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Abstract

Catalases are antioxidant enzymes which are responsible for decomposition of hydrogen
peroxide to water and oxygen. Catalase activities have been shown to be influenced by
environmental factors and stress conditions. In this study, in silico analysis on the
structure and possible functions of the catalase protein which was retrieved from genbank
and abbreviated as NtCAT-1 (Accession no: NP_001312341.1) in Nicotiana tabacum L.
was performed via bioinformatic tools. The results of this sudy suggested that the ORF of
NtCAT-1 gene is 1479 bp and encodes a polypeptide of 492 amino acids. The predicted
polypeptide was revealed as a 56.82 kDa protein with a pl of 6.27. The polypeptide had
an aliphatic index of 71.52 and the grand average of hydropathicity (GRAVY) of -0.519.
NtCAT-1 protein is hydrophilic and localised in Peroxisome. NtCAT-1 had two conserved
domains at the positions of 18-399 and 421 and 486. had the catalase activity motif
(CAM) at the position of 54-70 and heme-binding site (HBS) at the position of 344— 352.
A highly reliable 3D structure was obtained and from Ramachandran plot analysis it was
found that the portion of residues falling into the most favoured regions was 97.23%. The
results of this study will provide fundamental information for further research in silico
studies on catalase protein in different plant species.
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Nicotiana tabaccum L. katalaz proteininin in siliko analizi

Oz

Katalazlar, hidrojen peroksitin su ve oksijene ayrismasindan sorumlu olan antioksidan
enzimlerdir. Katalaz aktivitelerinin ¢evresel faktorlerden ve stres kosullarindan
etkilendigi gosterilmistir. Bu ¢aliymada Nicotiana tabaccum L. katalaz proteininin
biyoinformatik arag¢larla in siliko analizi yapilmistir. Bu arastirmanmin sonuglari,
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NtCAT-1 geninin ORF'sinin 1479 bp oldugunu ve 492 amino asitlik bir polipeptidi
kodladigini géstermistir. Ongoriilen polipeptit, 6.27'lik bir pl ile 56.82 kDa'lik bir protein
olarak ortaya ¢iknugtir. Polipeptit, 71.52'lik bir alifatik indekse ve -0.519'luk biiyiik
hidropatisite (GRAVY) ortalamasina sahiptir. NtCAT-1 proteini hidrofiliktir ve
peroksizomda lokalizedir. NtCAT-1, 18-399 ve 421 ve 486 pozisyonlarinda iki korunmusg
domaine sahiptir. 54-70 pozisyonunda katalaz aktivite motifine (CAM) ve 344-352
pozisyonunda heme-baglama bélgesine (HBS) sahiptir. Son derece giivenilir bir 3B yapi
elde edilmis ve Ramachandran ¢izim analizinden, en ¢ok tercih edilen bélgelere diisen
rezidiilerin %97.23 oldugu bulunmustur. Bu ¢aliymanin sonuglari, farkl bitki tiirlerinde
katalaz proteini ile ilgili in siliko ¢aliymalarinda daha ileri arastirmalar icin temel
bilgiler saglayacaktir.

Anahtar kelimeler: Nicotiana tabaccum L., katalaz, in siliko

1. Introduction

Plant growth was affected from abiotic stresses factors such as drought, salinity,
temperatures and other extreme environmental conditions. When plants exposed to these
stressors; reactive oxygen species (ROS) are produced and damage the cellular
components [1,2]. Plants have both non-enzymatic and enzymatic scavenging systems to
eliminate these aggressive oxygen species as protective mechanisms [3,4]. Hydroxyl
radicals are very reactive, and it is hard to control them directly, so aerobic organisms use
superoxide and hydrogen peroxide, which are the less reactive precursor forms [4].

Catalases are antioxidant enzymes which are responsible for decomposition of hydrogen
peroxide to water and oxygen and consist of two groups such as monofunctional catalases
and catalase-peroxidases. Non-heme manganeses (Mn-catalases) are initially referred to
as pseudocatalases. Non-heme manganeses form a minér group that can be the third
group of catalytically active enzymes and present only in bacteria [5]. Among the other
two groups, the monofunctional catalases are the best characterized. Although both types
are heme enzymes with high catalase activities, they show significant differences such as
no sequence similarity, different protein structures and active sites. They both found in
all aerobic living organisms [6]. Catalase activities have been shown to be influenced by
environmental factors and stress conditions such as; drought, salinity, plant pathogens
and insects, light, temperature, 02 and CO> concentration [7-10]. Nicotiana tabaccum L.
is an annually grown herbaceous plant; which is the major source of nicotine. Besides
mostly being used as cigars, Nicotiana tabaccum is also used as an insecticide too [11].

Hence, thorough study of in silico analysis of the catalase gene and enzyme present in
Nicotiana tabaccum can clarify its role in defence mechanism against infection. In the
era of genomics, bioinformatics has become highly significant, assisting in the genome-
wide discovery and characterization of potential genomic regions of different enzymes
for a variety of industrial applications. Therefore, present communication deals with the
bioinformatics analysis on the characterization of the protein sequence of catalase from
Nicotiana tabaccum and subjected to structural and phylogenetic analysis.

The results of the present study provide additional evidence into basic bioinformatic
characteristics of the Nicotiana tabacum catalase protein.
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2. Materials and methods

The amino acid sequence of catalase protein (Accession no: NP_001312341.1) from
Nicotiana tabacum was retrieved from NCBI (https://www.ncbi.nlm.nih.gov/protein) [12]
and abbreviated as NtCAT-1. Online biotechnology tools were used to predict the
structural properties and phylogenetic analysis of the NtCAT-1. Blast analysis was
performed by using the amino acid sequence of NtCAT-1 and aligned according to their
structure similarities from NCBI BLAST tool (https://www.ncbi.nlm.nih.gov/protein) [12].
The ProtParam software (http://web.expasy.org/protparam/) [13] was used to identify the
theoretical pl, molecular weight (MW) and the grand average of hydropathicity
(GRAVY) of the NtCAT-1. The positions of the conserved domains were calculated by
using PFAM server (http://pfam.xfam. org/) [14]. The heme-binding site and catalytic
active site of NtCAT-1 protein were detected by using InterPro [15]. Subcellular
localization was predicted by using PlantmPLoc [16]. Conserved domains of the protein
were predicted by NCBI conserved domain search (https://www.ncbi.nlm.nih.gov/protein)
[12] and the three-dimensional (3D) structure of NtCAT-1 was predicted by using
I_TASSER (https://zhanggroup.org/I-TASSER/ ) [17] and a Ramachandran plot analysis
was performed by MolProbity [18]. NetPhos 3.1 (http://www.cbs.dtu.dk/services/NetPhos/)
[19] was used to determine the putative phosphorylation sites of the NtCAT-1 protein.
Different motifs of the NtCAT-1 protein were determined by using Motif scan tool
(http://myhits.isb-sib.ch/cgi-bin/motif_scan) [20].

BioEdit 7.2 [21] was used to analyse the open reading frame (ORF) of the NtCAT-1 gene
(Accession no: NM_001325412.1) and conduct multiple alignment of the deduced amino
acid sequence of the NtCAT-1 with the other catalases, including Nicotiana
tomentosiformis catalase isozyme 1 (XP_009590727.1), Capsicum annuum catalase
(PHT66671.1) Solanum lycopersicum catalase isozyme 1 (NP_001234827.1), Prunus
persica catalase (CAD42909.1), Ziziphus jujuba catalase (NP_001310800.1), Olea
europaea var. sylvestris catalase (XP_022880282.1), Theobroma cacao catalase 2
(EOY15259.1), and Eriobotrya japonica catalase 1 (AGE15298.2). MEGA 6 software
[22] was used to construct a phylogenetic tree using the neighbour-joining (NJ) method
with 1000 bootstrap replicates.

3. Results and discussion

The ORF of NtCAT-1 gene is 1479 bp long and encodes a polypeptide of 493 amino acids.
The predicted polypeptide was revealed as a 56.82 kDa protein with a pl of 6.27. The
polypeptide had an aliphatic index of 71.52 and the grand average of hydropathicity
(GRAVY) of -0.519, indicating that the NtCAT-1 protein is hydrophilic. According to
the ProtParam (http://web.expasy.org/protparam/) [13] results; NCAT-1 is localised in
Peroxisome. A search of the NCBI Conserved Domain Database (https://www.nchi.nlm.
nih.gov/protein) [12] indicated that the predicted protein belongs to catalase clade 1
(Figure 1A) and PFAM server (http://pfam.xfam. org/) [14] results clearly indicated that
NtCAT-1 had two conserved domains at the positions of 18-399 and 421 and 486.

According to the InterPro software [15] NtCAT-1 had the catalase activity motif (CAM)
at the position of 54—70 and heme-binding site (HBS) at the position of 344— 352 (Figure
1B). As NtCAT-1 contains the heme-binding site and conserved catalytic active site,
which are very critical in catalytic function and the heme ligand, NtCAT-1 is accepted as

820


http://molprobity.biochem.duke.edu/

DENIZ SONMEZ G.

a typical catalase. The presence of the deduced amino acid sequence of NtCAT-1 showed
the evidence of a putative peroxisomal targeting signal (PTS1) motif
QKVASRLTLKPTM that contains conserved QVV/I/L amino acid residues at the
position of 480-482 (Figure 1B). The heme binding site residues were found to be at the
positions of 62, 63, 64, 65, 102, 121, 122, 123, 136, 137, 138, 143, 148, 151, 207, 208,
324, 340, 343, 344, 347, 348, 351, 352, 355. These results clearly demonstrated that
NtCAT-1 is a peroxisomal catalase, which is consistent with the results of previous
studies [23-25].
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Figure 1. Open reading frame and amino acid residues of NtCAT-1 A) Conserved
protein domains of NtCAT-1 B) cDNA and amino acid sequences of NtCAT-1. CAM
residues were shown as highlighted, HBS motif was shown as highlighted and italic,
PTS1 motif was shown as highlighted and bold.
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The 3D structure of the proteins has very important role in understanding protein
functions and determining the active sites. This kind of analysis provide important data
for drug design studies [26]. The putative 3D structure of NtCAT-1 was predicted by I-
TASSER (https://zhanggroup.org/I-TASSER/ ) [17] in order to reveal relationship
between the structure—function with an estimated TM-score of 0.99+0.04 which
suggested that the predicted structure is highly reliable. As shown in Figure 2, the
predicted structure of NtCAT-1 is a homotetramer which has conceptually four subunits,
which is in similar fashion with a pervious study [27].

According to the blast analysis as performed by using the amino acid sequence of NtCAT-
1 according to their structure similarities; NtCAT-1 shared the highest similarity with the
template protein 4QOL-A with a Query Cover of 95%, Percent Identity of 50.42% with
an E-value of 5e-166. Ramachandran plot analysis helps to identify the protein structure
on the premise of phi (¢) and Psi y angles to determine the quality of protein 3D
structures. According to the results based on the Ramachandran plot analysis by
MolProbity [18]; 99.9% (1947 out of 1948 residues) were in allowed (>99.8%) regions.
There were 1 outliers (phi, psi): D 484 Ser (109.6, -32.6)) so > 99% residues have allowed
conformations. From Ramachandran plot analysis it was found that the portion of
residues falling into the most favoured regions was 97.23%, (Figure 3). Ramachandran
plot for general, isoleucine and valine, Pre-proline, glycine, trans proline and cis proline
and are also done and found that they all fall under allowed regions so this result provided
the reliability of the model.

Figure 2. Predicted 3D-structure model of NtCAT-1 protein using I-Tasser
(https://zhanggroup.org/I-TASSER/ ) [17]
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Figure3. Ramachandran plot analysis using MolProbity [18]. Distribution of (¢,y)
angles of NtCAT-1 protein structures shown on Ramachandran plot map.
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Figure 4. Putative phosphorylation sites of the NtCAT-1 protein by NetPhos
(http://www.cbs.dtu.dk/services/NetPhos/) [19] with a score above a threshold of 0.5.
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Different motifs (Table 1) were determined by Motif scan tool (http://myhits.isb-
sib.ch/cgi-bin/motif_scan) [20]. Through the seven types of motifs, casein kinase II
phosphorylation site and N-myristoylation site have the highest numbers of motifs as 8
and 6 respectively (Table 1). N-myristoylation is a modification in which the covalent
attachment of a 14-carbon saturated fatty acid called myristate to the N-terminal glycine
residue of proteins. Myristoylation has an effect on the conformational stability of
proteins and their interaction with membranes or the hydrophobic domains of other
proteins [31]. Casein kinase 2 (CK2) is an active kinase which is expressed constitutively,
has key roles in a broad range of cellular events such as transcription and translation,
ribosome biogenesis, cell cycle progression, and apoptosis [32].

Table 1. The motifs of the NtCAT-1 protein by Motif Scan (http://myhits.isb-sib.ch/cgi-
bin/motif_scan) [20]

Motif information Nursr;tbeir of Amino acid residues
Amidation site 1 414-417
N-glycosylation site 2 28-31,247-50
Casein kinase |1 10-13, 85-88, 115-118, 150-153,
o 8 236-239, 292-295, 395-398, 472-475
phosphorylation site
N-myristoylation site 4 111-116, 245-250, 332-337, 479-484
Protein kinase C 5 70-72,115-117, 154-156, 351-353,
phosphorylation site 414-416, 487-489
Catalas_,e pr_OX|maI active 1 54-70
site signature
Catalase family profile 1 14-492
Catalase prO_X|maI heme-ligand 1 344352
signature
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BLASTp analysis of NCBI database (https://www.ncbi.nlm.nih.gov/protein) revealed that
NtCAT-1 deduced amino acid sequences had the closest match to Nicotiana
tomentosiformis catalase isozyme 1 (99.39%) among other plants examined. A putative
calmodulin binding domain is located from the 413" to 453" residues in NtCAT-1. Ina
similar fashion, a putative calmodulin binding domain is located between the 415™ and
451% residues in IbCAT2 of Ipomea batatas [23].  Previous studies revealed that
calmodulin and calcium have an exclusive part in posttranslational regulation of catalase
in Arabidopsis and sweet potato [33]. The PTS1 motif (QK-L), which has been shown
to commonly exist in many CATs and directed catalase import into peroxisome was
identified at the C-terminus of NtCAT-1. According to the results, NtCAT-1 could be
considered as potentially regulated and activated by calmodulin and calcium.

CAM and HBS motifs from the selected species were also identified (Figure 5A). The
results showed that there was the amino-acid composition of the HBS motif is more
polymorphic than the CAM and PTS1 motifs. and the QKL/I/V amino acid residues in
the PTS1 motif were highly conserved. Amino acid smilarities and conserved residues
were shown in (Figure 5A).

The NJ tree of NtCAT-1 also proved that NtCAT-1 had the highest similarity with
Nicotiana tomentosiformis catalase isozyme 1 (Figure 5B). NJ tree also revealed that
NtCAT-1 shared the lowest similarity with Olea europaea var. sylvestris catalase among
the plant catalases examined. NJ tree construction is used in many protein studies to
cluster the protein in interest with other related proteins. These results suggest that; the
NtCAT-1 protein encodes a putative peroxisomal catalase, which is likely regulated and
activated by calmodulin and calcium (Figure 5A).

4. Conclusion

In this study, in silico analysis of Nicotiana tabacum catalase protein was carried out
using bioinformatic tools. The results of this study will provide fundamental information
for further research in silico studies on catalase protein in different plant species.
Additional detailed experimental studies are needed such as protein structure and
crystallography are needed which will help to understand the role of the protein in plant
defence.
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