 0 0 900 178 15 1093

comp08 0 52 71 0 0 555 74 7 636

comp09 0 86 60 0 0 585 56 6 647

comp10 0 117 67 0 0 795 122 11 928

comp11 0 18 8 0 0 260 12 2 274

comp12 0 55 97 0 0 555 244 4 803

comp13 0 56 61 0 0 540 84 6 630

comp14 0 90 82 0 0 675 94 7 776

comp15 0 56 59 0 0 570 76 6 652

comp16 0 105 70 0 0 775 110 10 895

comp17 0 82 81 0 0 725 108 8 84

comp18 0 31 44 0 0 425 48 1 474

comp19 0 101 82 0 0 595 96 9 700

comp20 0 98 86 0 0 850 146 9 1005

comp21 0 86 38 0 0 665 106 9 780

total 0 1569 1317 0 4 12665 2160 152 14981

Avg 0 74.7 62.7 0 0.2 603.1 102.9 7.2 713.4

Table 7. The results of the greedy algorithm which matches the smallest course to the smallest room first.

problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total

comp01 0 15 14 0 483 270 1 4 769

comp02 0 101 66 0 3483 635 124 8 4250

comp03 0 64 57 0 3247 555 122 7 3931

comp04 0 62 56 0 5496 540 64 6 6106

comp05 0 53 62 0 10412 360 310 3 11085

comp06 0 102 85 0 852 780 144 11 1787

comp07 0 114 77 0 344 915 116 14 1389

comp08 0 63 64 0 3013 550 86 9 3658

comp09 0 83 72 0 3477 540 108 7 4132

comp10 0 126 97 0 204 795 98 10 1107

comp11 0 21 7 0 1306 260 12 3 1581

comp12 0 52 87 0 2577 555 224 1 3357

comp13 0 64 67 0 6342 525 94 9 6970

comp14 0 83 73 0 3098 675 92 7 3872

comp15 0 64 57 0 3247 555 122 7 3931

comp16 0 112 61 0 1746 785 116 9 2656

comp17 0 77 91 0 349 720 158 11 1238

comp18 0 17 51 0 2122 410 56 1 2589

comp19 0 93 84 0 1257 570 108 8 1943

comp20 0 125 76 0 2347 840 166 11 3364

comp21 0 90 48 0 673 665 138 8 1484

total 0 1581 1352 0 56075 12500 2470 154 71199

Avg 0 75.3 64.4 0 2670.2 595.2 117.6 7.3 3390.4

1132

Table 8. The results of of the best-fit greedy algorithm.

problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total

comp01 2 26 13 0 88 300 12 3 403

comp02 1 81 76 0 0 655 104 4 763

comp03 1 70 64 0 0 555 78 6 639

comp04 0 53 49 0 0 520 80 8 808

comp05 0 67 45 0 0 430 186 0 616

comp06 0 97 66 0 0 765 116 9 890

comp07 1 167 79 0 0 895 162 9 1066

comp08 1 68 68 0 0 560 78 10 648

comp09 0 62 65 0 0 540 94 4 638

comp10 2 128 76 0 0 805 102 9 916

comp11 0 35 7 0 0 270 0 1 271

comp12 0 90 77 0 0 560 234 3 979

comp13 0 78 59 0 0 530 70 7 607

comp14 0 66 76 0 0 675 118 6 799

comp15 1 70 64 0 0 555 78 6 639

comp16 0 112 63 0 0 775 120 8 903

comp17 3 101 72 0 0 725 126 8 859

comp18 0 57 32 0 0 440 20 0 460

comp19 2 92 52 0 0 595 74 6 675

comp20 0 126 92 0 0 835 144 8 987

comp21 0 140 31 0 0 675 136 10 821

total 14 1786 1226 0 88 12660 2132 125 15205

Avg 0.7 85.0 58.4 0 4.2 602.9 101.5 5.9 724.0

Table 9. Competition results of ITC-2007; the best discovered results on all the 21 competition instances (given

in boldface).

problem Müller Lü&Hao Atsuta Geiger Clark Batuhan

comp01 5 5 5 5 10 234

comp02 51 55 50 111 111 802

comp03 84 71 82 128 119 600

comp04 37 43 35 72 72 574

comp05 330 309 312 410 426 1287

comp06 48 53 69 100 130 838

comp07 20 28 42 57 110 1005

comp08 41 49 40 77 83 580

comp09 109 105 110 150 139 629

comp10 16 21 27 71 85 796

comp11 0 0 0 0 3 190

comp12 333 343 351 442 408 1129

comp13 66 73 68 622 113 612

comp14 59 57 59 90 84 668

comp15 84 71 82 128 119 600

comp16 34 39 40 81 84 899

comp17 83 91 102 124 152 2776

comp18 83 69 68 116 110 426

comp19 62 65 75 107 111 608

comp20 27 47 61 88 144 953

comp21 103 106 123 174 169 2018

Avg 79.8 80.9 85.8 180 132.5 916

1133

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

We compare the experimental performance results of our algorithms with state-of-the-art algorithms in

the literature. Although our algorithms are not in this class of algorithms, we think these results can give

a good understanding of the recent studies about the CB-CTT problem. In Table 9, we can compare the

best-known results reported in the literature with those discovered by our algorithms. The algorithms

we compare against our solutions are obtained from recent papers [22, 23, 38–40]. The total scores of

the results on 21 problems are presented. The best schedules are given in bold digits. The best algorithms

in the literature are primarily evolutionary and require much time to converge, whereas our algorithms

spend only a few millisecond optimization time.

VI. CONCLUSION AND FUTURE WORK

We outperformed classical greedy algorithms, the largest course to the largest room first, the smallest

course to the smallest room first, and the best-fit greedy algorithms. The performance of our algorithm

is better, with a general average score of 867.80 and finding feasible solutions for all problem instances.

The most important advantage of our algorithm is that it is much faster than evolutionary approaches

and works well with even large problem instances. While the evolutionary algorithms spend hours of

computation time, our algorithm can get feasible solutions in a few milliseconds. The No Free Lunch

Theorem (NFL) [7] tells us that there will always be new ideas and approaches leading to better

optimization algorithms to solve a given problem. Instead of being forgotten in a short time, it is far

more likely that most of the currently known optimization methods have at least one niche, one area

where they are excellent. It has been experimentally shown that greedy heuristics can help eliminate

hard constraint violations in CB-CTT. These results verify that it might as well be possible to find new

greedy algorithms to eliminate at least a substantial portion of soft constraint violations. Further research

is needed to determine which greedy heuristic would perform better on a given CB-CTT problem

instance. New benchmark problem instances are also being introduced. It can be interesting to apply our

proposed algorithm to these new problem sets and observe the results, justifying our experimental

findings on different benchmark datasets.

VII. REFERENCES

[1] P. Michael, and K. Hadavi, "Scheduling: theory, algorithms and systems development," Operations

research proceedings, Berlin, 1992, pp. 35-42.

[2] W. Ruegg, A history of the university in Europe: Volume 3, universities in the nineteenth and early

twentieth centuries, vol. 3, Cambridge University Press, 2004, pp.1800-1945.

[3] D. Ronald, and V.N. Temlyakov, "Some remarks on greedy algorithms," Advances in computational

Mathematics, vol. 5, pp. 173-187, 1996.

[4] A.R. Barron, A. Cohen, W. Dahmen, RA. DeVore, “Approximation and learning by greedy

algorithms,” The annals of statistics, vol. 36, no. 1, pp. 64-94. 2008.

[5] A. Bettinelli, V. Cacchiani, R. Roberti, and P. “Toth An overview of curriculum-based course

timetabling,” Top, vol. 23, no. 2, pp. 313-349, 2015.

[6] E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu, “Hyper-

heuristics: A survey of the state of the art,” Journal of the Operational Research Society, vol. 64, no.

12, pp. 1695-1724. 2013.

https://link.springer.com/article/10.1007/s11750-015-0366-z#auth-Andrea-Bettinelli
https://link.springer.com/article/10.1007/s11750-015-0366-z#auth-Valentina-Cacchiani
https://link.springer.com/article/10.1007/s11750-015-0366-z#auth-Roberto-Roberti
https://link.springer.com/article/10.1007/s11750-015-0366-z#auth-Paolo-Toth
https://link.springer.com/article/10.1057/jors.2013.71#auth-Edmund_K-Burke
https://link.springer.com/article/10.1057/jors.2013.71#auth-Michel-Gendreau
https://link.springer.com/article/10.1057/jors.2013.71#auth-Matthew-Hyde
https://link.springer.com/article/10.1057/jors.2013.71#auth-Graham-Kendall
https://link.springer.com/article/10.1057/jors.2013.71#auth-Gabriela-Ochoa
https://link.springer.com/article/10.1057/jors.2013.71#auth-Ender-_zcan
https://link.springer.com/article/10.1057/jors.2013.71#auth-Rong-Qu

1134

[7] D.H. Wolpert, and W.G. Macready, “No free lunch theorems for optimization,” IEEE transactions

on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.

[8] G. Dosa, J. Sgall, “Optimal analysis of best bin packing,” International Colloquium on Automata,

Languages, and Programming, 2014, pp.429-441.

[9] K. Fleszar, and C. Charalambous, “Average-weight-controlled bin-oriented heuristics for the one-

dimensional bin-packing problem,” European Journal of Operational Research, vol. 210, no. 2, pp.

176-184, 2011.

[10] G.L. Di, B. McCollum, and A. Schaerf, “The second international timetabling competition (ITC-

2007): Curriculum-based course timetabling (track 3),” Technical Report 1.0, Queen’s University,

Belfast, United Kingdom, 2007.

[11] P.I. Tillett, “An operations research approach to the assignment of teachers to courses,” Socio-

Economic Planning Sciences, vol. 9, no. 3-4, pp. 101-104, 1975.

[12] H. Babaei, J. Karimpour, and A. Hadidi, “A survey of approaches for university course timetabling

problem,” Computers & Industrial Engineering, vol. 86, pp. 43-59, 2015.

[13] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan, “A hybrid metaheuristic approach to

the university course timetabling problem,” Journal of Heuristics, vol. 18, no. 1, pp. 1-23, 2012.

[14] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Information

sciences, vol. 237, pp. 82-117, 2013.

[15] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation

metaheuristic algorithms,” Computers & Industrial Engineering, vol. 137, no. 106040, 2019.

[16] S.A. MirHassani, and F. Habibi, “Solution approaches to the course timetabling problem,” Artificial

Intelligence Review, vol. 39, no. 2, pp. 133-149, 2013.

[17] A. Gary, and C. Robert, “Matching Faculty to Courses,” College and University, vol. 46, pp. 83-

89, 1971.

[18] J.S. Dyer, and J.M. Mulvey, “An integrated optimization/information system for academic

departmental planning,” Management Science, vol. 22, no. 12, pp. 1332-1341, 1976.

[19] W. Shih, and J.A. Sullivan, “Dynamic course scheduling for college faculty via zero-one

programming,” Decision Sciences, vol. 8, no. 4, pp. 711-721, 1977.

[20] N.Christian, F. Bagger, S. Kristiansen, M. Sørensen, and T.R. Stidsen, “Flow formulations for

curriculum-based course timetabling,” Annals of Operations Research, vol. 280, no. 1, pp. 121-150,

2019.

[21] A.E. Phillips, C.G. Walker, M. Ehrgott, and D.M. Ryan, “Integer programming for minimal

perturbation problems in university course timetabling,” Annals of Operations Research, vol. 252, no.

2, pp. 283-304, 2017.

[22] M.J. Geiger, “Applying the threshold accepting metaheuristic to curriculum based course

timetabling,” Annals of Operations Research, vol. 194, no.1, pp. 189-202, 2012.

[23] Z. Lu, and J.K. Hao, “Adaptive tabu search for course timetabling,” European journal of

operational research, vol. 200, no. 1, pp. 235-244, 2010.

https://ieeexplore.ieee.org/author/37322907700
https://ieeexplore.ieee.org/author/37373195100
https://www.sciencedirect.com/science/article/pii/S0377221710007538?casa_token=dKYvASUbT_8AAAAA:HDs30_nQskUgIga2Wd75kXKMrrzacXsFGmfAj3pwTvaPSbr5Du9FWniDAcgRrrrYba9G5_9aHw#!
https://www.sciencedirect.com/science/article/abs/pii/003801217590018X#!
https://www.sciencedirect.com/science/article/pii/S0360835214003714?casa_token=HYJWIh-SmMkAAAAA:jno5Gfv-aSLSIXZNunlIY7OFYbr3Rm6_lfCTVmwlxtS2VpCLu-BMG2tIrJt_G-O2XpqoMu-hXQ#!
https://www.sciencedirect.com/science/article/pii/S0360835214003714?casa_token=HYJWIh-SmMkAAAAA:jno5Gfv-aSLSIXZNunlIY7OFYbr3Rm6_lfCTVmwlxtS2VpCLu-BMG2tIrJt_G-O2XpqoMu-hXQ#!
https://www.sciencedirect.com/science/article/pii/S0360835214003714?casa_token=HYJWIh-SmMkAAAAA:jno5Gfv-aSLSIXZNunlIY7OFYbr3Rm6_lfCTVmwlxtS2VpCLu-BMG2tIrJt_G-O2XpqoMu-hXQ#!
https://link.springer.com/article/10.1007/s10732-010-9154-y#auth-Salwani-Abdullah
https://link.springer.com/article/10.1007/s10732-010-9154-y#auth-Hamza-Turabieh
https://link.springer.com/article/10.1007/s10732-010-9154-y#auth-Barry-McCollum
https://link.springer.com/article/10.1007/s10732-010-9154-y#auth-Paul-McMullan
https://www.sciencedirect.com/science/article/pii/S0020025513001588?casa_token=cTekfs-I2HgAAAAA:FrG_R4xmsFCpx0vmPNCl2T57qSbWIB5t3ATqkWHGPdhO9sKdd4ZeSnTizqm9k8litOPyr8SVMw#!
https://www.sciencedirect.com/science/article/pii/S0020025513001588?casa_token=cTekfs-I2HgAAAAA:FrG_R4xmsFCpx0vmPNCl2T57qSbWIB5t3ATqkWHGPdhO9sKdd4ZeSnTizqm9k8litOPyr8SVMw#!
https://www.sciencedirect.com/science/article/pii/S0020025513001588?casa_token=cTekfs-I2HgAAAAA:FrG_R4xmsFCpx0vmPNCl2T57qSbWIB5t3ATqkWHGPdhO9sKdd4ZeSnTizqm9k8litOPyr8SVMw#!
https://link.springer.com/article/10.1007/s10462-011-9262-6#auth-S__A_-MirHassani
https://link.springer.com/article/10.1007/s10462-011-9262-6#auth-F_-Habibi
https://pubsonline.informs.org/action/doSearch?text1=Dyer%2C+James+S&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Mulvey%2C+John+M&field1=Contrib
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Shih%2C+Wei
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Sullivan%2C+James+A
https://link.springer.com/article/10.1007/s10479-018-3096-4#auth-Niels_Christian_F_-Bagger
https://link.springer.com/article/10.1007/s10479-018-3096-4#auth-Simon-Kristiansen
https://link.springer.com/article/10.1007/s10479-018-3096-4#auth-Matias-S_rensen
https://link.springer.com/article/10.1007/s10479-018-3096-4#auth-Thomas_R_-Stidsen
https://link.springer.com/article/10.1007/s10479-015-2094-z#auth-Antony_E_-Phillips
https://link.springer.com/article/10.1007/s10479-015-2094-z#auth-Cameron_G_-Walker
https://link.springer.com/article/10.1007/s10479-015-2094-z#auth-Matthias-Ehrgott
https://link.springer.com/article/10.1007/s10479-015-2094-z#auth-David_M_-Ryan

1135

[24] T. Dokeroglu, and E. Sevinc, “Memetic Teaching–Learning-Based Optimization algorithms for

large graph coloring problems,” Engineering Applications of Artificial Intelligence, vol. 102, no.

104282, 2021.

[25] A. Gulcu, and C. Akkan, “Robust university course timetabling problem subject to single and

multiple disruptions,” European Journal of Operational Research, vol. 283, no. 1, pp. 630-646., 2020.

[26] C. Akkan and A. Gulcu, “A bi-criteria hybrid Genetic Algorithm with robustness objective for the

course timetabling problem,” Computers and Operations Research, vol. 90, pp. 22-32, 2018.

[27] T. Thepphakorn, and P. Pongcharoen, “Variants and parameters investigations of particle swarm

optimisation for solving course timetabling problems,” International Conference on Swarm Intelligence,

2019, pp. 177-187.

[28] S. LengGoh, G. Kendall, and N.R. Sabar, “Improved local search approaches to solve the post

enrolment course timetabling problem,” European Journal of Operational Research, vol. 261, no. 1, pp.

17-29., 2017.

[29] N.C.F. Bagger, M. Sorensen, and TR. Stidsen, “Benders’ decomposition for curriculum-based

course timetabling,” Computers and Operations Research, vol. 91, pp. 178-189, 2018.

[30] T. Song, S. Liu, X. Tang, X. Peng, and M. Chen, “An iterated local search algorithm for the

University Course Timetabling Problem,” Applied Soft Computing, vol. 68, pp. 597-608, 2018.

[31] A.De Coster, N.Musliu, A.Schaerf, J.Schoisswohl, and K.Smith-Miles, “Algorithm selection and

instance space analysis for curriculum-based course timetabling,” Journal of Scheduling, vol. 25, no 1,

pp. 35-58, 2022.

[32] C.Akkan, A.Gülcü, and Z.Kuş, “Bi-criteria simulated annealing for the curriculum-based course

timetabling problem with robustness approximation,” Journal of Scheduling, pp. 1-25, 2022.

[33] G.Colajanni, and P.Daniele, “A new model for curriculum-based university course

timetabling,” Optimization Letters, vol. 15, no 5, pp. 1601-1616., 2021.

[34] H. Asmuni, “Fuzzy methodologies for automated university timetabling solution construction and

evaluation,” Ph.D. dissertation, University of Nottingham, United Kingdom, 2008.

[35] J.H. Obit, “Developing novel meta-heuristic, hyper-heuristic and cooperative search for course

timetabling problems,” Ph.D, University of Nottingham, United Kingdom, 2010.

[36] T.A. Redl, “A study of university timetabling that blends graph coloring with the satisfaction of

various essential and preferential conditions,” Ph.D., Rice University Houston, USA, 2004.

[37] B.M. Cosar, “New greedy algorithms to optimize the curriculum-based course timetabling problem,

“ M.S thesis, Atilim University, Ankara, Turkey, 2021.

[38] T. Muller, “ITC2007 solver description: a hybrid approach,” Annals of Operations Research, vol.

172, no. 1, pp. 429-446, 2009.

[39] M. Atsuta, K. Nonobe, and T. Ibaraki, “ITC-2007 Track2: an approach using general CSP solver,”

Citeseer, 2008.

[40] M. Clark, M. Henz, and B. Love, “Quikfix—a repair-based timetable solver,” The Seventh

International Conference on the Practice and Theory of Automated Timetabling,” Citeseer, 2008.

https://www.sciencedirect.com/science/article/pii/S0377221717300759?casa_token=qXlfwH07eEcAAAAA:SZ7cZ_mFH9Hsd-3i-2YzXuoPxv38uObzUiZ5po87kW_TkljKcrc64GN3KlUu1lIJL5iUnmt_KA#!
https://www.sciencedirect.com/science/article/pii/S0377221717300759?casa_token=qXlfwH07eEcAAAAA:SZ7cZ_mFH9Hsd-3i-2YzXuoPxv38uObzUiZ5po87kW_TkljKcrc64GN3KlUu1lIJL5iUnmt_KA#!
https://www.sciencedirect.com/science/article/pii/S0377221717300759?casa_token=qXlfwH07eEcAAAAA:SZ7cZ_mFH9Hsd-3i-2YzXuoPxv38uObzUiZ5po87kW_TkljKcrc64GN3KlUu1lIJL5iUnmt_KA#!

