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Abstract
Let G be a finite group and S be a proper subgroup of G. A group G is called an S-(S-
quasinormal)-group if every local subgroup of G is either an S-quasinormal subgroup or
conjugate to a subgroup of S. The main purpose of this construction is to demonstrate a
new way of analyzing the structure of a finite group by the properties and the number of
conjugacy classes of its local subgroups.
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1. Introduction
The efforts to investigate the importance of subgroups of prime power order date back

to Sylow’s theorems. A notion which is closely related is that of local subgroups of a
finite group, i.e., the normalizers of non-identity subgroups of prime power order. There
are a number of famous normal p-complement theorems, such as the one due to Burnside
and the one due to Frobenius. It is always worth noting that Thompson’s normal p-
complement theorems (cf. [12, 13]) vitalized the field of finite group theory in the 1960s
and still exert a powerful influence on the studies of group structure. As is well-known,
local subgroups also lie at the heart of the classification of finite simple groups, where
Thompson’s classification of N -groups [14] is one of the most remarkable contributions.

Indeed, the initial motivation for the present article has its root in the monumental
papers of Thompson. In his classification of N -groups, “uniqueness theorems” play a
significant role, which virtually state that certain subgroups are contained in a unique
maximal subgroup. Without any doubt, its ramifications are worth studying. From our
perspective, one may find it intriguing to somehow extend the idea from maximal subgroups
to maximal local subgroups. Note that a proper local subgroup of a group is a maximal local
subgroup if it is maximal under inclusion among all proper local subgroups. Thus a question
can be raised intuitively: What if certain subgroups are contained in unique (conjugacy
classes of) maximal local subgroups? This is where the present article originates. We
remark that in Definition 1.1, the subgroup S can be a maximal local subgroup of G
whereas the construction does not restrict it to being so. Namely it can be any proper
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subgroup containing a maximal local subgroup. This makes our results of more general
interest.

The present article provides a possible framework of describing finite groups exactly by
their local subgroups. It may allow us to see more clearly the structures of different finite
groups from the properties and the number of conjugacy classes of their local subgroups.
In the present article, we will utilize the S-quasinormal subgroups, which permute with
all Sylow subgroups of the group. The topic of conjugacy classes has always been a
general topic in group theory (see for example the recent articles [2,3,6,10]). With regard
to the number of conjugacy classes of local subgroups, the results in the present article
apply to finite groups having exactly one conjugacy class of maximal local subgroup and
the present article provides possible approach to exploring finite groups with multiple
conjugacy classes of maximal local subgroups.

Recall that a subgroup H of a group G is said to be an S-quasinormal subgroup if
for each Sylow subgroup P of G we have PH = HP . This concept was first introduced
by Kegel [7] and its generalizations have been widely studied by many authors. See for
example [1, 8, 11]. We remark that S-quasinormal subgroups are feasible to control and
suitable to be applied to the construction of our approach, which is why we concentrate
on this notion in the present article. Now we can give the new definition which plays a
central role in this article.

Definition 1.1. Let S be a proper subgroup of a finite group G. Then G is called an
S-(S-quasinormal)-group if for every local subgroup L of G one of the following holds:

(1) L is an S-quasinormal subgroup of G;
(2) L is G-conjugate to a subgroup of S.

Remark 1.2. An S-(S-quasinormal)-group G is by definition not a trivial group. See
Example 2.2 for examples of S-(S-quasinormal)-groups. One may see that a group can be
seen as an S-(S-quasinormal)-group for different S. For instance, as shown in the present
article, if a group G is a 1-(S-quasinormal)-group, then it is also an S-(S-quasinormal)-
group for an arbitrary proper subgroup S of G.

Section 3 shows that an S-(S-quasinormal)-group has non-trivial Fitting subgroup. In
Section 4, 1-(S-quasinormal)-groups are described and a solvability criterion for S-(S-
quasinormal)-groups is given. Section 5 consists of an application in investigating the
structure of finite groups using the new concept.

Throughout the present article all groups are finite. The standard notation and termi-
nologies follow those in [5]. Let G be a finite group and p a prime. Denote by π(G) the
set of prime divisors of |G|; np means the largest power of p dividing an integer n; [A]B
denotes a split extension of a normal subgroup A by a complement B; the Fitting subgroup
of G is denoted by F (G); Sol(G) is the largest solvable normal subgroup of G, which is
also called the solvable radical of G; HG = coreG(H) is the largest G-invariant subgroup
contained in a subgroup H of G.

2. Preliminaries
Lemma 2.1 ([7]). Let K be a normal subgroup of G. If U is a subgroup of G, then UK/K
is an S-quasinormal subgroup of G/K if and only if U is an S-quasinormal subgroup of G.

Example 2.2. The following groups are S-(S-quasinormal)-groups.
(1) The dihedral group of order 8 is an S-(S-quasinormal)-group for any proper sub-

group. In particular, it is a 1-(S-quasinormal)-group.
(2) The symmetric group S4 = ⟨(12), (1234)⟩ is an S-(S-quasinormal)-group, where

S is a non-normal elementary abelian subgroup of order 4 or isomorphic to the
dihedral group of order 8.
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Proof. (1) It follows from the fact that the Sylow subgroup of this group is exactly the
whole group.

(2) Every non-normal elementary abelian subgroup of order 4 is the normalizer of some
subgroup of order 2 in S4. But such subgroups are not S-quasinormal as they do not
permute with the Sylow 3-subgroups of S4. Since other local subgroups of G are S-
quasinormal, by Definition 1.1 the group S4 is an S-(S-quasinormal)-group for a subgroup
S of S4 containing a non-normal elementary abelian subgroup of order 4. �

Lemma 2.3. Let G be an S-(S-quasinormal)-group. If N is a normal subgroup of G with
N ⊆ S, then G/N is an S/N -(S-quasinormal)-group.

Proof. It is clear that S/N is a proper subgroup of G/N . Let H/N be any non-identity
subgroup of G/N of prime power order. It follows that |H/N | = pn for some prime
p and n > 1. Denote by P a Sylow p-subgroup of H. Then Frattini argument gives
that NG/N (H/N) = NG(P )N/N . If NG(P ) is an S-quasinormal subgroup of G, then by
Lemma 2.1, NG(P )N/N is an S-quasinormal subgroup of G/N and so NG/N (H/N) is
an S-quasinormal subgroup of G/N . Now suppose that NG(P ) is not an S-quasinormal
subgroup of G. Then NG(P ) is conjugate to a subgroup of S. Let NG(P )x 6 S for some
x ∈ G. Noting N 6 S, we have NG/N (H/N)xN = (NG(P )N/N)xN = NG(P )xN/N 6
S/N . Thus G/N is an S/N -(S-quasinormal)-group. �

Lemma 2.4. Let G be an S-(S-quasinormal)-group. If N is a non-solvable minimal
normal subgroup of G, then

(1) N ̸⊆ S;
(2) G = NS.

Proof. (1) Assume that the statement is false and let N 6 S. Denote by P a non-identity
Sylow subgroup of N . Since N is a characteristically simple group, NG(P ) is not an S-
quasinormal subgroup of G. By the definition of S-(S-quasinormal)-groups, NG(P ) is a
G-conjugate of some subgroup of S, i.e., NG(P )x 6 S for some x ∈ G. It follows from
Frattini argument that G = NG(P )N = NG(P )xN 6 S and therefore G = S < G, a
contradiction.

(2) Assume that the subgroup NS is a proper subgroup of G. Then G is an NS-(S-
quasinormal)-group. Now (1) gives N ̸⊆ NS, which is absurd. �

3. Two solvable subgroups of an S-(S-quasinormal)-group
The next theorem implies that, for an S-(S-quasinormal)-group, all normal subgroups

contained in S are solvable.

Theorem 3.1. Let G be an S-(S-quasinormal)-group. Then SG is solvable.

Proof. We write T = SG and denote N = Sol(T ) to be the solvable radical of T . It
follows from Lemma 2.3 that G/N is an S/N -(S-quasinormal)-group. If N ̸= 1, then an
induction indicates that T/N is solvable and that T is hence solvable. Now we may let
N = 1 and T > 1. Consequently, there is a non-solvable minimal normal subgroup M of
G in T 6 S. This is in contradiction to Lemma 2.4 and entails that T = 1. Thus the
lemma follows. �

Fitting subgroups are always applied as an important part of group-theoretic proofs.
We prove in the following theorem that any S-(S-quasinormal)-group has non-identity
Fitting subgroup.

Theorem 3.2. If G is an S-(S-quasinormal)-group, then the Fitting subgroup F (G) > 1.
In particular, G is not a non-abelian simple group.
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Proof. Assume that the theorem is false and let G be a counterexample of the smallest
order. Suppose that S is a proper subgroup of G and that G is an S-(S-quasinormal)-group
with F (G) = 1. Let N be a minimal normal subgroup of G. Since F (N) 6 F (G) = 1, the
minimal normal subgroup N of G is not solvable. Now Lemma 2.4 gives that N ̸⊆ S and
G = NS. The proof is divided into the following steps.

(i) G is a non-abelian simple group.
Let S0 = S ∩ N < N . We first prove that N is an S0-(S-quasinormal)-group.

Assume that P > 1 is a subgroup of N of prime power order. As N is a char-
acteristically simple group, NG(P ) is not an S-quasinormal subgroup of G. By
the definition of S-(S-quasinormal)-groups, NG(P ) is conjugate to a subgroup
of S. Suppose that NG(P )g 6 S for some g ∈ G. Recall that G = NS. It
follows that there exist n ∈ N and x ∈ S such that g = nx. We now have
NN (P ) = N ∩ NG(P ) 6 N ∩ Sg−1 = N ∩ Sn−1 = (N ∩ S)n−1 = Sn−1

0 . This proves
that N is an S0-(S-quasinormal)-group.

The choice of G entails that the minimal normal subgroup N is G itself. Oth-
erwise F (G) > F (N) > 1. Now we have deduced that G is a non-abelian simple
group.

(ii) Every local subgroup of G is conjugate to a subgroup of S.
Since by (i) G is a non-abelian simple group, the local subgroups of G are proper

subgroups. The simplicity of G also forces that S is not an S-quasinormal subgroup.
Now (ii) follows immediately from the definition of S-(S-quasinormal)-groups.

(iii) A contradiction.
Assume that P1 ∈ Sylp(G) for a prime p dividing |G : S|. Then it is obvious

that NG(P1) is not conjugate to any subgroup of S, contradicting (ii). �

4. Solvable S-(S-quasinormal)-groups
This section considers solvable S-(S-quasinormal)-groups. We first show that 1-(S-

quasinormal)-groups are solvable, and, in particular, nilpotent.

Theorem 4.1. If G is a 1-(S-quasinormal)-group, then G is a nilpotent group.

Proof. Since G is a 1-(S-quasinormal)-group, every local subgroup of G is S-quasinormal.
Let p be a prime divisor of |G| and let P be an arbitrary Sylow p-subgroup of G. Then
NG(P )P ∗ = P ∗NG(P ) for any Sylow p-subgroup P ∗ of G. It follows that NG(P )P ∗

is subgroup of G. Now the order of NG(P ) forces that NG(P ) ∩ P ∗ = P ∗ and hence
P ∗ 6 NG(P ), otherwise the number |NG(P )P ∗|p would exceed the largest p-power dividing
|G|. Then P ∗ is also a Sylow p-subgroup of NG(P ) as |P | = |P ∗|. But P is normal in
NG(P ) and therefore NG(P ) has unique Sylow p-subgroup. This indicates that P = P ∗,
i.e., Sylow subgroup P is normal in G. Thus G is nilpotent. �

When the structure of S changes, an S-(S-quasinormal)-group is not necessarily nilpo-
tent (cf. Example 2.2(2)). We now provide an equivalent condition for an S-(S-quasinormal)-
group to be solvable.

Theorem 4.2. An S-(S-quasinormal)-group G is solvable if and only if S is solvable.

Proof. The necessity is clear. It follows from Theorem 3.2 that F (G) ̸= 1 and therefore
G has a minimal normal subgroup U that is elementary abelian. If SU < G, then G is an
SU -(S-quasinormal)-group, where SU is solvable. Since Lemma 2.3 implies that G/U is
an SU/U -(S-quasinormal)-group, we can obtain from induction that G/U is solvable, and
hence G is solvable. Thus we may let G = [U ]S. The solvability of G in this situation is
obvious as both G/U and U are solvable. �
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5. An application
Although Definition 1.1 does not concern the structure of S, the following theorem

indicates that there are no finite groups all of whose non-S-quasinormal local subgroups
are contained in a single conjugacy class of non-abelian simple subgroups.
Theorem 5.1. If G is an S-(S-quasinormal)-group, then S is not a non-abelian simple
group.
Proof. Suppose that the theorem is false. Let G be a counterexample of the smallest
order. Then G is an S-(S-quasinormal)-group with S a non-abelian simple subgroup of
G. In view of Theorem 3.2, F (G) ̸= 1 and we can identify a minimal normal subgroup
P of G that is elementary abelian. Suppose that PS is a proper subgroup of G. Then
Lemma 2.3 indicates that G/P is a PS/P -(S-quasinormal)-group. However, PS/P ∼= S
is a non-abelian simple group, in contradiction to the minimal choice of G. Now we may
let G = [P ]S.

We claim that G is a Frobenius group with Frobenius kernel P . Suppose that a non-
identity element x ∈ P satisfies CG(x) > P . Then CG(x) ∩ S > 1, and hence there
exists an element y ∈ CG(x) ∩ S of prime order. Write Y = ⟨y⟩. Consequently, x ∈
NG(Y ) and it follows that P ∩ NG(Y ) > 1. If NG(Y )g 6 S for some g ∈ G, then
P ∩ S > 1, a contradiction. Thus NG(Y ) is an S-quasinormal subgroup of G, which is
again contradicting the simplicity of S as NG(P ) ∩ S > 1. We now have that CG(x) ⊆ P
for all 1 ̸= x ∈ P and thus G is a Frobenius group with Frobenius kernel P and Frobenius
complement S.

The structure of Frobenius groups has been indicated in [4, p. 86], which yields that the
odd-order Sylow subgroups of S are cyclic and that its Sylow 2-subgroups are either cyclic
or generalized quaternion. An immediate contradiction is that S is metacyclic provided
that the Sylow 2-subgroups of S are cyclic. Assume otherwise that S has a generalized
quaternion Sylow 2-subgroup. Then the Brauer-Suzuki theorem asserts that the order of
the center of S is 2, contradicting the simplicity of S. This final contradiction completes
the proof. �
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