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Abstract 

 

Cancer is a disease that many people are exposed to, which results in the recovery of 

some and the death of others. For this reason, A system reflecting the relationship 

between immune system and tumor growth in this study is examined. This system is 

handled with the traditional Caputo fractional derivative. The stability analysis of 

equilibrium points and solution properties of this system is searched. Then, the conditions 

about the existence and uniqueness of the solution for this system are given. In conclusion, 

the fractional system is solved benefiting from Grünwald-Letnikov scheme.  
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Tümör sisteminin Caputo türev ile incelenmesi 
 

 

Öz  

 

Birçok insanın maruz kaldığı kanser, bazı hastaların iyileşmesi bazılarının ölmesi ile 

sonuçlanan bir hastalıktır. Bu nedenle bu çalışmada bağışıklık sistemi ile tümör büyümesi 

arasındaki ilişkiyi yansıtan bir sistem inceliyoruz. Söz konusu sistem, Caputo kesirli 

türevi ile ele alınacaktır. Bu sistemin denge noktalarının kararlılık analizini ve çözüm 

özelliklerini vereceğiz. Daha sonra bu sistem için çözüm özellikleri belirtilecektir. Son 

olarak, bu kesirli sistemi Grünwald-Letnikov nümerik metodunu kullanarak çözeceğiz.   

 

Anahtar kelimeler: Caputo türev, mathematiksel modelleme, nümerik çözüm.  
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1.  Introduction 

 

Tumor diseases have killed many people around the world for centuries. For this purpose, 

a lot of scientists have analyzed immune system cells in order to cope with tumor growths 

in living beings. Normal cells grow in an orderly; they die when damaged or finish their 

job in people's bodies. When genes change, the cells in people's bodies grow out of control 

and cancer starts. Cancer cells multiply too much and grow uncontrolled and this situation 

causes a tumor growth. Scientists have begun to care of mathematical model of tumor and 

immune system such as [1-4]. 

 

Immune system is basic component for living's keeping alive. If immune system is weak, 

living's bodies may be open to attack from foreign matter. It can select tissue from foreign 

matter and the immune system identifies it via antigen. If immune system come across 

foreign matter, it analyse the cell's antigen and the antigen is foreign, immune system get 

alarmed and do best for run out of body. Dendritic cells initiate antigen for immune 

system. When the antigen is identified, CD4+T cells order alarm state and they spread 

IL-2. It is cause bodies reaction which is give rise to activate CD8+T cells which attack 

and destroy cancer cells. And we say that CD4+T cells coordinate immune response. 

 

We study immune cells effected by cancer cells system which proposed in [1]. The system 

involves cancer cells, cytotoxic CD8+T cells, helper CD4+T cells, dendritic cells (DC) 

and cytokine interleukin-2 (IL-2). 

 

Fractional calculus is more important real-life problems [5-14]. Recently, work on this 

subject has increased about physic, engineering, disease etc. (for more details one can see 

[15-16]). In this paper, we clarify that the quantity of tumor and tumor growth benefiting 

from Caputo derivative. The numerical solutions of the system is obtained by Grünwald-

Letnikov method.  

 

 

2.  Basic definitions 

 

Definition 2.1 [6] Let , ( 1 )n n −    is the order for the derivative and ( )g t  be a 

function, then the definition of Caputo derivative is defined as: 

 

( ) ( ) ( )
1

0 0

1
= .
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Definition 2.2  [17-19] We give the definition of Grünwald-Letnikov which is equivalent 

to the RL definition, is based on the finite-difference scheme and is defined as follows:. 

In this method ( )gD t is approximated by  
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Here t    denotes the integer part of t  and h  is step size and for 0 1  , 
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( )gD t  can be replaced by ( )
/

=0

nt h

j n j
j

gw t

 
 

− , where nt nh=   and 
jw  are the G-L coefficients 

which are defined by:  

( )= 1 , 0,1,2,
j

jw h j
j

  −  
 
 

− =   

 

These coefficients can evaluate recursively:  
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3.  System presented by Caputo fractional derivative 

 

The ordinary differential equation (ODE) system of immune response to tumor growth 

which we use presented by [1]. The system consists of few key immune populations; 

helper CD4+T cells and cytotoxic CD8+T cells. The cytotoxic T cells able to recognize 

by dendritic cells (the best antigen tendering cells), make a good fist of killing since 

cancer cell distinguish on their face [20].  

 

The fractional differential equation (FDE) of the system is given as follow: 
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where H are the helper CD4+T cells, C are the cytotoxic CD8+T cells, M are the cancer 

cells, D are the dendritic cells, I is the IL-2. The fundamental time unit is one hour and 

we neglect the effect of cross-activity of other cells. 

 

We use (0,1   and we use positive initial values are ( ) 00 ,H H= ( ) 00 ,C C=  

( ) 00 ,M M=  ( ) 00 ,D D= ( ) 00I I=  which is given [1]. 

 

0a  and 
0c represents helper cells birth and death rate, respectively. 

0b   represents helper 

cells upon presentation of dendritic cells. 
1a  and 

1c   are cytotoxic cells birth and death 

rate, respectively, 
1b  is proliferation rate. 

2b  is saturation constant of tumor and 
2d  is 

tumor rate killing by cytotoxic cells. 
3d   is the rate of dendritic cells killed by cytotoxic 

cells. 
4 ,b 4c   and 

4e   are the rate of IL-2 production by helper cells, degradation and 

uptake by cytotoxic cells, respectively. 
0 ,f  

1,f  
2f  are carrying capacity of helper cells, 

cytotoxic cells and tumor, respectively. 
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4.  Stability of equilibria 

Theorem 1 [21, 22] The system (2) has two equilibrium points 0 1
1

0 1

, ,0,0,0
a a

P
c c
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= − . The stability of these equilibrium points depend on the sign 

of 
1 2 2 1.a d b c−   

i) If 
1 2 2 1a d b c , then 

1P  is stable and 
2P  is unstable. 

ii) If 
1 2 2 1a d b c  , then 

1P  is unstable and 
2P  is stable. 

 

Proof 1 We investigate the dynamic behaviour system and designate equilibrium point. 

Firstly, we write as follow: 
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with system parameters are given in [1]. There are two points ( )1 1 1 1 1 1, , , ,P H C M D I=  and 

( )2 2 2 2 2 2, , , ,P H C M D I=  after the necessary operations are taken and defined by 
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Hence, obtained 0 1
1
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, ,0,0,0
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P
c c
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After studying Jacobian matrix ( ) ,J P  we find the eigenvalues as follow:  
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Because system coefficients are positive, the eigenvalues are all negative but 1 2 2 2

1

a d b c

c

−
−  

or 1 2 2 2

1

a d b c

c

−
. So, the stability of two equilibrium points connects with the sign of 

1 2 2 1a d b c− . Thus, if 
1 2 2 1a d b c , then 

1P  is stable and 
2P  is unstable. Otherwise, 
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1 2 2 1a d b c , and 
1P  is unstable and 

2P  is stable. Considering parameters, it is concluded 

that 
1P  is unstable and 

2P  is stable. 

 

 

5.  The existence and uniqueness of the system 

 

Let all parameters are positive and system Eq. (2) with the initial conditions ( )0 0,H   

( )0 0,C   ( )0 0,M   ( )0 0,D   ( )0 0I   where 0 1.   Let 
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System (2) can be written in matrix form as follows where  0,t   

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4 5

6 7 8 .

D F K t HF K t CF K t MF K t ICF K t

IC M D F K t MF K t DHF K t





= + + + +

+ + + + +
                                         (3) 

 

We will give some definitions to use in the following which are given in [23–25]. 

 

Definition 3 Let  0,C 
 be the class of continuous column vector K (t) and ( )H t , ( )C t

, ( )M t , ( ),D t  ( )I t  which are the components of L (t) be the class of continuous 

functions on the interval  0, . The norm of K C  0,  is shown by a  

 

= sup ( ) sup ( ) sup ( ) sup ( ) sup ( )Nt Nt Nt Nt Nt

t t t t t

L Ke H t Ke C t Ke M t Ke D t Ke I t− − − − −+ + + +  

if > 0,t    we write  0,C 
 and  0, .C 
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Definition 4  0,K C   is a solution of the initial value problem in Eq.(3) if   

 • ( )  , ( ) , 0,t K t B t   where  = 0, ,B L   ( ) 5= , , , , : ,L H C M D I R H h+   

, , ; , , , ,C c M m d d I i h c m d i     are positive constants.  

 • ( )X t  verify in Eq.(3).  

  

Theorem 2 The initial value problem Eq.(3) has a unique solution  0, .K C    

 

Proof 2 Considering characteristics of fractional calculus and Eq.(3), we have 
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 We obtain with I   
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If choose N following  

 

( ( ) )1 2 3 4 5 6 7 8N F hF cF mF icF ic m d F mF dhF  + + + + + + + +  

 

then  
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So, the operator F with Eq. (5) has fixed point. Thus, Eq. (4) has a unique solution
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Using Eq. (4) it is said that  0,'K C  . Again, from Eq. (4), get  
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( ) ( ) ( ) ( )6 7 8 .IC M D F K t MF K t DHF K t + + + + +   
 

Hence, it is obtained 
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So, we get 

 

0 1 2 3 4(0) = (0) (0) (0) (0)K K I F K HF K CF K MF K+ + + +   

( ) 6 7 8 0(0) (0) (0) = .I C M D F K MF K DHF K K+ + + + +   
 

 Consequently, Eq.(4) is equivalent to the initial value problem Eq. (3).  

 

 

6.  Numerical solution and results 

 

To solve the FDE system in (2) we should discretize it. For this aim, we can use 

Grünwald-Letnikov method. Benefiting from G-L method in the system (2), we obtain  
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 
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 −  

 
− = + + − − 

 −  

 
− = − − 

 −  

− = −
 −

− =
 −









 4 4 .n n ne I C c I− −

                                                (6)                                                     

 

We have used initial values 
0 0,H =  

0 0,C =  
0 1,M =  

0 10,D =  
0 0,I =  parameters 

4

0 10 ,a −=  
1

0 10 ,b −=  0 1,f =  0 0.005,c =  
4

1 10 ,a −= 2

1 10 ,b −=
 1 1,f =  1 0.005,c =  2 0.02,b =  

2 1,f =  2 0.1,d =  2 0.1,d =  3 0.1,d =  
2

4 10 ,b −= 7

4 10 ,e −=  
2

4 10c −=  and Eq.(6) and get 

results are illustrated about helper, cytotoxic, myeloid (tumor) and dendritic cells, IL-2 in 

Fig. 1-5 especially fractional order 0.7, 0.65, 0.6 = . We see that via Fig. 3, tumor cells 
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are rapidly decreasing but fractional order   close to 0.7 , the decreasing is more slowly. 

It is seen that via Fig. 1 and 2, the immune system cells are rapidly increasing 

simultaneously tumor cells. Because tumor mass in the system causes the immune system 

cells to raise rapidly. Especially, the level of tumor cells at fractional order 0.7 =  is 

higher than if 0.6 =  because fractional calculus has hereditary property.  

 

 
Figure 1. Figures of helper cells for changing .  

 

 
Figure 2. Figures of cytotoxic cells for changing .  
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Figure 3. Figures of myeloid (tumor) cells for changing .  

 

 
Figure 4. Figures of dendritic cells for changing .  

 

 
Figure 5. Figures of IL-2 for changing .  
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7.  Conclusion  

 

In this study, we give brief information about response immune system to tumor growth 

and Caputo fractional derivative. We give some detail of equilibrium point and numerical 

solution of the system (2), then, we deeply analyse the solution properties of the fractional 

order system. Lastly, we give some numerical results and see that these graphics of the 

FDE system are very interesting. This effect is due to the fact that FDE is non-local and 

the FDE is more appropriate real-life problem. 
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