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Rational generalized Stieltjes functions
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ABSTRACT. The rational meromorphic functions on C\R are studied. We consider the some classes of one, as the
generalized Nevanlinna Nκ and generalized Stieltjes Nk

κ classes. By Euclidean algorithm, we can find indices κ and
k, i.e. determine which class the function belongs to Nk

κ.
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1. INTRODUCTION

Recall a generalized Nevalinna class Nκ and a generalized Stieltjes class Nk
κ.

Definition 1.1. A function f meromorphic on C\R with the set of holomorphy hf is said to be in the
generalized Nevanlinna class Nκ (κ ∈ N), if for every set zi ∈ C+ ∩ hf (j = 1, . . . , n) the form

n∑
i,j=1

f(zi)− f(zj)
zi − zj

ξiξj

has at most κ and for some choice of zi (i = 1, . . . , n) it has exactly κ negative squares. For f ∈ Nκ, let
us write κ−(f) = κ. In particular, if κ = 0 then the class N0 coincides with the class N of Nevanlinna
functions. A function f ∈ Nκ is said to belong to the class N+

κ (see [8, 9]) if zf ∈ Nk and to the class
Nk
κ (k ∈ N) if zf ∈ Nk

κ (see [3], [4]). In particular, if k = 0, then N0
κ := N+

κ . The function f ∈ N−kκ ,

if f ∈ Nκ and
1

z
f ∈ Nk (see [5]).

Recall some properties of the generalized Nevanlinna functions and generalized Stieltjes
functions.

Proposition 1.1. ([8]) Let f ∈ Nκ, f1 ∈ Nκ1 , f2 ∈ Nκ2 . Then
(1) −f−1 ∈ Nκ.
(2) f1 + f2 ∈ Nκ′ , where κ′ ≤ κ1 + κ2.
(3) If, in addition, f1(iy) = o(y) as y →∞ and f2 is a polynomial, then

(1.1) f1 + f2 ∈ Nκ1+κ2
.

(4) Every real polynomial P (t) = pνt
ν + pν−1t

ν−1 + . . .+ p1t+ p0 of degree ν belongs to a class
Nκ, where the index κ = κ−(P ) can be evaluated by (see [8, Lemma 3.5])

(1.2) κ−(P ) =

{ [
ν+1
2

]
, if pν < 0; and ν is odd ;[

ν
2

]
, otherwise .
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Proposition 1.2. ([2]) Let f ∈ Nk
κ. Then the following equivalences hold:

(1) f ∈ Nk
κ ⇐⇒ − 1

f ∈ N−kκ ;
(2) f ∈ Nk

κ ⇐⇒ zf(z) ∈ N−κk .

Lemma 1.1 ([7, Lemma 3.2]). Let P (z) be a polynomial of the degree ν and let α ∈ R. Then:

(1) if zP (z) ∈ Nκ, then

(1.3) (z − α)P (z) ∈ Nκ;

(2) if P (z) ∈ Nκ, then

(1.4)
(z − α)

z
P (z) ∈ Nκ′ , where κ′ = κ+ κ−

(
−αP (0)

z

)
;

(3) if ((z − α)P (z)− g(z)) ∈ Nk
κ, then

(1.5) (−αP (0)− g(z)) ∈ N
(k−k1)
κ−κ1

and (αP (0) + g(z))
−1 ∈ N

−(k−k1)
κ−κ1

,

where κ1 = κ−(zP (z)) and k1 = κ−(P (z)).

The indefinite Hamburger moment in the generalized Nevanlinna class Nκ was studied in
[10]. The indefinite Stieltjes moment problem in the generalized Stieltjes class Nk

κ was studied
in [11], [1], [2], [6] and [7]. One is based on the Schur algorithm, i.e. the description of the
solutions are found in terms of the continued fractions. In the present paper, the rational gen-
eralized Stieltjes functions are investigated. The goal is to determine class Nk

κ, such that the
some rational generalized Stieltjes function f belongs to one (i.e. find the indices κ and k).

2. FINDING THE INDEX

2.1. Euclidean algorithm. Let us recall an Euclidean algorithm. Let P0 and Q0 be the polyno-
mials, such that deg(P0) = n0 and deg(Q0) = m0, where n0,m0 ∈ Z+ and let m0 ≤ n0. By
Euclidean algorithm, we obtain

P0(z) = Q0(z)a0(z) + r1(z),

Q0(z) = r1(z)a1(z) + r2(z),

r1(z) = r2(z)a2(z) + r3(z),

...

rn−2(z) = rn−1(z)an−1(z) + rn(z),

rn−1(z) = rn(z)an(z),

(2.6)

where ri are polynomials. Consequently, the ratio
P0(z)

Q0(z)
can be represented as a continued

fraction

(2.7)
P0(z)

Q0(z)
= a0(z) +

1

a1(z) +
1

a2(z) + · · ·+
1

an(z)

.
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2.2. Rational generalized Nevanlinna function and its index κ.

Theorem 2.1. Let P0 and Q0 be the polynomials, such that deg(P0) = n0, deg(Q0) = m0 and

m0 < n0. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R. Then f belongs to the class

Nκ and the index κ is calculated by

(2.8) κ =

n∑
j=0

κ−((−1)j+1aj(z)).

Proof. Assume, the rational function f(z) =
Q0(z)

P0(z)
is meromorphic function on C\R, where the

P0 and Q0 are the polynomials of the power deg(P0) = n0 and deg(Q0) = m0, respectively. By
Definition 1.1, f ∈ Nκ.

Calculating index κ. Due to (2.7), we can rewrite f as follows

(2.9) f(z) =
1

P0(z)
Q0(z)

= − 1

−a0(z)−
1

a1(z)−
1

−a2(z)− · · · −
1

(−1)n+1an(z)

.

By Proposition 1.1 (see (1.2))

κj = κ−((−1)j+1aj(z)), j = 0, n,

i.e. (−1)j+1aj(z) ∈ Nκj
. Moreover, by Proposition 1.1 (see items (1) and (3)), we obtain

− 1

(−1)j+1aj(z)
∈ Nκj

for all j = 0, n,

(−1)nan−1(z)−
1

(−1)n+1an(z)
∈ Nκn+κn−1

.

(2.10)

Let us construct a recursive sequence as

fn(z) :=(−1)nan−1(z)−
1

(−1)n+1an(z)
,

fn−1(z) :=(−1)n−1an−2(z)−
1

fn(z)
,

...

fn−2(z) :=(−1)n−2an−3(z)−
1

fn−1(z)
,

f1(z) :=− a0(z)−
1

f2(z)
.

(2.11)

Hence (see Proposition 1.1)

(2.12) fn ∈ Nκn+κn−1
, fn−1 ∈ Nκn+κn−1+κn−2

, . . . , f1 ∈ Nκn+κn−1+...+κ0
.

By the recursive sequence, the rational function f(z) =
Q0(z)

P0(z)
can be rewritten as

(2.13) f(z) = − 1

f1(z)
.
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Therefore f ∈ Nκ, where the index κ =
n∑
j=0

κ−((−1)j+1aj(z)). This completes the proof. �

Corollary 2.1. Let P0 and Q0 be the polynomials, such that deg(P0) = n0, deg(Q0) = m0 and

m0 ≤ n0. Let f(z) =
P0(z)

Q0(z)
be meromorphic on C\R. Then f belongs to the class Nκ and the index κ

is calculated by

(2.14) κ =

n∑
j=0

κ−((−1)jaj(z)).

Proof. Let the rational function f(z) =
P0(z)

Q0(z)
is meromorphic function on C\R, where the nu-

merator P0 and denominatorQ0 are the polynomials of the power deg(P0) = n0 and deg(Q0) =
m0, respectively. Hence, f belongs to the generalized Nevanlinna class Nκ (see Definition 1.1).

Let us find the index κ. By the representation (2.7), we obtain

(2.15) f(z) =
P0(z)

Q0(z)
= a0(z)−

1

−a1(z)−
1

a2(z)− · · · −
1

(−1)nan(z)

.

By Theorem 2.1 (see (2.10)-(2.13)), f ∈ Nκ and the index κ is calculated by (2.14). This completes
the proof. �

3. RATIONAL GENERALIZED STIELTJES FUNCTION AND ITS INDICES κ, k

First of all, we study the simple case of the rational functions, which belong to the general-
ized Stieltjes classes N±kκ and find the formulas for the indices κ and k.

3.1. Rational function of the generalized Stieltjes class Nk
κ.

Theorem 3.2. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 and m0 < n0. Let f admit the representation (2.9) and let a2i(z) vanish at zero for all
i = 0, [n/2] (i.e. a2i(0) = 0). Then f belongs to the class Nk

κ, where the index κ is calculated by (2.8)
and index k is found by

(3.16) k =


[n/2]∑
j=0

κ−

(
−a2j(z)z

)
+

[n/2]−1∑
j=0

κ−(za2j+1(z)), if n is even;

[n/2]∑
j=0

κ−

(
−a2j(z)z

)
+

[n/2]∑
j=0

κ−(za2j+1(z)), if n is odd.

Proof. By Definition 1.1, the rational function f(z) =
Q0(z)

P0(z)
meromorphic on C\R belongs to

the generalized Stiektjes class Nk
κ (i.e. f ∈ Nκ and zf ∈ Nk) and by Theorem 2.1, the index κ is

calculated by (2.8).
Let us find an index k. Assume f admits the representation (2.9) and a2i(0) = 0 for all

i = 0, [n/2]. Hence, we get the two cases, where n is even or odd.
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First of all we consider the even case (i.e. n = 2m, m ∈ Z+), we obtain

zf(z) =
Q0(z)

P0(z)
=

1

P0(z)

zQ0(z)

= − 1|∣∣∣∣− a0(z)

z

− 1|∣∣∣∣za1(z)− · · · −
1|∣∣∣∣za2m−1(z) −

1|∣∣∣∣− a2m(z)

z

.

(3.17)

The terms −a2i(z)
z

are polynomials, i.e. a2i(0) = 0 for all i = 0, [n/2]. By Theorem 2.1 , we get

k =

[n/2]∑
j=0

κ−

(
−a2j(z)

z

)
+

[n/2]−1∑
j=0

κ−(za2j+1(z)).

The next step, let n is odd (i.e. n = 2m+ 1, m ∈ Z+). Consequently

(3.18) zf(z) = − 1|∣∣∣∣− a0(z)

z

− 1|∣∣∣∣za1(z) − · · · −
1|∣∣∣∣− a2m(z)

z

− 1|∣∣∣∣za2m+1(z)

.

Similarly, −a2i(z)
z

are the polynomials and the index k is

[n/2]∑
j=0

κ−

(
−a2j(z)

z

)
+

[n/2]∑
j=0

κ−(za2j+1(z)).

This completes the proof. �

Corollary 3.2. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 and n0 ≤ m0. Then f belongs to the class Nk
κ and admits the representation (2.15).

Moreover, the index κ is calculated by (2.14). In addition, if the all polynomials a2i+1(z) vanish at
zero in the representation (2.15), then the index k is found by

(3.19) k =


[n/2]∑
j=0

κ− (za2j(z)) +
[n/2]−1∑
j=0

κ−(−a2j+1(z)
z ), if n is even;

[n/2]∑
j=0

κ− (za2j(z)) +
[n/2]∑
j=0

κ−(−a2j+1(z)
z ), if n is odd.

Proof. By Definition 1.1, the rational function f(z) =
Q0(z)

P0(z)
belongs to the generalized Stieltjes

class Nk
κ and by Corollary 2.1, f admits the representation (2.15) and the index κ is calculated

by (2.14). By Theorem 3.2, the index k can be found by (3.19). This completes the proof. �

Corollary 3.3. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 andm0+1 < n0. Then the rational function zf(z) admits the following representation

(3.20) zf(z) = − 1|
| − ã0(z)

− 1|
|ã1(z)

− · · · − 1|
|(−1)n+1ãn(z)

and f belongs to the class Nk
κ.
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Furthermore, in addition, if ã2i+1 vanish at zero for all i = 0, [n/2], then the indices κ and k can be
found by

(3.21) k =

n∑
j=0

κ−((−1)j+1ãj(z)),

(3.22) κ =


[n/2]∑
j=0

κ− (−zã2j(z)) +
[n/2]−1∑
j=0

κ−

(
ã2j+1(z)

z

)
, if n is even;

[n/2]∑
j=0

κ− (−zã2j(z)) +
[n/2]∑
j=0

κ−

(
ã2j+1(z)

z

)
, if n is odd.

Proof. By Euclidean algorithm, the rational function zf(z) = zQ0(z)
P0(z)

admits the representa-
tion (3.20). By Theorem 3.2, the rational function f belongs to the generalized Stieltjes class
Nk
κ, where the indices k and κ are found by (3.21) and (3.22), respectively. This completes the

proof. �

Corollary 3.4. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 and n0 ≤ m0+1. Then the rational function zf(z) admits the following representation

(3.23) zf(z) = â0(z)−
1|

| − â1(z)
− 1|
|â2(z)

− · · · − 1|
|(−1)nân(z)

and f belongs to the class Nk
κ.

Furthermore, if â2i vanish at zero for all i = 1, [n/2], then the indices κ and k can be found by

(3.24) k =

n∑
j=0

κ−((−1)j âj(z)),

(3.25) κ =


[n/2]∑
j=0

κ− (−zâ2j+1(z)) +
[n/2]−1∑
j=0

κ−(
â2j(z)
z ), if n is even;

[n/2]∑
j=0

κ− (−zâ2j+1(z)) +
[n/2]∑
j=0

κ−(
â2j(z)
z ), if n is odd.

3.2. Rational function of the generalized Stieltjes class N−kκ .

Theorem 3.3. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 and m0 ≤ n0. Let f admits the representation (2.9) and let the all odd polynomials
a2i+1(z) vanish at zero (i.e. a2i+1(0) = 0). Then f belongs to the class N−kκ , where the index κ is
calculated by (2.8) and index k is found by

(3.26) k =


[n/2]∑
j=0

κ− (−za2j(z)) +
[n/2]−1∑
j=0

κ−

(
a2j+1(z)

z

)
, if n is even;

[n/2]∑
j=0

κ− (−za2j(z)) +
[n/2]∑
j=0

κ−

(
a2j+1(z)

z

)
, if n is odd.

Proof. By Definition 1.1, the rational function f(z) =
Q0(z)

P0(z)
meromorphic on C\R belongs to

the generalized Stieltjes class N−kκ (i.e. f ∈ Nκ and f
z ∈ Nk) and by Theorem 2.1, the index κ is

calculated by (2.8).
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Suppose f admits representation (2.9) and the all odd polynomials a2i(0) vanish at zero (i.e.
a2i+1(0) = 0).

If n is even (i.e. n = 2m, m ∈ Z+), then
f(z)

z
=

Q0(z)

zP0(z)

=
1

zP0(z)

Q0(z)

= − 1|∣∣∣∣− za0(z) −
1|∣∣∣∣a1(z)z

− 1|∣∣∣∣− za2(z) − · · · −
1|∣∣∣∣a2m−1(z)z

− 1|∣∣∣∣− za2m(z)

.

(3.27)

Due to the all odd polynomials a2i+1(0) = 0, a2j+1

z are polynomials and by Theorem 2.1, we
obtain

k =

[n/2]∑
j=0

κ− (−za2j(z)) +
[n/2]−1∑
j=0

κ−

(
a2j+1(z)

z

)
.

If n is odd (i.e. n = 2m+ 1, m ∈ Z+), then
f(z)

z
= − 1|∣∣∣∣− za0(z) −

1|∣∣∣∣a1(z)z

− · · · − 1|∣∣∣∣a2m−1(z)z

− 1|∣∣∣∣− za2m(z)

− 1|∣∣∣∣a2m+1(z)

z

.

Obviously, a2i+1(0) = 0, a2j+1

z are polynomials and by Theorem 2.1, we find index k as follow

k =

[n/2]∑
j=0

κ− (−za2j(z)) +
[n/2]∑
j=0

κ−

(
a2j+1(z)

z

)
.

This completes the proof. �

Corollary 3.5. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 and n0 ≤ m0. Then f belongs to the class N−kκ and admits the representation (2.15).
Moreover, the index κ is calculated by (2.14). In addition, if the all polynomials a2i(z) vanish at zero

in the representation (2.15), then the index k is culculated by

(3.28) k =


[n/2]−1∑
j=0

κ− (−za2j+1(z)) +
[n/2]∑
j=0

κ−(
a2j(z)
z ), if n is even;

[n/2]∑
j=0

κ− (−za2j+1(z)) +
[n/2]∑
j=0

κ−(
a2j(z)
z ), if n is odd.

Proof. By Definition 1.1, the rational function f(z) =
Q0(z)

P0(z)
belongs to N−kκ and by Corol-

lary 2.1, f admits representation (2.15) and the index κ can be calculated by (2.14). By Theo-
rem 3.3, the index k can be found by (3.19). This completes the proof. �

Corollary 3.6. Let the rational function f(z) =
Q0(z)

P0(z)
be meromorphic on C\R, where deg(P0) = n0,

deg(Q0) = m0 andm0 < n0+1. Then the rational function zf(z) admits the following representation

(3.29)
f(z)

z
=

Q0(z)

zP0(z)
= − 1|
| − ã0(z)

− 1|
|ã1(z)

− · · · − 1|
|(−1)n+1ãn(z)
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and f belongs to the class N−kκ .
Furthermore, if ã2i vanish at zero for all i = 0, [n/2], then the indices κ and k can be found by

(3.30) k =

n∑
j=0

κ−((−1)j+1ãj(z)),

(3.31) κ =


[n/2]∑
j=0

κ−

(
− ã2j(z)z

)
+

[n/2]−1∑
j=0

κ−(zã2j+1(z)), if n is even;

[n/2]∑
j=0

κ−

(
− ã2j(z)z

)
+

[n/2]∑
j=0

κ−(zã2j+1(z)), if n is odd.

Proof. By Euclidean algorithm, the rational function f(z)
z = Q0(z)

zP0(z)
admits the representa-

tion (3.29). By Theorem 3.3, the rational function f belongs to the generalized Stieltjes class
N−kκ , the indices k and κ are found by (3.30) and (3.31), respectively. This completes the
proof. �

Corollary 3.7. Let the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and n0 + 1 ≤ m0. Then the rational function zf(z) admits the following represen-
tation

(3.32)
f(z)

z
= â0(z)−

1|
| − â1(z)

− 1|
|â2(z)

− · · · − 1|
|(−1)nân(z)

and f belongs to the class N−kκ .
Furthermore, if â2i+1 vanish at zero, then the indices κ and k can be found by

(3.33) k =

n∑
j=0

κ−((−1)j âj(z)),

(3.34) κ =


[n/2]∑
j=0

κ−

(
− â2j+1(z)

z

)
+

[n/2]−1∑
j=0

κ−(zâ2j(z)), if n is even;

[n/2]∑
j=0

κ−

(
− â2j+1(z)

z

)
+

[n/2]∑
j=0

κ−(zâ2j(z)), if n is odd.

4. GENERAL CASES

4.1. General case in the class Nk
κ.

Proposition 4.3. Let the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and m0 < n0, let f admits representation (2.9). Then f belongs to the class Nk
κ,

such that

(4.35) κ =

n∑
j=0

κj and k ≤
n∑
i=0

ki +

[n/2]∑
i=0

k0i ,
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where the indices κi, ki and k0i can be found by

κi = κ−((−1)i+1ai(z)), k2i = κ−

(
−a2i(z)− a2i(0)

z

)
,

k2i+1 = κ−(za2i+1(z)), k0i =

{
1, if a2i(0) < 0;
0, if a2i(0) > 0.

(4.36)

Proof. (i) The first case. Let n = 2m + 1, m ∈ Z+, then the rational function f(z) =
Q0(z)

P0(z)
can

be rewritten by formula (2.9) as follows

(4.37) f(z) = −
1

∣∣∣∣∣∣∣∣− a0(z)− 1

a1(z)

−
1

∣∣∣∣∣∣∣∣− a2(z)− 1

a3(z)

− · · · −
1

∣∣∣∣∣∣∣∣− a2m(z)− 1

a2m+1(z)

.

Setting

fm(z) := − 1

−a2m(z)− 1

a2m+1(z)

,

then zfm takes the following form

zfm(z) = − z

−a2m(z)− 1

a2m+1(z)

= − 1

−a2m(z)− a2m(0)

z
− a2m(0)

z
− 1

za2m+1(z)

.

By Proposition 1.1 and Proposition 1.2, fm ∈ Nk̃m
κ̃m

, where

κ̃m = κ−(−a2m) + κ−(a2m+1) and k̃m ≤ k2m + k2m+1 + k0m,

where

k2m := κ−

(
−a2m(z)− a2m(0)

z

)
, k2m+1 = κ−(za2m+1),

k0m := κ−

(
−a2m(0)

z

)
=

{
1, if a2m(0) < 0;
0, if a2m(0) > 0.

(4.38)

The next step. Let us define the function fm−1 by

fm−1(z) = −
1

−a2m−2(z)−
1

a2m−1(z) + fm(z)

.

Consequently, zfm−1 takes the following form

zfm−1(z) = −
1

−a2m−2(z)− a2m−2(0)
z

− a2m−2(0)

z
− 1

za2m−11(z) + zfm(z)

.

Hence fm−1 ∈ N
k̃m−1

κ̃m−1
(see Propositions 1.1 and 1.2), where the indices κ̃m−1 and k̃m−1 are

κ̃m−1 = κ̃m + κ−(−a2m−2) + κ−(a2m−1) and k̃m−1 ≤ k2m−2 + k2m−1 + k0m−1 + k̃m,
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where

k2m := κ−

(
−a2m(z)− a2m(0)

z

)
, k2m+1 = κ−(za2m+1),

k0m := κ−

(
−a2m(0)

z

)
=

{
1, if a2m(0) < 0;
0, if a2m(0) > 0.

(4.39)

Step-by-step, we obtain that f ∈ Nk
κ and (4.35)–(4.36) hold.

(ii) The second case. Let n = 2m+2,m ∈ Z+∪{−1}, then the rational function f(z) =
Q0(z)

P0(z)
can be rewritten by

(4.40) f(z) = −
1

∣∣∣∣∣∣∣∣− a0(z)− 1

a1(z)

− · · · −
1

∣∣∣∣∣∣∣∣− a2m(z)− 1

a2m+1(z)

−
1

∣∣∣∣∣∣∣∣− a2m+2(z)

.

Let us set the function fm+1 by

fm+1(z) = −
1

−a2m+2(z)
.

Hence, the function zfm+1 takes the form

zfm+1(z) = −
z

−a2m+2(z)
= − 1

−a2m+2(z)− a2m+2(0)

z
− a2m+2(0)

z

.

By Proposition 1.1 and Proposition 1.2, fm+1 ∈ N
k̃m+1

κ̃m+1
, where the indices κ̃m+1 and k̃m+1 are

defined by

κ̃m+1 = κ−(−a2m+2),

k̃m+1 ≤ κ−
(
−a2m+2(z)− a2m+2(0)

z

)
+ κ−

(
−a2m+2(0)

z

)
.

By the first case (i), we obtain f ∈ Nk
κ, where the indices κ and k satisfy the formulas (4.35)–

(4.36). This completes the proof. �

Corollary 4.8. Let the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and n0 ≤ m0. Then f admits representation

(4.41) f(z) = a−1(z)−
1|

| − a0(z)
− 1|
|a1(z)

− · · · − 1|
|(−1)n+1an(z)

.

Furthermore, f belongs to the class Nk
κ, such that

(4.42) κ =

n∑
j=−1

κj and k ≤
n∑

i=−1
ki +

[n/2]∑
i=−1

k0i ,

where the indices κi, ki and k0i can be found by

k2i+1 = κ−(za2i+1(z)), κi = κ−((−1)i+1ai(z)),

k0i =

{
1, if a2i(0) < 0;
0, if a2i(0) > 0.

k2i = κ−

(
−a2i(z)− a2i(0)

z

)
.

(4.43)
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Proof. Assume the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and n0 ≤ m0. By Euclidean algorithm, the function f admits representation
(4.41).

By Proposition 1.1, a−1 ∈ N
k−1
κ−1 , where indices κ−1 and k−1 are defined by (4.43).

By Proposition 4.3, (f − a−1) ∈ Nk̃
κ̃ , where the indices κ̃ and k̃ are defined by formu-

las (4.35)–(4.36). Therefore, the rational function f(z) =
Q0(z)

P0(z)
belongs to the class Nk

κ and the

formulas (4.42)–(4.43) hold. This completes the proof. �

Theorem 4.4. Let τ ∈ Nk∗

κ∗ and let f(z) =
Q0(z)

P0(z)
+ τ(z), where the P0 and Q0 are polynomials, such

that deg(P0) = n0, deg(Q0) = m0 and m0 < n0. Then f ∈ Nk
κ, where

(4.44) κ ≤ κ∗ +
n∑
j=0

κj and k ≤ k∗ +
n∑
i=0

ki +

[n/2]∑
i=0

k0i ,

where the indices κi, ki and k0i can be found by (4.43).

Proof. This proof is based on Proposition 4.3 and Proposition 1.1. �

4.2. General case in the class N−kκ .

Proposition 4.4. Let the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and m0 < n0 and let f admits representation (2.9). Then f belongs to the class
N−kκ , such that

(4.45) κ =

n∑
j=0

κj and k ≤
n∑
i=0

ki +

[n/2]∑
i=0

k0i ,

where the indices κi, ki and k0i can be found by

κi = κ−((−1)i+1ai(z)), k2i+1 = κ−

(
a2i+1(z)− a2i+1(0)

z

)
,

k2i = κ−(−za2i(z)), k0i =

{
1, if a2i+1(0) > 0;
0, if a2i+1(0) < 0.

(4.46)

Proof. By Euclidean algorithm, the rational function f(z) =
Q0(z)

P0(z)
admits the representation

(2.9) and by Theorem (2.1), f ∈ Nκ, where the index κ are calculated by

κ =

n∑
j=0

κj =

n∑
j=0

κ−((−1)j+1aj(z)).

By Defenition (1.1), the function f is the meromorphic on C\R, then f ∈ N−kκ . Find index k.
(i) The first case. Let n = 2m+ 1 in (2.9), then

f(z)

z
= −

1

∣∣∣∣∣∣∣∣− za0(z)− 1

a1(z)

z

− · · · −
1

∣∣∣∣∣∣∣∣− za2m(z)− 1

a2m+1(z)

z

.
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Setting

φm(z) = − 1

−za2m(z)− 1

a2m+1(z)

z

= − 1

−za2m(z)− 1

a2m+1(z)− a2m+1(0)

z
+
a2m+1(z)

z

,

by Proposition 1.1, φm ∈ Nk̃m
, where the index k̃m is defined by

k̃m ≤ k2m + k2m+1 + k0m,

where the indices k2m, k2m+1 and k0m can be calculated by

k2m = κ−(−za2m(z)), k2m+1 = κ−

(
a2m+1(z)− a2m+1(0)

z

)
,

k0m =

{
1, if a2m+1(0) > 0;
0, if a2m+1(0) < 0.

So, let φm−1 is defined by

φm−1(z) = −
1

−za2m−2(z)−
1

a2m−11(z)

z
+ φm(z)

= − 1

−za2m−2(z)−
1

a2m−1(z)− a2m−1(0)
z

+
a2m−1(z)

z
+ φm(z)

.

Due to Proposition 1.1, φm−1 ∈ Nk̃m−1
, where the index k̃m−1 is

k̃m ≤ k2m−2 + k2m−11k2m + k2m+1 + k0m−1 + k0m,

where the indices k2m−2, k2m−1 and k0m are defined by

k2m−2 = κ−(−za2m−2(z)), k2m−1 = κ−

(
a2m−1(z)− a2m−1(0)

z

)
,

k0m =

{
1, if a2m−1(0) > 0;
0, if a2m−1(0) < 0.

By induction, we obtain the sequence φm, φm−1, ..., φ1, where φ1(z) = f(z)
z and φ1 ∈ Nk and

k is defined by (4.45)–(4.46). Therefore, the function f ∈ N−kκ , where the indices κ and k are
generated by (4.45)–(4.46).

(ii) The second case. Let n = 2m+ 2 in (2.9), then

f(z)

z
= −

1

∣∣∣∣∣∣∣∣− za0(z)− 1

a1(z)

z

− · · · −
1

∣∣∣∣∣∣∣∣− za2m(z)− 1

a2m+1(z)

z

−
1

∣∣∣∣∣∣∣∣− za2m+2(z)

.
.
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Let us set

φm+1(z) = −
1

−za2m+2(z)
.

By Proposition 1.1, φm+1 ∈ Nk2m+2 , where k2m+2 = κ−(−za2m+2(z)). The next step, we apply
the first case (i) and obtain f ∈ N−kκ , where the indices κ and k satisfy (4.45)–(4.46). This
completes the proof. �

Corollary 4.9. Let the rational function f(z) =
Q0(z)

P0(z)
be the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and n0 ≤ m0. Then f admits representation

(4.47) f(z) = a−1(z)−
1|

| − a0(z)
− 1|
|a1(z)

− · · · − 1|
|(−1)n+1an(z)

.

Furthermore, f belongs to the class N−kκ , such that

(4.48) κ =

n∑
j=−1

κj and k ≤
n∑

i=−1
ki +

[n/2]∑
i=−1

k0i ,

where the indices κi, ki and k0i can be found by

k2i = κ−(−za2i(z)), κi = κ−((−1)i+1ai(z)), k
0
i =

{
1, a2i+1(0) > 0;
0, a2i+1(0) < 0,

k−1 = κ−1

(
a−1(z)− a−1(0)

z

)
, k2i+1 = κ−

(
a2i+1(z)− a2i+1(0)

z

)
.

(4.49)

Proof. Suppose the rational function f(z) =
Q0(z)

P0(z)
is the meromorphic on C\R, where deg(P0) =

n0, deg(Q0) = m0 and n0 ≤ m0. By Euclidean algorithm, the function f admits representation
(4.41).

We can rewrite the ratio a−1(z)
z as

a−1(z)

z
=
a−1(z)− a−1(0)

z
+
a−1(0)

z
.

By Proposition 1.1 and Proposition 1.2, a−1 ∈ N
−k̃−1
κ−1 , where k̃−1 ≤ k−1+k0−1 and κ−1, k−1, k0−1

are defined by (4.49).
By Proposition 4.3, (f − a−1) ∈ Nk̃

κ̃ , where the indices κ̃ and k̃ are defined by formu-

las (4.45)–(4.46). Therefore, the rational function f(z) =
Q0(z)

P0(z)
belongs to the class N−kκ and

the formulas (4.48)–(4.49) hold. This completes the proof. �

Theorem 4.5. Let τ ∈ N−k
∗

κ∗ and let f(z) =
Q0(z)

P0(z)
+ τ(z), where the P0 and Q0 are polynomials,

such that deg(P0) = n0, deg(Q0) = m0 and m0 < n0. Then f ∈ N−kκ , where

(4.50) κ ≤ κ∗ +
n∑
j=0

κj and k ≤ k∗ +
n∑
i=0

ki +

[n/2]∑
i=0

k0i ,

where the indices κi, ki and k0i can be found by (4.46)

Proof. This proof is based on Proposition 4.4 and Proposition 1.1. �
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