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ÖZ 
Bu çalışma, iyi bilinen Müfredat Tabanlı Ders Çizelgeleme Problemini optimize etmek için yeni bir açgözlü 

algoritmayı açıklamaktadır. Açgözlü algoritmalar, en iyi çözümü bulmak için yürütülmesi uzun zaman alan kaba 

kuvvet ve evrimsel algoritmalara iyi bir alternatiftir. Birçok açgözlü algoritmanın yaptığı gibi tek bir buluşsal 

yöntem kullanmak yerine, aynı problem örneğine 120 yeni buluşsal yöntem tanımlıyor ve uyguluyoruz. Dersleri 

müsait odalara atamak için, önerilen açgözlü algoritmamız En Büyük-İlk, En Küçük-İlk, En Uygun, Önce 

Ortalama Ağırlık ve En Yüksek Kullanılamaz ders-ilk buluşsal yöntemlerini kullanır. İkinci Uluslararası Zaman 

Çizelgesi Yarışması'nın (ITC-2007) kıyaslama setinden 21 problem örneği üzerinde kapsamlı deneyler 

gerçekleştirilir. Önemli ölçüde azaltılmış yumuşak kısıtlama değerlerine sahip 18 problem için, önerilen açgözlü 

algoritma sıfır sabit kısıtlama ihlali (uygulanabilir çözümler) rapor edebilir. Önerilen algoritma, performans 

açısından son teknoloji ürünü açgözlü buluşsal yöntemleri geride bırakıyor. 

 

Anahtar Kelimeler: Ders zaman çizelgesi oluşturma, Açgözlü algoritmalar, buluşsal yöntemler, eniyileme 

 

 

A New Greedy Algorithm  

for the Curriculum-based Course Timetabling Problem 
 

ABSTRACT 
This study describes a novel greedy algorithm for optimizing the well-known Curriculum-Based Course 

Timetabling (CB-CTT) problem. Greedy algorithms are a good alternative to brute-force and evolutionary 

algorithms, which take a long time to execute in order to find the best solution. Rather than employing a single 

heuristic, as many greedy algorithms do, we define and apply 120 new heuristics to the same problem instance. 

To assign courses to available rooms, our proposed greedy algorithm employs the Largest-First, Smallest-First, 

Best-Fit, Average-weight first, and Highest Unavailable course-first heuristics. Extensive experiments are carried 

out on 21 problem instances from the benchmark set of the Second International Timetabling Competition (ITC-

2007). For 18 problems with significantly reduced soft-constraint values, the proposed greedy algorithm can report 

zero hard constraint violations (feasible solutions). The proposed algorithm outperforms state-of-the-art greedy 

heuristics in terms of performance. 
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I. INTRODUCTION 
 

The course timetabling problem is a well-known optimization problem. Satisfying constraints such as 

curriculum compactness, matching classroom size with the number of students, minimizing the 

number of used classrooms, minimizing the distance between classrooms and many other such 

constraints are some criteria that must be optimized [1]. The Course Timetabling problem has Rooms 

and Instructors as resources that must be allocated together simultaneously and placed to schedule an 

hour of a course [2]. Greedy algorithms are efficient polynomial-time approaches that work with 

heuristics to solve a hard problem. G greedy algorithms often do not provide optimal solutions [3]. 

However, they are still promising enough to generate approximate solutions in reasonable amounts of 

time [4]. 

 

This study presents a new greedy algorithm (Greedy-CB-CTT) for optimising the Curriculum-Based 

Course Timetabling (CB-CTT) problem. Periods assigned to all courses in the same curriculum must be 

distinct as the same student cannot be in two different classrooms on the same day period. The CB-CTT 

algorithms try to find the best weekly assignment of university lectures to classrooms and day periods 

[5]. The main goal of this study is to minimize the total number of soft constraint violations while 

preserving the 28 satisfaction of hard constraints. Since the problem is NP-Hard and large instances of 

the problem cannot be solved optimally in practical times, the greedy algorithms are good alternatives 

to brute-force and evolutionary algorithms that spend hours of execution times to discover optimal or 

best achievable solutions. Instead of using a single heuristic, we simultaneously define and evaluate 120 

heuristics on the same problem instance and report the overall best solution [6]. Because according to 

the No Free Lunch Theorem (NFL) there cannot be a single heuristic that will give the best results for 

all problems [7]. 

 

Our proposed greedy algorithm (Greedy-CB-CTT) sorts the courses using Largest-Course-First, 

Smallest-Course-First, and Average-Course-First [8], for the number of students enrolled in a course 

[9]. Other parameters for ordering courses are the number of unavailable hours, the number of courses 

in a curriculum, the number of lecture hours, and the minimum working days. The second set of ordering 

heuristics is the availability of the  rooms. Their capacity can be ordered according to four criteria: 

largest, smallest, average-size and best-fit, matching the number of students enrolled in the course being 

assigned to a classroom. To evaluate the performance of our proposed algorithm, we carried out 

experiments on 21 problem instances from the Second International Timetabling Competition (ITC-

2007) benchmark set [10]. The results verify that the proposed greedy algorithms can report feasible 

solutions (i.e., zero hard constraint violations) with significantly reduced soft-constraint values. 

 

The main contributions of this article are as follows: 120 new heuristics are proposed to solve the CB-

CTT problem. Popular task and page ordering heuristics are combined in the Greedy-CB-CTT 

algorithms to select the results of the best heuristic according to the behaviour of the problem instances. 

Average course size and average room-size first heuristics are applied to the CB-CTT problem for the 

first time, and the results are reported. It was possible to obtain better results than classical 

largest/smallest first greedy heuristic algorithms, yielding solutions giving significantly lower hard and 

soft constraint violations. In 18 of the 21 problem instances of the ITC-2007 benchmark set, hard 

constraint violations are reduced to zero in a few milliseconds during the experiments. 

 

In section 2, related studies for state-of-the-art algorithms are presented. The formal problem definition 

is given in section 3. The details of heuristics and the proposed algorithm are introduced in section 4. 

The experimental setup obtained results and comparison with state-of-the-art algorithms are reported in 

section 5. Concluding remarks and future work are provided in section 6 of the study. 
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II. RELATED WORK 

 
P.I.Tillet presented the results of the feasibility of determining an optimal assignment of lecturers to 

courses using an operations research model in 1975 [11]. It was one of the first applications in this area. 

Recent surveys about the university course timetabling problems give detailed information about the 

operations research techniques, metaheuristics and other intelligent novel methods for the CB-CTT [12–

15]. MirHassani et al. analyze the primary considerations of recent papers on the university course 

timetabling problems and introduce the hard and soft constraints and most currently used objective 

functions [16]. Bettinelli et al. give a good classification of problem types in this domain: Examination 

Timetabling, Post-Enrollment-based Course Timetabling, and Curriculum-Based Course Timetabling, 

the latter being the focus of our study [5]. Initial approaches focused on linear and integer programming 

models [17–19], recent variants of which still provide promising results as methods, reducing the 

number of integer variables [20] or using minimal perturbation models to minimize the effects of dealing 

with the resolution of infeasible parts [21]. 

 

Geiger presents local search algorithms for the International Timetabling Competition 2007 (ITC 2007) 

[22]. His heuristics are based on threshold acceptance, dealing with local optima by a deterministic 

acceptance of inferior solutions. A stochastic search 1 of neighbors is developed by removing some 

lecture assignments and reassigning them to new day-period slots randomly. Zhipeng & Jin-Kao develop 

an Adaptive Tabu Search algorithm for the CB-CTT problem [23]. Their Tabu Search algorithm 

integrates features such as original double Kempe chains (a method used in the study of graph coloring 

problems [24]) neighbourhood structure, a penalty-guided perturbation operator and an adaptive search 

mechanism. Gulcu & Akkan develop two multi-objective Simulated Annealing (SA) algorithms to 

identify a good Pareto front (the best solution set concerning the objective function) defined by the 

solution quality (penalty associated with soft-constraint violations) and a robustness measure [25]. 

Akkan et al. work on a bi-criteria optimisation problem model and solve the CB-CTT problem using a 

hybrid Multi-objective Genetic Algorithm (GA), which uses Hill Climbing and SA algorithms [26]. 

Thepphakorn et al. develop a Particle Swarm Optimization (PSO) timetabling application to solve real-

world datasets [27]. The results verify that the algorithm has a faster convergence speed than classical 

GA. Goh et al. combine different local search algorithms into an iterative two-stage procedure, Tabu 

Search with Sampling and Perturbation and an improved variant of SA; their reported results are 

competitive to best-known solutions reported in the literature [28]. Bagger et al. apply Benders’ 

decomposition to the solution of the problem to generate cuts that connect the schedule and room 

allocation [29]. Combining Great Deluge and Tabu Search, iterative local search algorithms combined 

with SA are among the different methods that have been evaluated [30]. 

 

Coster et al. prepared an analysis of the CB-CTT instances [31]. They investigated machine learning 

methods to automate algorithm selection. They showed how problem space analysis and algorithm 

selection cooperate. Akkan  et al. formulated the problem as a bi-criteria optimization problem [32]. A 

multi-objective simulated annealing algorithm and a surrogate measure are used to calculate the fitness 

values. Experiments showed that when the proposed algorithm uses a multi-start approach, it provides 

the best Pareto optimal solutions. Colajanni & Daniele formulated a completely new model that satisfies 

the planning constraints and the compactness of the curricula [33]. The preferences of the teachers, the 

minimum number of working days, maximum capacity, and stability of the classrooms are considered 

during the study. 
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III. PROBLEM DEFINITION 

 
The CB-CTT problem is in the class of NP-hard problems. It includes allocating courses, lectures and 

students to a fixed set of time slots and rooms [12]. This problem must obey hard and soft constraints 

while performing the allocation of resources. Soft constraints are better satisfied to increase students' 

and instructors' quality and satisfaction levels using these timetables [34–36]. Due to its exponential 

growth behaviour, the scheduling cannot be solved in polynomial time. The main goal of algorithms is 

to minimize the penalties of constraints [12, 35]. 

 

 HC1 Each lecture of a course must be scheduled in a distinct time period and a room.  

 HC2: Any two lectures cannot be assigned in the same time period and in the same room.  

 HC3: an instructor can teach only one course at a given time period, and also, the lectures of 

courses in the same curriculum are assumed to be attended by the same set of students. 

Therefore, two courses in the same curriculum cannot be scheduled for the same period.  

 HC4: If the lecturer of a course is listed as not available for a given period, then no lectures of 

the same teacher can be assigned to that period.  

 SC1: The number of students registered to a course cannot be greater than the capacity of the 

classroom where the lecture is assigned. The penalty calculated for a room smaller than the 

number of registered students is given by the formula (RoomSize - NumberOfStudents) × 2.  

 SC2: To make it easier for students to remember in which classroom meets, it is preferred to 

assign all lectures of a course to the same room.  

 SC3: To allow students to attend at least part of a course’s weekly meetings, it is preferred not 

to schedule all of the course hours to the same day and distribute its lectures to a minimum 

number of days.  

 SC4: If possible, a student’s courses are preferred to be on the same day and closely distributed 

within the same day. For example, if in a given curriculum, there is one lecture not adjacent to 

any other lecture in the same curriculum on the same day, a violation is counted. 

 

We can define the CB-CTT problem in terms of N courses C = c1, c2 ,..., cN  all of which must be 

scheduled in a set of P periods T =t1, t2,..., tP , and a set of M rooms, R =r1, r2 ,..., rM . Each course ci 

contains li lectures that must be scheduled to time periods. A time period is a pair of weekday (D days, 

typically Monday through Friday) and a timeslot (P periods 1 consisting of D days and H daily timeslots 

(means P = D × H ). Also, there are S curricula, CR = Cr1, Cr2,...,CrS where each curriculum Crk is a 

group of courses that are assumed to share the same students. Typically these curricula will contain must 

courses of a university department (I : day of week, J : time period of the day, K: Group of students,     

L: Lecturers, M : Courses, N : Classrooms). 

 

All lecture hours of a given course must be on a different time period. For any given (day, time, course). 

Any two lectures cannot be assigned in the same period and to meet in the same room. For the day I, 

and time period J, classroom N, the sum of all Xi,j,k,l,m,n (day i , time j , curriculum k , course m, classroom 

n) for a certain (day, time, classroom) must be zero or one. An instructor can teach only one course at a 

given time period, and also, the lectures of courses in the same curriculum are assumed to be attended 

by the same set of students. Therefore, any two courses in the same curriculum cannot be scheduled to 

the same time (day, period). Lecturer, L, for a given day I, and time period, J, can be assigned to teach 

at most once. The variable Xi,j,k,l,m,n (day i, time j, curriculum k, lecturer l, course m, classroom n) can 

have only two values 0 or 1, meaning a lecturer is assigned to teach that course on that day period or 

not. The summation below for any given Lecturer must be zero or one. Two courses in the same 

curriculum cannot be scheduled to the same time period. For given curriculum K, the day I, and time J, 

the below summation must be zero or one. If the lecturer of a course (Lecturer L) is not available at a 

given period (day I, time J), then no lectures of that lecturer can be assigned to that period. 
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IV. PROPOSED HEURISTICS 
 
Our study develops several heuristics to satisfy the hard and soft constraints. It will be very practical to 

have several heuristics that can provide solutions satisfying the constraints. Special algorithms reducing 

soft constraint violations can also be developed separately and can perform small modifications on the 

resulting timetables where all hard constraints have been eliminated. The proposed Greedy Heuristics 

are defined in terms of classroom sizes and course sizes [37] as in Tables 1 and 2. 

 

A. COURSE ORDERING HEURISTICS  
 

Highest unavailable hours first heuristic: A high number of unavailable hours listed for a course makes 

it very difficult to find a suitable time period for that course. For this reason, one of the course ordering 

heuristics sorts courses in non-increasing order of their unavailable hours. Therefore, scheduling such 

courses won’t conflict with any other course in the same curriculum becomes easier. The largest, 

smallest, and average course first: As the names imply in these course ordering heuristics, the number 

of students registered to courses is used to decide which courses are assigned to a classroom first. By 

assigning courses that will have a larger impact on the resulting timetables first, there will be no need to 

change these first decisions because of conflicts with less important courses (in terms of the number of 

registered students). The first course assigned to a classroom can be chosen as the largest size, the 

smallest size, or the closest to the average size courses. This is achieved by sorting courses in terms of 

course sizes and choosing the first, the last, or the median course in the sorted list. The chosen course is 

removed from the list of courses, and the process is repeated until all of the courses are assigned to a 

classroom. 

 

B. ROOM ORDERING HEURISTICS 
 

In this heuristic, the classrooms are assigned to courses by considering their student capacities. The best-

fit, the worst-fit (the largest classroom size), and average size, which is the median size classroom among 

all of the available classrooms, sorted in order of classroom sizes are used. The Classroom-Heuristics 

are combined with Course-Heuristics that determine the course to be assigned to that classroom. Finally, 

a timetable is decided by choosing an available day-time period in that classroom. Since there are four 

possible ordering choices for Classrooms and ten orders for choosing a Course, there are potentially 40 

greedy heuristics that must be investigated to select the one(s) that give the best-expected results. Tables 

1 and 2 provide the names of the heuristics used in our proposed algorithm and their ids. 

 
Table 1. Course ordering heuristics. 

 

Id Heuristic Description 

1 Course with most students first 

2 Course with average number of students first 

3 Course with least number of students 

4 Course with highest number of unavailable day/periods 

5 Course with most number of hours first, if equal then largest unavailable hours 

6 Course with most number of unavailable hours first, if equal more students 

7 Course in curricula with most courses first, next courses with more students 

8 Course in curricula with most unavailable hours first, next more students 

9 Courses with highest number of lecture hours 

10 Course with highest number of minimum working days, if equal more lecture hours 

 
 

 

 

 

 



1126 

 

 

Table 2. Room ordering heuristics 

 

Id  Room ordering heuristics 

1  Largest Room First 

2  Smallest Room First 

3  Average Room First 

4  Best Fitting (with enough capacity) Room 

 

 

C. THE PROPOSED GREEDY ALGORITHM (GREEDY-CB-CTT) 

 
The Greedy-CB-CTT algorithm uses the heuristics given above. Nrooms , Ncourses , and Ncurriculum 

depict the number of available classrooms, number of courses to be scheduled, and number of curricula 

with a set of courses, respectively. They are the input data of the algorithm. The output of the algorithm 

is the list of courses assigned to the classrooms. Mainly, the algorithm works with two main nested loops 

of rooms and the courses. The ordering heuristics of the classrooms and courses are selected with 40 

different methods because four classroom and ten-course ordering alternatives exist. Inside these two 

loops, available classrooms are selected according to the minimum hard and soft violation values of the 

assignment choices. We define 120 new heuristics. Ten course ordering heuristics combined with four 

room ordering heuristics makes a total of 40 distinct heuristics. Each of these 40 heuristics is used in 

three higher-level heuristics, Heur-1, Heur-2, and Heur-3, which use different techniques to group 

lectures of courses into minimum working days and curricula.The pseudocode of the Greedy-CB-CTT 

is given in Algorithm 2. 

 

 
Algorithm 1: AssignDayPeriod(RID,CID,LH) Pseudocode for finding a (Day, Period) for given Course and 

Room 
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The AssignDayPeriod 1 Algorithm 1 function uses the given Room and Course identifiers to determine 

a suitable (Day,Period) to schedule a lecture that doesn’t violate any of the hard constraints. It is used 

in all of the heuristic Algorithms 2-4 as it is a shared functionality. MAXPERIOD is the number of 

lecture slots available on all days, which is six or seven for COMP benchmark but can be defined by 

problem instance as a dynamic parameter. Algorithm 2 is a naive method that assigns lectures of a course 

to the first available (Day,Period) slot without attempting to divide lectures of a course to minimum 

working days. Since the restriction for minimum working days is not enforced, this heuristic must find 

feasible solutions more easily and acts as a lower bound. Algorithm 3 is intelligent that first decides how 

to divide the total lecture hours of a course into the designated minimum working days for that course. 

Then, it calls the AssignDayPeriod to assign lectures of a course to a particular day. Since minimum 

working days is a soft constraint, the solutions returned by this algorithm will have lower penalty scores 

compared to Algorithm 2. 

 
Algorithm 2: Pseudocode of the proposed HEUR-1 Greedy Algorithm 

 

 
 
 

Algorithm 3: Pseudocode of the proposed MinWorkingDays HEUR-2 Greedy Algorithm 
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Algorithm 4: Pseudocode of the proposed Curriculum-first based HEUR-3 Greedy Algorithm 

 

 
 

Algorithm 4 exploits the Curriculum-based structure of the CB-CTT model. Another important soft 

constraint that must be minimized in CB-CTT benchmark instances is to ensure that the lectures of 

courses belonging to the same Curriculum must be scheduled on the same day, and if possible, the 

lectures of all courses in the same curriculum must be scheduled consecutively. Since this heuristic 

schedules courses in the same curriculum in a bundle, it attempts to find a day with enough free hours 

and can accommodate all of the lectures of the same Curriculum courses assigned to that day. Of course, 

the total lecture hours of Curriculum courses assigned to a single day must be at most MAXPERIOD, 

which is the maximum available lecture slots on a single day. 

 
In this part, we explain the theoretical complexity analysis of our proposed algorithms. The results can 

be achieved in a very short time for all of the 21 benchmark problem instances used in ITC-2007. The 

proposed algorithm is greedy and its best advantage is that it produces reasonable solutions in 

polynomial times. The steps of our heuristics are given below. NC is the number of Courses and NR is 

the number of Rooms. 

 

 Step 1: Sort Courses according to heuristic course order: O(Nlog N) where N is the number of courses. 

 Step 2: Sort Rooms according to heuristic room order: O(Nlog N), where N is the number of rooms. 

 Step 3: for each Course 

 Step 4: for each Room 

 Step 5: find (day, period) such that all hard constraints are satisfied: O(1) × O(1) 

 

Steps 1 and 2 are executed in O(N logN) because they require sorting. Steps 3, 4, 5 are O(NC × NR × 

NDays × NPeriods) since each course is considered once, and for each Course each Room is  again 

considered only once, and NDays × NPeriods is also a constant value. Verifying hard constraints is O(1) 

because they involve a simple hash array lookup. The overall time complexity becomes: O(NClogNC) 

+ O(NRlogNR) + O(NC × NR) × O(1). The running time of our heuristics are equivalent to sorting 

algorithms where problem size is defined by the larger number of courses (NC) and the number of rooms 

(NR). However, if NC and NR are comparable in size, then the third term O(NCxNR) becomes O(N2). 
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V. THE EVALUATION OF EXPERIMENTAL RESULTS 
 
We compare our algorithm with three classical greedy algorithms. Although our algorithm is not in the 

class of evolutionary algorithms, we provide a detailed comparison of our study with state-of-the-art 

evolutionary algorithms. The results of the evolutionary algorithms are better than our algorithm. 

However, since most evolutionary algorithms start with a population generated with greedy algorithms, 

we believe our algorithm can be effectively used in this area and significantly improve the convergence 

speed of the population-based algorithms. The validator of the competition committee of the ITC-2007 

is used to verify our results [10]. Python programming language is used. The PC has eight GB of memory 

and an I7 2.4 GHz processor. 

 

The total sum of hard and soft constraints is considered when comparing the proposed heuristics. The 

heuristic that outputs the minimum total sum is selected as the best-performing heuristic, whereas the 

largest total sum is the worst solution. 

 

A. THE BENCHMARK PROBLEM INSTANCES 
 

The details of the benchmark problem instances used in our experiments are given in Table 3 [10]. The 

range of the data provided in the columns is 30 to 121 for #courses, 5 to 20 #rooms, 5 to 6 #days, 5 to 6 

#periods_per_day, #curricula varying from 13 to 150. It is called #constraints (the number of unavailable 

periods where a given course cannot be scheduled), ranging from 53 to 1368. comp01 is one of the 

easiest problem instances with the smallest number of courses, 30, only six classrooms, 14 curricula, 

and just 53 unavailable periods in the problem set. Two of the hardest problem instances are comp10 

and comp12, which have 115 and 88 courses, 67 and 150 curricula, 18 and 11 rooms, 694 and 1368 

constraints, respectively. 

 

We give the average results of our proposed heuristics (Heur-1, Heur-2, Heur-3) in Table 4. Heur-1 

obtained the maximum number of feasible solutions (6.2). The total sum of Heur-2 is the minimum 

(84238.1). The worst solutions are generally reported by Heur-3. The execution time of each heuristic 

is reported to be not more than a few milliseconds during the experiments. 

 

Table 5 reports the best results and the algorithms that have obtained the best result. We obtained a 

feasible solution (the total sum of the hard constraints is zero) for 18 of 21 benchmark problem instances. 

The overall hard constraint value is observed to be 0.19 for 21 problem instances. We obtained one or 

two hard constraint violations for the problem instances that we have not reported any zero hard violation 

values. The total sum of hard and soft constraints is 867.62 and 867.81, respectively. Heur-1 were the 

best heuristic, with eight reported best results. 

 

We present the solution of three classical greedy algorithms commonly used in the literature. Our main 

goal was to outperform these heuristics. The algorithms are the largest course to the largest room first, 

1 the smallest course to the smallest room first, and the best-fit greedy algorithms. Table 6 gives the 

results of the largest course to the largest room first greedy algorithm. In Table 7, we give the results of 

the smallest course to the smallest room first greedy algorithm. Table 8 presents the result of the best-

fit greedy algorithm that assigns the courses to the rooms with minimum empty spaces. No solution has 

been found among these three algorithms with zero hard violations. It can be observed that the largest 

course to largest room first algorithm is the one that reports the best solutions in average. This algorithm 

reports a total point of 713.4 for 21 problem instances. The smallest course to the smallest room first 

algorithm is the worst among the three algorithms, with the highest 3390.4 points. When a comparison 

is made with the algorithms we have developed, it can be seen that the performance of our algorithm is 

much better, with a general average score of 867.1 and the ability to find feasible solutions for 18 

problem instances. The execution time of each algorithm was not more than ten milliseconds during the 

experiments. 
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Table 3. The details of the ITC-2007 benchmark problem instances. 

 
problem name #courses #rooms #days #periods/day #curricula #constraints 

comp01 Fis0506-1 30 6 5 6 14 53 

comp02 Ing0203-2 82 16 5 5 70 513 

comp03 Ing0304-1 72 16 5 5 68 382 

comp04  Ing0405-3  79 18 5 5 57 396 

comp05 Let0405-1  54 9 6 6 139 771 

comp06  Ing0506-1  108 18 5 5 70 632 

comp07  Ing0607-2  131 20 5 5 77 667 

comp08  Ing0607-3  86 18 5 5 61 478 

comp09  Ing0304-3  76 18 5 5 75 405 

comp10  Ing0405-2  115 18 5 5 67 694 

comp11  Fis0506-2  30 5 5 9 13 94 

comp12  Let0506-2  88 11 6 6 150 1368 

comp13  Ing0506-3  82 19 5 5 66 468 

comp14  Ing0708-1  85 17 5 5 60 486 

comp15  Ing0203-1  72 16 5 5 68 382 

comp16  Ing0607-1  108 20 5 5 71 518 

comp17  Ing0405-1  99 17 5 5 70 548 

comp18  Let0304-1  47 9 6 6 52 594 

comp19  Ing0203-3  74 16 5 5 66 475 

comp20  Ing0506-2  121 19 5 5 78 691 

comp21  Ing0304-2  94 18 5 5 78 463 

 

Table 4. The average results obtained with Heur-1, Heur-2, and Heur-3 for 21 problem instances. 

 
ALG Total Hard Total Soft Total Sum Feasible Found Min at Max at 

Heur-1 94.7 86471.4 86566.1 6.2 0.2 0.0 

Heur-2 165.9 84072.2 84238.1 4.0 0.4 0.0 

Heur-3 114.9 86759.6 86874.5 5.4 0.1 0.5 

 
Table 5. The best results and the algorithms that report the solutions. 

 
problem ALG Total Hard Total Soft Total Penalty 

comp01 Heur-1: 1/5  0 234 234 

comp02 Heur-2: 4/8  2 800 802 

comp03 Heur-3: 4/1  0 600 600 

comp04  Heur-2: 4/7  0 574 574 

comp05 Heur-1: 4/8  0 1287 1287 

comp06  Heur-3: 4/4  0 838 838 

comp07  Heur-1: 1/1  0 1005 1005 

comp08  Heur-3: 4/5  0 580 580 

comp09  Heur-2: 1/5  0 629 629 

comp10  Heur-3: 4/1  0 796 796 

comp11  Heur-1: 4/3  0  190  190 

comp12  Heur-2: 4/8  0  1129  1129 

comp13  Heur-3: 4/3  0  612  612 

comp14  Heur-2: 4/7  0  668  668 

comp15  Heur-3: 4/1  0  600  600 

comp16  Heur-1: 4/1  0  899  899 

comp17  Heur-1: 1/8  0  2776  2776 

comp18  Heur-2: 4/5  0  426  426 

comp19  Heur-3: 4/4  1  607  608 

comp20  Heur-1: 4/7  0  953  953 

comp21  Heur-1: 1/6  1  2017  2018 

Avg  0.19 867.62 867.81 
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Table 6. The results of the greedy algorithm which matches the largest course, in terms of number of students, to 

the largest room. 

 
problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total 

comp01 0 30 13 0 4 285 20 3 312 

comp02 0 96 64 0 0 635 74 11 720 

comp03 0 56 59 0 0 570 76 6 652 

comp04  0 58 44 0 0 515 92 10 617 

comp05 0 47 65 0 0 405 230 3 638 

comp06  0 105  82  0 0 785  114  9  908 

comp07  0 144  84  0 0 900  178  15  1093 

comp08  0 52  71  0 0 555  74  7  636 

comp09  0 86  60  0 0 585  56  6  647 

comp10  0 117  67   0 0 795  122  11  928 

comp11  0 18  8  0 0 260  12  2  274 

comp12  0 55  97  0 0 555  244  4  803 

comp13  0 56  61 0 0 540 84 6  630 

comp14  0 90  82  0 0 675  94  7  776 

comp15  0 56  59  0 0 570  76  6  652 

comp16  0 105  70  0 0 775  110  10  895 

comp17  0 82 81  0 0 725  108  8 84 

comp18  0 31  44   0 0 425  48  1  474 

comp19  0 101  82  0 0 595  96  9  700 

comp20  0 98  86  0 0 850  146  9  1005 

comp21  0 86  38  0 0 665  106  9  780 

total 0 1569  1317   0 4 12665  2160  152  14981 

Avg 0 74.7  62.7  0 0.2 603.1  102.9  7.2  713.4 

 
 

Table 7. The results of the greedy algorithm which matches the smallest course to the smallest room first. 

 
problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total 

comp01 0 15 14 0 483 270 1 4 769 

comp02 0 101 66 0 3483 635 124 8 4250 

comp03 0 64 57 0 3247 555 122 7 3931 

comp04  0 62 56 0 5496 540 64 6 6106 

comp05 0 53 62 0 10412 360 310 3 11085 

comp06  0 102 85 0 852 780 144 11 1787 

comp07  0 114 77 0 344 915 116 14 1389 

comp08  0 63 64 0 3013 550 86 9 3658 

comp09  0 83 72 0 3477 540 108 7 4132 

comp10  0 126 97 0 204 795 98 10 1107 

comp11  0 21 7 0 1306 260 12 3 1581 

comp12  0 52 87 0 2577 555 224 1 3357 

comp13  0 64 67 0 6342 525 94 9 6970 

comp14  0 83 73 0 3098 675 92 7 3872 

comp15  0 64 57 0 3247 555 122 7 3931 

comp16  0 112 61 0 1746 785 116 9 2656 

comp17  0 77 91 0 349 720 158 11 1238 

comp18  0 17 51 0 2122 410 56 1 2589 

comp19  0 93 84 0 1257 570 108 8 1943 

comp20  0 125 76 0 2347 840 166 11 3364 

comp21  0 90 48 0 673 665 138 8 1484 

total 0 1581 1352 0 56075 12500 2470 154 71199 

Avg 0 75.3 64.4 0 2670.2 595.2 117.6 7.3 3390.4 
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Table 8. The results of of the best-fit greedy algorithm. 

 
problem HC1 HC2 HC3 HC4 SC1 SC2 SC3 SC4 Total 

comp01 2 26 13 0 88 300 12 3 403 

comp02 1 81 76 0 0 655 104 4 763 

comp03 1 70 64 0 0 555 78 6 639 

comp04  0 53 49 0 0 520 80 8 808 

comp05 0 67 45 0 0 430 186 0 616 

comp06  0 97 66 0 0 765 116 9 890 

comp07  1 167 79 0 0 895 162 9 1066 

comp08  1 68 68 0 0 560 78 10 648 

comp09  0 62 65 0 0 540 94 4 638 

comp10  2 128 76 0 0 805 102 9 916 

comp11  0 35 7 0 0 270 0 1 271 

comp12  0 90 77 0 0 560 234 3 979 

comp13  0 78 59 0 0 530 70 7 607 

comp14  0 66 76 0 0 675 118 6 799 

comp15  1 70 64 0 0 555 78 6 639 

comp16  0 112 63 0 0 775 120 8 903 

comp17  3 101 72 0 0 725 126 8 859 

comp18  0 57 32 0 0 440 20 0 460 

comp19  2 92 52 0 0 595 74 6 675 

comp20  0 126 92 0 0 835 144 8 987 

comp21  0 140 31 0 0 675 136 10 821 

total 14 1786 1226 0 88 12660 2132 125 15205 

Avg 0.7 85.0 58.4 0 4.2 602.9 101.5 5.9 724.0 

 

 
Table 9. Competition results of ITC-2007; the best discovered results on all the 21 competition instances (given 

in boldface). 

 
problem Müller Lü&Hao Atsuta Geiger Clark Batuhan 

comp01 5 5 5 5 10 234 

comp02 51 55 50 111 111 802 

comp03 84 71 82 128 119 600 

comp04  37 43 35 72 72 574 

comp05 330 309 312 410 426 1287 

comp06  48 53 69 100 130 838 

comp07  20 28 42 57 110 1005 

comp08  41 49 40 77 83 580 

comp09  109 105 110 150 139 629 

comp10  16 21 27 71 85 796 

comp11  0 0 0 0 3 190 

comp12  333 343 351 442 408 1129 

comp13  66 73 68 622 113 612 

comp14  59 57 59 90 84 668 

comp15  84 71 82 128 119 600 

comp16  34 39 40 81 84 899 

comp17  83 91 102 124 152 2776 

comp18  83 69 68 116 110 426 

comp19  62 65 75 107 111 608 

comp20  27 47 61 88 144 953 

comp21  103 106 123 174 169 2018 

Avg 79.8 80.9 85.8 180 132.5 916 
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B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS 

 
We compare the experimental performance results of our algorithms with state-of-the-art algorithms in 

the literature. Although our algorithms are not in this class of algorithms, we think these results can give 

a good understanding of the recent studies about the CB-CTT problem. In Table 9, we can compare the 

best-known results reported in the literature with those discovered by our algorithms. The algorithms 

we compare against our solutions are obtained from recent papers [22, 23, 38–40]. The total scores of 

the results on 21 problems are presented. The best schedules are given in bold digits. The best algorithms 

in the literature are primarily evolutionary and require much time to converge, whereas our algorithms 

spend only a few millisecond optimization time. 

 

 

VI. CONCLUSION AND FUTURE WORK 
 

We outperformed classical greedy algorithms, the largest course to the largest room first, the smallest 

course to the smallest room first, and the best-fit greedy algorithms. The performance of our algorithm 

is better, with a general average score of 867.80 and finding feasible solutions for all problem instances. 

The most important advantage of our algorithm is that it is much faster than evolutionary approaches 

and works well with even large problem instances. While the evolutionary algorithms spend hours of 

computation time, our algorithm can get feasible solutions in a few milliseconds. The No Free Lunch 

Theorem (NFL) [7] tells us that there will always be new ideas and approaches leading to better 

optimization algorithms to solve a given problem. Instead of being forgotten in a short time, it is far 

more likely that most of the currently known optimization methods have at least one niche, one area 

where they are excellent. It has been experimentally shown that greedy heuristics can help eliminate 

hard constraint violations in CB-CTT. These results verify that it might as well be possible to find new 

greedy algorithms to eliminate at least a substantial portion of soft constraint violations. Further research 

is needed to determine which greedy heuristic would perform better on a given CB-CTT problem 

instance. New benchmark problem instances are also being introduced. It can be interesting to apply our 

proposed algorithm to these new problem sets and observe the results, justifying our experimental 

findings on different benchmark datasets. 
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