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Abstract
In this paper, we propose a weak Galerkin finite element method (WG-FEM) for solving
two-point boundary value problems of convection-dominated type on a Bakhvalov-type
mesh. A special interpolation operator which has a simple representation and can be easily
extended to higher dimensions is introduced for convection-dominated problems. A robust
optimal order of uniform convergence has been proved in the energy norm with this special
interpolation using piecewise polynomials of degree k ≥ 1 on interior of the elements and
piecewise constant on the boundary of each element. The proposed finite element scheme
is parameter-free formulation and since the interior degrees of freedom can be eliminated
efficiently from the resulting discrete system, the number of unknowns of the proposed
method is comparable with the standard finite element methods. An optimal order of
uniform convergence is derived on Bakhvalov-type mesh. Finally, numerical experiments
are given to support the theoretical findings and to show the efficiency of the proposed
method.
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1. Introduction
It is well known that singularly perturbed problems (SPPs) exhibit so-called boundary

layers which are regions where the derivatives of the solution vary rapidly. The presence
of these boundary layers leads to oscillations in numerical approximation and causes dif-
ficulties for finding an accurate numerical approximation in standard numerical methods
such as the classical finite difference (FD) methods or the standard finite element methods
(FEMs) and makes these methods unstable and unsatisfactory unless the mesh size is mod-
erately smaller than the perturbation parameter [11]. Thus, uniform convergent numerical
methods which produce stable and more accurate approximate solution independent of the
perturbation parameter have been proposed and analyzed in the literature; see e.g., the
books [11, 16, 17, 21] and references therein. One of the efficient way of handling singu-
larly perturbed problems is to use layer-adapted meshes. Boundary layers can be resolved
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by designing layer-adapted meshes if we know a priori knowledge of the structure of the
layers. The commonly used layer-adapted meshes for solving SPPs include Shishkin-type
meshes and Bakhvalov-type meshes, see e.g., the standard FD methods [6, 11] and con-
forming FEMs [25, 34] on Shishkin-type meshes or Bakhvalov-type meshes. The authors
in [5] show that the numerical solution of convection-dominated problems still has some
oscillatory behaviour even if the layer-adapted meshes are used in the discretization. To
overcome these oscillations, an additional stabilization is added in the numerical schemes.
Examples of stabilized numerical schemes for SPP of convection-diffusion type include
the FD method of up-winding flavor [1, 7, 12, 27], the streamline-diffusion finite element
method [13, 15, 26] and the discontinuous Galerkin methods [8, 9, 22, 33, 37, 38]. Further
descriptions and investigations on these methods for SPPs can be found in the recent
books [11,21] and references therein. Since Shishkin-type meshes have simpler structure
and clear analysis, many articles have been devoted to uniform convergence of SPPs on
Shishkin-type meshes; see e.g., [12, 14, 21, 24] and references therein. Unfortunately, a
logarithmic factor will be present in the error bounds when one uses a Shishkin-type mesh
and this factor deteriorates the optimal order of convergence. Consequently, in general,
Bakhvalov-type meshes have better numerical results than Shishkin-type meshes. This
superior feature is much more noticeable in higher-order schemes (see, e.g., [11, p. 10]
and [35, p. 10]). On the other hand, unlike Shishkin-type meshes, the transition points
of Bakhvalov-type meshes which are located between the fine and the rough parts of the
meshes are independent of the number of mesh points. However, these transition points
make convergence analysis of FEM more subtle on Bakhvalov-type meshes and require
construction of different numerical approaches. More precisely, the difficulty arises from
instability of the standard Lagrange interpolant in L2-norm on the interval which is the
last mesh interval of the fine part and is neighbor to the coarse part of Bakhvalov-type
meshes for convection dominated problems. Therefore, there are limited papers dealing
with SPPs of convection-dominated type on Bakhvalov-type meshes. The authors in [23]
and [3] consider the conforming linear FEM using a quasi-interpolation technique and
investigate the optimal order uniform convergence of the conforming FEM using linear
elements on Bakhvalov-type meshes. However, the obtained results in these works are
limited to only linear finite element in one dimensional cases. It is not easy to extend
these obtained results to the uniform convergence of FEM using higher-order finite ele-
ments in one and higher dimensions for SPPs of convection-dominated type. Recently, the
optimal uniform convergence of FEMs using high order elements for SPPs of convection-
dominated type on Bakhvalov-type meshes has been studied in [35]. The standard FEM
is applied to SPPs of convection-dominated problems on Bakhvalov-type meshes and the
optimal order of uniform convergence is obtained with the introduction of a novel inter-
polation operator in [35]. The conforming FEM can still produce some little oscillations
in the discrete solution when it is applied to SPPs of convection-dominated problems.
Therefore, we propose a stabilized FEM to improve the convergence results of [35].

In this paper, we consider the WG-FEM initially developed in [31] for solving second
order elliptic problems. The key feature of this method is that the classical derivative
is replaced by weak derivative in the corresponding variational formulation in a way that
completely discontinuous functions have been allowed to use in the numerical scheme which
has a parameter independent stabilizer. The weak Galerkin method has been studied and
applied to a variety of problems including Stokes equations [32], interface problem [18],
Maxwell equation [19], fractional time convection-diffusion problems [28], and singularly
perturbed elliptic equations in one and higher dimensions [10,29,30].

The uniform convergent weak Galerkin method has been presented in [39] for con-
vection dominated problems. However, the obtained results are only available for linear
convection-dominated problems on a piecewise uniform Shishkin mesh. To the best of
the authors knowledge, optimal uniform convergence of the WG-FEM on Bakhvalov-type
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meshes has not been presented for SPPs of convection-diffusion type so far. The main goal
of this paper is to present robust optimal order uniform convergence in the energy norm
on Bakhvalov-type mesh for convection-dominated problems. Unlike reaction-diffusion
problems, the standard Lagrange interpolation for convection-dominated problems on
Bakhvalov-type meshes is not suitable for robust uniform convergence because of instability
issues of the Lagrange interpolation. Therefore, we adapt a special interpolation operator
introduced by Zhang and Liu in [35] on Bakhvalov-type meshes for convection-dominated
problem.

The rest of the paper is organized as follows. In Section 2, the WG-FEM scheme for
the singularly perturbed convection-diffusion problems is constructed and the stability
of the proposed method is studied. We also discuss the error estimates of the proposed
method for SPPs of convection dominated type in Section 2. Various numerical examples
are given to confirm the theoretical findings in Section 3. Finally, we summarize the
theoretical findings in Section 4.

Throughout this article, we use C for generic constants independent of ε, N, and the
mesh size h which may be different in each location.

2. Convection-diffusion problems
In this section, we consider the following singularly perturbed convection-diffusion prob-

lem: Find u ∈ C2(0, 1) ∩ C[0, 1] such that
Lu := −εu′′(x) − b(x)u′(x) + c(x)u(x) = g(x) in Ω = (0, 1),

u(0) = 0, u(1) = 0,
(2.1)

where 0 < ε ≪ 1 is a small perturbation parameter and b, c and g are sufficiently smooth
functions such that

b(x) ≥ β > 0, c(x) ≥ 0, c(x) + 1
2

b′(x) ≥ γ2 > 0, ∀x ∈ Ω̄, (2.2)

for some positive constants β and γ. Under the assumption (2.2), the problem (2.1) has a
unique solution in H2(Ω) ∩ H1

0 (Ω) for all g ∈ L2(Ω) [25], [34]. The analytical solution of
problem (2.1) exhibits an exponential boundary layer of width O(ε| ln ε|) at x = 0 if the
perturbation parameter 0 < ε ≪ 1 is arbitrarily small (see [21]).

2.1. A decomposition of the solution
In this section, we recall some important properties for the derivatives of the solution of

(2.1). The following lemma provides the bounds for the solution of (2.1) and its derivatives
and the solution decomposition. The proof of the lemma can be found in [ Lemma 8.1,[21]].

Lemma 2.1 ([21]). Let q be a positive integer. Assume that the condition (2.2) is satisfied
and b, c and g are sufficiently smooth functions. The solution u of (2.1) has the following
solution decomposition

u = R + L, (2.3)
where the regular part R and the layer part L satisfy LR = g and LL = 0 and

|R(i)(x)| ≤ C, |L(i)(x)| ≤ Cε−i exp
(

−βx

ε

)
for 0 ≤ i ≤ q. (2.4)

2.2. Bakhvalov-type mesh
Bakhvalov mesh is originally introduced and constructed for the layer functions in SPPs

in [2]. The mesh points of the Bakhvalov mesh are given in terms of a piecewise C1

continuous mesh generating function. The transition point of the Bakhvalov mesh is not
explicitly determined since it contains a nonlinear equation, see e.g., [21]. For this reason,
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the mesh generating function of Bakhvalov mesh leads to various kind of meshes that are
called Bakhvalov-type meshes.

For convection-diffusion problems, we will consider the following Bakhvalov-type mesh
presented in [23]. The main feature of this mesh is that the mesh generating functions
are not in C1 and its transition point is known. The mesh generating function for the
Bakhvalov-type mesh is given by [23]

x = φ(t) =
{

−σε
β ln (1 − 2(1 − ε)t) , for t ∈ [0, 1/2],

1 − d(1 − t), for t ∈ [1/2, 1]. (2.5)

Here, σ will be determined later and d is the constant such that φ(t) is continuous at
t = 1/2.

Assume that N ≥ 4 is an integer. We define the mesh points as

xn = φ(tn), tn = n

N
for n = 0, 1, . . . , N.

Figure 1 depicts the Bakhvalov-type mesh generated by the mesh generating function (2.5)
on [0, 1] with σ = 3, β = 1 and ε = 10−2.

Bakhvalov-type mesh
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Figure 1. Bakhvalov-type mesh with transition point (denoted by green circle).

Denote the mesh by In = [xn−1, xn] and the mesh size by hn = xn − xn−1 for n =
1, . . . , N and set TN = {In, n = 1, . . . , N}. For each interval In ∈ TN , the unit normal is
defined as nIn(xn) = 1 and nIn(xn−1) = −1. For simplicity, we use the notation n rather
than nIn .

Note that the transition point is xN/2 = τ = −σε
β ln ε and that exp(−xN/2/ε) = εσ.

Thus, in order to resolve fully the boundary layer, we choose σ such that εσ is sufficiently
small.

We have the following lemma on Bakhvalov-type mesh (2.5) which can be proved using
the ideas in [35].

Lemma 2.2. On Bakhvalov-type mesh (2.5), the mesh sizes hn = xn−xn−1, n = 1, 2 . . . , N
have the following properties

h1 ≤ h2 ≤ · · · ≤ hN/2−1, (2.6)
hN/2−1 = O(ε), (2.7)
Cε ≤ hN/2 ≤ CN−1, (2.8)
hn = O(N−1), n = N/2 + 1, . . . , N, (2.9)

hν
n exp(−βxn−1/ε) ≤ CενN−ν for 0 ≤ ν ≤ k + 1 and 1 ≤ n ≤ N

2
− 1, (2.10)

where C is a positive constant independent of N and ε.
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Lemma 2.3. On Bakhvalov-type mesh (2.5), the mesh sizes hn = xn−xn−1, n = 1, 2 . . . , N
have the following lower bound

x N
2 −1≥ −σε

β
ln(ε + 2N−1), (2.11)

xn≥ −σε

β
ln(ε), n = N

2
, . . . , N, (2.12)

hn ≥ CεN−1, n = 1, 2, . . . ,
N

2
. (2.13)

where C is a positive constant independent of N and ε.

Proof. It follows from the definition of the mesh points (2.5) that

x N
2 −1 = −σε

β
ln(1 − 2(1 − ε)(N/2 − 1)N−1)

= −σε

β
ln(1 + (1 − ε)(2/N − 1))

= −σε

β
ln(ε + 2

N
(1 − ε))

≥ −σε

β
ln(ε + 2

N
),

which proves (2.11). Using (2.5), we get

xn = 1 − d(1 −
n

N
), for n = N

2
, . . . , N. (2.14)

Note that if N
2 ≤ n ≤ N , then 1

2 ≤
n

N
≤ 1 holds true. This implies that 0 ≤ 1 −

n

N
≤ 1

2 .
Since d = 2(1 + σε

β ln(ε)) is a positive number for a given ε > 0, we are led to

−
d

2
≤ −d(1 −

n

N
) ≤ 0. (2.15)

Using (2.15) in (2.14), we obtain, for n = N
2 , . . . , N

xn = 1 − d(1 −
n

N
)

≥ 1 − d

2
= 1 − (1 + σε

β
ln(ε))

= −σε

β
ln(ε),

which proves (2.12). From Lemma 2.2 and (2.5), we have

hn ≥ h1 = x1 − x0 = −σε

β
ln(1 − 2(1 − ε)N−1) for n = 1, . . . ,

N

2
. (2.16)

Since ε ≪ 1, we have 1 − 2
N (1 − ε) ≤ 1 − 1

N (e.g., ε ≤ 1
2 which is realistic in the SPPs).

Using the basic fact that if 0 < 1 − x ≤ 1 − y ≤ 1, then − ln(1 − y) ≤ − ln(1 − x), we
obtain

− ln(1 − 1
N

) ≤ − ln(1 − 2
N

(1 − ε)). (2.17)

Let f(x) := x + ln(1 − x) for x ∈ (0, 1). Then f ′(x) = − x
1−x < 0 for x ∈ (0, 1). This shows

that f is a decreasing function on (0, 1). Thus we have x + ln(1 − x) = f(x) ≤ f(0) = 0
when x ∈ (0, 1), or equivalently, we obtain − ln(1 − x) ≥ x if 0 < x < 1. Hence, it
follows that − ln(1 − 1

N ) ≥ 1
N for N ≥ 4. This last inequality, (2.17) and (2.16) imply that

hn ≥ CεN−1 which proves (2.13). Thus, the proof is completed. □
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2.3. WG-FEM for convection-diffusion problems
In this subsection, we introduce the notions of weak functions and weak derivatives.

Then, we will construct the WG-FEM scheme for the problem (2.1) based on the weak
derivatives.

A function u = {u0, ub} on the interval In = (xn−1, xn) is called a weak function such
that u0 ∈ L2(In) and ub ∈ L∞(∂In) with ∂In = {xn−1, xn}. Here, u0 is the value of u
inside of the interval (xn−1, xn) and ub is the value of u on the boundary of the interval
∂In which can be different from the trace of u0 on the boundary.

We denote the space of weak functions W(In) on the interval In by
W(In) = {u = {u0, ub} : u0 ∈ L2(In), vb ∈ L∞(∂In)}.

The inclusion map
IW(u) = {u|In , u|∂In}, ∀u ∈ H1(In)

embeds the local Sobolev space H1(In) into the weak function space W(In).
For a given integer k ≥ 1, we define a local WG finite element space SN (In) as follows:

SN (In) = {u = {u0, ub} : u0|In ∈ Pk(In), ub|∂In ∈ P0(∂In) ∀In ∈ TN }, (2.18)
where Pk(In) is the set of polynomials on In of degree at most k and P0(∂In) is the set of
constant polynomials on ∂In. A global WG finite element space SN consists of u = {u0, ub}
such that u0|In ∈ Pk(In) for n = 1, . . . , N and ub has a single value at the nodes xn of the
partition TN . Let S0

N denote the subspace of SN defined by
S0

N = {u = {u0, ub} : u ∈ SN , ub(0) = ub(1) = 0}. (2.19)
Now, we define the weak derivative of a weak function u = {u0, ub} ∈ SN as follows.

Definition 2.4. For any weak function u ∈ SN (In), the weak derivative dw,Inu ∈
Pk−1(In) of u = {u0, ub} is defined on In as the unique polynomial satisfying the following
equation

(dw,Inu, v)In = −(u0, v′)In + ⟨ub, vn⟩∂In , ∀v ∈ Pk−1(In), (2.20)
where

(w, z)In =
∫

In

w(x)z(x) dx, and ⟨w, zn⟩∂In = w(xn)z(xn) − w(xn−1)z(xn−1).

We also define a weak convection derivative for approximating the convection part βu′

as follows.

Definition 2.5. For any weak function u ∈ SN (In), the weak convection derivative
db

w,In
u ∈ Pk(In) of u = {u0, ub} is defined on In as the unique polynomial satisfying the

following equation
(db

w,In
u, v)In = −(u0, (βv)′)In + ⟨ub, βvn⟩∂In ∀v ∈ Pk(In). (2.21)

Then the weak derivatives dwu and db
w of a weak function u on SN is given by

(dwu)|In = dw,In(u|In), (db
wu)|In = db

w,In
(u|In), ∀u ∈ SN .

We adapt the following notations for the sake of simplicity:(
u, v

)
In

=
∫

In

u(x)v(x) dx, ⟨u, v⟩∂In = u(xn)v(xn) + u(xn−1)v(xn−1)

(
u, v

)
=

N∑
n=1

(
u, v)In ,

〈
u, v

〉
=

N∑
n=1

〈
u, v⟩∂In , ∥u∥2 =

N∑
n=1

(
u, u

)2
In

.

With the aid of the above definitions, the WG-FEM solution of the problem (2.1) is to
find an approximate solution uN = {u0, ub} ∈ S0

N satisfying the following equation [39]:
a(uN , vN ) =

(
g, v0

)
, ∀vN = {v0, vb} ∈ S0

N , (2.22)
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where the bilinear form a(vN , vN ) is defined as follows: for any vN ∈ SN

a(uN , vN ) = b(uN , vN ) + sd(uN , vN ) + sc(uN , vN ), (2.23)

b(uN , vN ) = ε
(
dwuN , dwvN

)
+
(
cu0 − db

wuN , v0
)
, (2.24)

sd(uN , vN ) =
N∑

n=1
⟨ϱn(u0 − ub), (v0 − vb)⟩∂In , (2.25)

sc(uN , vN ) =
N∑

n=1
⟨bn(u0 − ub), v0 − vb⟩∂−In , (2.26)

where ∂−In = {x ∈ ∂In : b(x)n ≤ 0}, and ϱn ≥ 0, n = 1, . . . N is the penalization
parameter given by

ϱn =
{

N, for n = 1, 2, . . . , N/2,

1, for n = N/2 + 1, . . . , N.
(2.27)

The choice of the penalization parameter is an important issue in the uniform error
analysis below. For the uniform convergence of the proposed method, the penalization
parameter is taken as N in the fine part of the domain, see Lemma 2.13.

2.4. Stability of the WG-FEM
The following multiplicative trace inequality and the inverse inequality from [20] will

be used frequently in the analysis.
∥v∥2

L2(∂In) ≤ C(h−1
n ∥v∥2

L2(In) + ∥v∥L2(In)∥v′∥L2(In)), ∀v ∈ H1(In), (2.28)

∥v′
N ∥L2(In) ≤ Ch−1

n ∥vN ∥L2(In), ∀vN ∈ Pk(In), (2.29)

∥vN ∥Lp(∂In) ≤ Ch−1/p
n ∥vN ∥Lp(In), ∀1 ≤ p ≤ ∞, ∀vN ∈ Pk(In). (2.30)

Following [39], we introduce an energy norm ||| · |||ε in SN as follows: for vN = {v0, vb} ∈
SN ,

|||vN |||2ε = ε||dwvN ∥2 + ∥γv0∥2 + |vN |2u + sd(vN , vN ), (2.31)
where the seminorm | · |u is given by

|vN |2u :=
N−1∑
n=0

cn|
√

b(v0 − vb)|2(x+
n ),

with cn =
{

1
2 , n = 0,

1, n = 1, . . . , N − 1,
and x+

n = limt→0,t>0 u(xn + t).

We also introduce the discrete H1 energy norm || · ||S in SN + H1
0 (Ω) defined as

∥vN ∥2
S = ε∥Dv0∥2 + ∥γv0∥2 + |vN |2u + sd(vN , vN ), (2.32)

where Dw :=
dw

dx
which is occasionally denoted by w′ is the ordinary derivatives of a

functions w(x).
We point out that a function w ∈ H1

0 (Ω) can be interpreted as a weak function w =
{w0, wb} with w0 = w|In and wb = w|∂In for In.

The following lemmas show that the norms ||| · |||ε and || · ||S defined by (2.31) and
(2.32), respectively, are equivalent in the WG finite element space SN and the bilinear
form a(·, ·) given in (2.22) is coercive in the ||| · |||ε-norm.

Theoretically, the preferred norm does not affect the measured errors much. However,
we take advantages of the norm defined by (2.32) numerically. The H1-seminorm involves
only the interior value u0 of the weak function uN , therefore computing the errors in this
norm is less expensive.
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Lemma 2.6 ([39]). Let vN = {v0, vb} ∈ S0
N . Then there are two positive constants Cl and

Cs such that
Cl|||vN |||ε ≤ |||vN ||S ≤ Cs|||vN |||ε. (2.33)

Proof. The proof is similar to the ones given in Lemma 3.1 and Lemma 3.2 of [39], so we
omit the proof here. □
Lemma 2.7. Let vN = {v0, vb} ∈ S0

N . Then there is a positive constant C such that

a(vN , vN ) ≥ |||vN |||2ε. (2.34)

Proof. For any vN = {v0, vb}, wN = {w0, wb} ∈ S0
N , it follows from the definition of the

weak convection derivative (2.21) and integration by parts that

−
(
db

wvN , w0
)

=
(
v0, (bw0)′)−

〈
vb, bnw0

〉
= −

(
bv′

0, w0
)

+
〈
bn(v0 − vb), w0

〉
, (2.35)

and
−
(
db

wwN , v0
)

=
(
w0, (bv0)′)−

〈
wb, bnv0

〉
=
(
w0, (bv0)′)−

〈
wb, bn(v0 − vb)

〉
, (2.36)

where we have used the fact that〈
bnvb, wb

〉
=

N∑
n=1

[(bvbwb)(xn) − (bvbwb)(xn−1)]

= (bvbwb)(1) − (bvbwb)(0) = 0,

because vb and wb are well-defined at the inter-boundaries and vN , wN ∈ S0
N , that is,

vb(1) = wb(1) = vb(0) = wb(0) = 0.
Taking vN = wN and summing together (2.35) and (2.36), we get

−
(
db

wvN , v0
)

= 1
2
(
b′v0, v0

)
+ 1

2
〈
bn(v0 − vb), v0 − vb

〉
. (2.37)

We can easily derive the following relation

sc(vN , vN ) + 1
2
〈
bn(v0 − vb), v0 − vb

〉
= |vN |2u.

The above equality, (2.37) and the assumption (2.2) reveal that

−
(
db

wvN + cv0, v0
)

+ sc(vN , vN ) =
(
(c + 1

2
b′)v0, v0

)
+ |vN |2u ≥ ∥γv0∥2 + |vN |2u. (2.38)

The definition of the bilinear form a(·, ·) and (2.38) lead to

a(vN , vN ) ≥ C
(
ε
(
dwvN , dwvN

)
+ ∥γv0∥2 + |vN |2u + sd(vN , vN )

)
= C|||vN |||2ε.

We complete the proof.
□

In light of Lemma 2.7 and the bilinear form (2.22) , we deduce that
|||uN |||ε ≤ C||g||,

which in turn implies the discrete problem (2.22) has a unique solution. The existence
follows from the uniqueness.

As a result of Lemma 2.6 and Lemma 2.7, we conclude that the bilinear form a(·, ·) is
also coercive in the energy like norm || · ||S defined by (2.32).

Lemma 2.8. Let vN = {v0, vb} ∈ S0
N . Then there is a positive constant C such that

a(vN , vN ) ≥ C||vN ||2S . (2.39)
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2.5. Error analysis of the WG-FEM on Bakhvalov-type mesh
In general, the standard Lagrange interpolation is used in error estimates of FEM for

SPPs. In [23], the author pointed out the Lagrange interpolation on Bakhvalov-type
meshes leads to instability in some part of the mesh intervals in the error analysis of
convection dominated problems. Recently, Brdar and Zarin studied FEM for SPPs using
a Clément quasi-interpolant operator in [3]. Unfortunately, the analysis is limited to
only linear FEM and can not be applied to higher order methods in [3]. We consider
a special interpolation operator introduced by Zhang and Liu [35] for our uniform error
analysis. This interpolation operator is defined as follows: Write xm

n := xn + m
k hn+1 for

n = 0, . . . , N − 1 and m = 0, . . . , k − 1 and set x0
N = xN . We define the interpolation Pu

of the solution u based on the regularity (2.3) of the solution u as
Pu := RI + πL, (2.40)

where RI is the standard interpolation of R given by

RI(x) =
N∑

n=0
R(x0

n)θ0
n(x) +

N−1∑
n=0

k−1∑
m=1

R(xm
n )θm

n (x),

and

πL(x) =
N∑

n=0,n ̸= N
2

L(x0
n)θ0

n(x) +
N−1∑

n=0,n ̸= N
2 −1

k−1∑
m=1

L(xm
n )θm

n (x), (2.41)

where θn and θm
n are the piecewise nodal basis functions with respect to nodes xn and xm

n ,
respectively.

The well-known interpolation result [4, Theorem 3.1.4] states that for k = 1, 2, . . . ,

|w − wI |Hl(In)≤ Chk+1−l
n |w|Hk+1(In), ∀w ∈ Hk+1(In), 0 ≤ l ≤ k + 1, (2.42)

∥w − wI∥L∞(In)≤ Chk+1
n |w|W k+1,∞(In), ∀w ∈ W k+1,∞(In), (2.43)

where W k+1,∞(In) is the standard Sobolev spaces.
Clearly, Pu is continuous on In and the weak function {Pu|In ,Pu|∂In} which is again

denoted by Pu belongs to SN .
Let us define the operator

PL(x) = L(x0
N
2

)θ0
N
2

(x) +
k−1∑
m=1

L(xm
N
2 −1)θm

N
2 −1(x).

Observe that the operators P, π and P are related as follows [35]:
πL(x) = LI − PL(x), Pu = uI − PL(x), (2.44)
πL|[x0,xN/2−1]∪[xN/2,xN ] = LI |[x0,xN/2−1]∪[xN/2,xN ], (2.45)

where LI and uI are the standard Lagrange interpolation of L and the solution u, respec-
tively. Observe that πL(x) is the Lagrange interpolation of L except on the problematic
region which is contained in the last interval of the fine part and is neighbor to the coarse
part of the Bakhvalov-type mesh defined by (2.5) while PL(x) is the redefined standard
Lagrange interpolation on the problematic region. This explains the equation (2.44). Since
the standard Lagrange interpolation of L and the interpolation operator πL(x) agree ex-
pect the problematic region, the equation (2.45) follows.

Since PL is a continuous operator we have ∥PL∥2
S = ε∥PL′∥2 + ∥γPL∥2. Hence we

have the following result.

Lemma 2.9 ([36]). Assume that σ ≥ k + 1. Then there holds

∥PL∥S ≤ CN−(k+1). (2.46)
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Lemma 2.10. Assume that σ ≥ k + 1. On Bakhvalov-type mesh (2.5), we have

∥(R − RI)(l)∥L2(Ω) ≤ CN l−(k+1), l = 0, 1, 2, . . . , (2.47)

∥L − LI∥L∞(Ω) + ∥R − RI∥L∞(Ω) + ∥u − uI∥L∞(Ω) ≤ CN−(k+1), (2.48)

∥L − LI∥L2(Ω) + ∥R − RI∥L2(Ω) + ∥u − uI∥L2(Ω) ≤ CN−(k+1), (2.49)
N/2∑
n=1

∥(L − LI)(l)∥L2(In) ≤ Cε1/2−lN l−(k+1), l = 1, 2, (2.50)

N∑
n=N/2+1

∥(L − LI)(l)∥L2(In) ≤ CN l−(k+1), l = 1, 2. (2.51)

Proof. The first estimate follows from the interpolation bounds (2.42) and the fact that
hn ≤ CN−1 for n = 1, . . . , N .

From (2.43) and (2.4), one can show that for 1 ≤ n ≤ N/2 − 1

∥L − LI∥L∞(In) ≤ Chk+1
n |L(k+1)|L∞(In) ≤ Cε−(k+1)hk+1

n e−βxn−1/ε ≤ CN−(k+1), (2.52)

where (2.10) with ν = k + 1 is used in the last step. For N/2 ≤ n ≤ N , using the fact
that ∥LI∥L∞(In) ≤ C∥L∥L∞(In), (2.4), (2.11) and (2.12) we obtain

∥L − LI∥L∞(In) ≤ ∥L∥L∞(In) + ∥LI∥L∞(In) ≤ Ce−βxn−1/ε ≤ CN−σ, (2.53)

where ε ≤ N−1 is used. Combining (2.52) and (2.53) and using the fact σ ≥ k + 1, we
conclude that

∥L − LI∥L∞(Ω) ≤ CN−(k+1). (2.54)

Similarly, using the fact that hn ≤ CN−1 for n = 1, . . . , N and |R(k+1)| ≤ C, we have
∥R − RI∥L∞(Ω) ≤ Chk+1

n |R(k+1)|L∞(Ω) ≤ CN−(k+1). Collecting this estimate, (2.54) and
(2.3) give (2.48). Holder inequalities and (2.48) imply the estimate (2.49).

Using again (2.42), (2.4) and (2.10) with ν = k + 3/2 − l for l = 1, 2, we obtain

N/2−1∑
n=1

∥(L − LI)(l)∥2
L2(In) ≤ C

N/2−1∑
n=1

h2(k+1−l)
n |L|2Hk+1(In)

≤ C

N/2−1∑
n=1

h2(k+3/2−l)
n |L(k+1)|2L∞(In)

≤ C

N/2−1∑
n=1

h2(k+3/2−l)
n ε−2(k+1) exp(−2βxn−1/ε)

= Cε−2(k+1)
N/2−1∑

n=1

(
hk+3/2−l

n exp(−βxn−1/ε)
)2

≤ Cε−2(k+1)
N/2−1∑

n=1
ε2(k+3/2−l)N−2(k+3/2−l)

≤ Cε1−2lN−2(k+1−l),

where we use inclusion relationships among the Lp(In) spaces in the second inequality
since In has a finite measure. More precisely, ∥L(k+1)∥2

L2(In) ≤ hn∥L(k+1)∥2
L∞(In).
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For n = N/2, using the triangle inequality, the inverse estimate, (2.4) and Lemma 2.2
we obtain

∥(L − LI)(l)∥2
L2(IN/2) ≤ C∥L(l)∥2

L2(IN/2) + C∥(LI)(l)∥2
L2(IN/2)

≤ C

∫ N/2

N/2−1
(L(l))2 dx + Ch−2l

N/2∥LI∥2
L2(IN/2)

≤ C

∫ N/2

N/2−1
ε−2l exp(−2βx/ε) dx + Ch−2l+1

N/2 ∥LI∥2
L∞(IN/2)

≤ Cε1−2l exp(−2βxN/2−1/ε) + Ch−2l+1
N/2 exp(−2βxN/2−1/ε)

≤ Cε1−2lN−2σ ≤ Cε1−2lN−2(k+1),

where we use inclusion relationships among the Lp(In) spaces in the third inequality and
the fact that ∥LI∥L∞(IN/2) ≤ ∥L∥L∞(IN/2) in the fourth inequality.

For N
2 + 1 ≤ n ≤ N , using (2.42), (2.4) and Lemma 2.2, we arrive at

N∑
n= N

2 +1

∥(L − LI)(l)∥2
L2(In) ≤ C

N∑
n= N

2 +1

h2(k+1−l)
n |L|2Hk+1(In)

≤ C
N∑

n= N
2 +1

h2(k+3/2−l)
n |L(k+1)|2L∞(In)

≤ C
N∑

n= N
2 +1

h2(k+3/2−l)
n ε−2(k+1) exp(−2βxn−1/ε)

≤ C
N∑

n= N
2 +1

N−2(k+3/2−l)ε−2(k+1) exp(−2βxN/2/ε)

≤ CN−2(k+1−l)ε−2(k+1)ε2σ ≤ CN−2(k+1−l),

where we use inclusion relationships among the Lp(In) spaces in the second inequality.
Thus we complete the proof. □
Lemma 2.11. Assume that σ ≥ k + 1. Then there holds

∥πL − L∥S ≤ CN−k. (2.55)

Proof. Since πL is continuous we have ∥πL−L∥2
S = ε∥(πL−L)′∥2 +∥γ(πL−L)∥2. From

(2.44) we get
∥πL − L∥2

S ≤ ε∥(L − LI)′∥2 + ∥γ(L − LI)∥2 + ∥PL∥2
S .

Due to Lemma 2.9 and the inequalities (2.50) and (2.51), we get
∥πL − L∥S ≤ CN−k.

The proof is now completed. □
Now, we will derive the following error equations that will be play an essential role in

the error analysis in the sequel.
Lemma 2.12. Let u be the solution of the problem (2.1). Then for any vN = {v0, vb} ∈
S0

N , we have the following error equations
−ε
(
u′′, v0

)
= ε

(
dw(Pu), dwvN

)
− T1(u, vN ), (2.56)(

cu, v0
)

=
(
cPu, v0

)
− T2(u, vN ), (2.57)

−
(
bu′, v0

)
= −(db

w(Pu), v0
)

− T3(u, vN ), (2.58)
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where

T N
1 (u, vN ) = −ε

(
(u − Pu)′, v′

0
)

+ ε
〈
u′ − (Pu)′, (v0 − vb)n

〉
, (2.59)

T2(u, vN ) =
(
(u − Pu), (bv0)′)+

〈
u − Pu, bv0n

〉
, (2.60)

T3(u, vN ) =
(
c(Pu − u), v0

)
, (2.61)

and P is defined by (2.40)

Proof. Notice that the interpolation operator P is continuous on In, that is, Pu ∈ C(In)
for any u ∈ H1(In), n = 1, . . . , N . Thus, the weak derivative of the interpolation
operator dw(Pu) is equivalent to the classical derivative, i.e., dw(Pu) = (Pu)′ for any
u ∈ H1(In). Therefore, the commutativity property in [39, Lemma 3.4] holds true for the
interpolation operator P defined by (2.40). The rest of the proof is similar to the proofs
of Lemma 3.5 and Lemma 3.6 in [39] where a special interpolation is used on the uniform
Shishkin mesh. To avoid a repeat, we refer to the reader to [39]. □

Lemma 2.13. Assume that u ∈ Hk+1(Ω) and ϱn is given by (2.27) and σ ≥ k+1. Denote
RI by the standard Lagrange interpolation R and πL denotes the interpolation defined by
(2.41). Then the interpolation Pu = RI + πL satisfies the following bound

{
N∑

n=1

ε2

ϱn
∥(u − Pu)′∥2

L2(∂In)

}1/2

≤ CN−k.

Proof. From (2.44), we have u −Pu = u − uI + PL. Owing to the triangle inequality and
the inverse inequality (2.29)

∥(u − Pu)′∥L2(∂In) ≤ ∥(u − uI)′∥L2(∂In) + ∥(PL)′∥L2(∂In)

≤ ∥(u − uI)′∥L2(∂In) + Ch−1
n ∥PL∥L2(In).

Recalling (2.27), one has

εh−1
n

ϱn
≤ C for n = 1, . . . , N.

Then, by Lemma 2.9 we have

N∑
n=1

ε2

ϱn
∥(u − Pu)′∥2

L2(∂In) ≤ C
( N∑

n=1

ε2

ϱn
∥(u − uI)′∥2

L2(∂In) +
N∑

n=1

ε2

ϱn
h−2

n ∥PL∥2
L2(In)

)

≤ C
( N∑

n=1

ε2

ϱn
∥(u − uI)′∥2

L2(∂In) + N−2(k+1)
)
. (2.62)

It remains to bound the first term on the RHS of the above inequality. For the sake of
simplicity, we write u − uI = ξ = ξR + ξL with ξR = R − RI and ξL = L − LI .

The triangle inequality implies that

∑
In∈TN

ε2

ϱn
∥ξ′∥2

L2(∂In) ≤
∑

In∈TN

ε2

ϱn

(
∥ξ′

R∥2
L2(∂In) + ∥ξ′

L∥2
L2(∂In)

)
. (2.63)

The trace inequality (2.28) states that

∥ξ′
R∥2

L2(∂In) ≤ h−1
n ∥ξ′

R∥2
L2(In) + ∥ξ′

R∥L2(In)||ξ′′
R∥L2(In). (2.64)



862 Ş. Toprakseven

From (2.47), Lemma 2.3 and the penalty parameter (2.27), we get
N∑

n=1

ε2

ϱn
∥ξ′

R∥2
L2(∂In) ≤ C

N∑
n=1

ε2

ϱn
(h−1

n ∥ξ′
R∥2

L2(In) + ∥ξ′
R∥L2(In)∥ξ′′

R∥L2(In))

≤ C
(
ε

N/2∑
n=1

∥ξ′
R∥2

L2(In) + ε2N
N∑

n=N/2+1
∥ξ′

R∥2
L2(In)

+ ε2N−1
N/2∑
n=1

∥ξ′
R∥L2(In)∥ξ′′

R∥L2(In)

+ ε2
N∑

n=N/2+1
∥ξ′

R∥L2(In)∥ξ′′
R∥L2(In)

)
≤ CεN−2k,

(2.65)

where we have used that εN < 1.
Next, using the same argument along with the inequalities (2.50) and (2.51) we arrive

at
N∑

n=1

ε2

ϱn
∥ξ′

L∥2
L2(∂In) ≤ C

N∑
n=1

ε2

ϱn
(h−1

n ∥ξ′
L∥2

L2(In) + ∥ξ′
L∥L2(In)∥ξ′′

L∥L2(In))

≤ C
(
ε

N/2∑
n=1

∥ξ′
L∥2

L2(In) + ε2N
N∑

n=N/2+1
∥ξ′

L∥2
L2(In)

+ ε2N−1
N/2∑
n=1

∥ξ′
L∥L2(In)∥ξ′′

L∥L2(In)

+ ε2
N∑

n=N/2+1
∥ξ′

L∥L2(In)∥ξ′′
L∥L2(In)

)
≤ C

(
N−2k + εN−2k + N−2k + εN−2k

)
≤ CN−2k,

(2.66)

where again the fact that εN < 1 is used.
Combining the inequalities (2.65) and (2.66) gives∑

In∈TN

ε2

ϱn
∥ξ′∥2

L2(∂In) ≤ CN−2k.

This last inequality and (2.62) give the desired result. Thus, we complete the proof. □
We will derive an error equation for the discretization error η = Pu − uN which will be

used in the error analysis below.

Lemma 2.14. Let u and uN ∈ S0
N be the exact solution and the WG-FEM solution of

problem (2.1) and (2.22) on Bakhvalov-type mesh (2.5), respectively. Then we have the
following error equation for η = Pu − uN

a(Pu − uN , vN ) = T (u, vN ), ∀vN ∈ S0
N , (2.67)

where T (u, vN ) = T1(u, vN )+T2(u, vN )+T3(u, vN ). Here, T1(u, vN ), T2(u, vN ) and T3(u, vN )
are defined by (2.59), (2.60) and (2.61), respectively.

Proof. Testing (2.1) by the test functions vN = {v0, vb} ∈ S0
N , we obtain

−ε
(
u′′, v0

)
−
(
bu′, v0

)
+
(
cu, v0

)
= (g, v0). (2.68)
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Using the fact that Pu is continuous in Ω, we have sc(Pu, vN ) = sd(Pu, vN ) = 0. Plugging
the equations in (2.59), (2.60) and (2.61 ) into the above equation (2.68), we arrive at

a(Pu, vN ) = b(Pu, vN ) =
(
g, v0

)
+ T (u, vN ). (2.69)

Subtracting (2.22) from the equation (2.69) yields the desired equation (2.67). Thus, the
proof is now completed. □

Lemma 2.15. Assume that u ∈ Hk+1(Ω) and the penalization parameter ϱn is given by
(2.27). If σ ≥ k + 1, then we have, for any vN = {v0, vb} ∈ S0

N

T (u, vN ) ≤ CN−k||vN ||S , (2.70)

where C is independent of N and ε.

Proof. In order to prove (2.70), we estimate T1(u, vN ), T2(u, vN ) and T3(u, vN ) individu-
ally. By the triangle inequality, we obtain

|T N
1 (u, vN )| ≤ ε|

(
(u − Pu)′, v′

0
)
| + ε|

〈
(u − Pu)′, (v0 − vb)n

〉
| =: R1 + R2.

We first estimate R1. Using Cauchy-Schwarz inequality, (2.47), (2.50) and (2.51) of Lemma
2.10 and Lemma 2.9 , we arrive at

|R1| ≤ ε1/2∥(u − uI)′∥ε1/2∥v′
0∥ + ε∥(PL)′∥∥v0∥

≤ C
[
ε1/2

(
N−k + ε−1/2N−k + N−k

)
+ N−(k+1)

]
∥vN ∥S

≤ CN−k∥vN ∥S .

(2.71)

For R2, it follows from the Cauchy-Schwarz inequality and Lemma 2.13 that

|R2| ≤
N∑

n=1
ε|⟨(u − Pu)′, (v0 − vb)n⟩∂In |

≤
N∑

n=1
ε∥(u − Pu)′∥L2(∂In)∥v0 − vb∥L2(∂In)

≤
{

N∑
n=1

ε2

ϱn
∥(u − Pu)′∥2

L2(∂In)

}1/2{ N∑
n=1

ϱn∥v0 − vb∥2
L2(∂In)

}1/2

≤ CN−ks
1/2
d (vN , vN ).

(2.72)

As a result of (2.71) and (2.72), we have

|T1(u, vN )| ≤ CN−k||vN ||S . (2.73)

Let T2(u, vN ) =
(
u − Pu, (bv0)′) +

〈
u − Pu, bv0n

〉
=: S1 + S2. Using the relation (2.40),

we have

S1 =
(
u − Pu, (bv0)′) =

(
ξR, (bv0)′)+

(
L − πL, (bv0)′)

=
(
ξR, (bv0)′)+

(
(L − πL), b′v0

)
+
(
(L − πL), bv′

0
)

where ξR = R − RI .
Using the fact that RI = R on ∂In, integration by parts on the first term on the RHS

of the above equation and the Cauchy-Schwarz inequality yield(
ξR, (bv0)′)+

(
(L − πL), b′v0

)
≤C

(
∥ξ′

R∥ + ∥L − πL∥
)
∥vN ∥S .

Then, using (2.47) and (2.55) we obtain(
ξR, (bv0)′)+

(
(L − πL), b′v0

)
≤ CN−k∥vN ∥S ≤ CN−k∥vN ∥S . (2.74)
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The last term
(
(L − πL), bv′

0
)

can be estimated as follows:

(
(L − πL), bv′

0
)

=
∫ N

2 −2

0
b(L − LI)v′

0 dx +
∫ N

2

N
2 −2

b(L − πL)v′
0 dx

+
∫ N

N
2

b(L − LI)v′
0 dx

:= Z1 + Z2 + Z3,

where we have used (2.45). The Hölder inequalities, the Cauchy-Schwarz inequality, (2.4)
and (2.10) with ν = k + 1 imply that

|Z1| ≤ C

N
2 −2∑
n=1

∫ xn

xn−1
|L − LI ||v′

0|dx

≤ C

N
2 −2∑
n=1

∥L − LI∥L∞(In)∥v′
0∥L1(In)

≤ C

N
2 −2∑
n=1

hk+1
n ε−(k+1)e−βxi/ε · h1/2

n ∥v′
0∥L2(In)

≤ Cε1/2

N
2 −2∑
n=1

N−(k+1)∥v′
0∥L2(In)

≤ C


N
2 −2∑
n=1

N−2(k+1)


1/2ε

N
2 −2∑
n=1

∥v′
0∥2

L2(In)


1/2

≤ CN−(k+1/2)∥vN ∥S ,

(2.75)

where we have used (2.6), (2.7) and (2.43).
The Cauchy-Schwarz inequality, the inverse inequality and (2.48) reveal that

|Z3| ≤ C∥L − LI∥L2([xN/2,xN ])∥v′
0∥L2([xN/2,xN ])

≤ CN−(k+1) · N∥v0∥L2([xN/2,xN ]) ≤ CN−k∥v0∥.
(2.76)

On I N
2 −1 = [N

2 − 2, N
2 − 1], it follows from (2.41) that πL(x) = LI − L(x0

N
2 −1)θ0

N
2 −1(x).

Thus, if σ ≥ k + 1 we arrive at∣∣∣∣∣∣
∫ x N

2 −1

x N
2 −2

b(L − πL)v′
0dx

∣∣∣∣∣∣ ≤ C
( ∫ x N

2 −1

x N
2 −2

|L − LI | |v′
0|dx + |L(x N

2 −1)|
∫ x N

2 −1

x N
2 −2

|θ0
x N

2 −1
v′

0|dx
)

≤ C

(
∥L − LI∥L∞(I N

2 −1) + |L(x N
2 −1)|

)
∥v′

0∥L1(I N
2 −1)

≤ C(hk+1
N
2 −1ε−(k+1)e

−βx N
2 −2/ε

+ N−σ) · h
1/2
N
2 −1∥v′

0∥L2(I N
2 −1)

≤ C(N−(k+1) + N−σ)∥v0∥S ≤ CN−(k+1)∥v0∥S ,
(2.77)

where we have used the Hölder inequalities, (2.42), (2.43), (2.10) with ν = k + 1 and
σ ≥ k + 1 and (2.7).
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On I N
2

= [N
2 − 1, N

2 ], it follows from (2.44) that πL(x) = L(x0
N
2

)θ0
N
2

(x). From (2.48),
when σ ≥ k + 1 we get

∣∣∣∣∣∣
∫ x N

2

x N
2 −1

b(L − πL)v′
0dx

∣∣∣∣∣∣ ≤ C
(
|L(x N

2
)|
∫ x N

2

x N
2 −1

|θ0
N
2

(x)| |v′
0|dx +

∫ x N
2

x N
2 −1

|L| |v′
0|dx

)
≤ C

(
εσ∥θ0

N
2

∥L2([x N
2 −1,x N

2
])∥v′

0∥L2([x N
2 −1,x N

2
])

+ ∥L∥L2([x N
2 −1,x N

2
])∥v′

0∥L2([x N
2 −1,x N

2
])

)
≤ C

(
εσh

1/2
N
2

+ ε1/2N−σ
)

∥v′
0∥L2([x N

2 −1,x N
2

])

≤ C(εσ−1/2N−1/2 + N−σ)∥v0∥S ≤ CN−(k+1)∥v0∥S ,

(2.78)

where we have used ε ≤ N−1 and the facts that

∥L∥L2([x N
2 −1,x N

2
]) ≤ ε1/2N−σ and ∥θ0

N
2

∥L2([x N
2 −1,x N

2
]) ≤ Ch

1/2
N/2.

Thus, it follows from (2.77) and (2.78) that

|Z2| ≤ CN−(k+1)∥vN ∥S . (2.79)

From (2.75), (2.76) and (2.79) we have

(
(L − πL), bv′

0
)

≤ CN−k∥vN ∥S . (2.80)

As a result of the estimates above, we obtain

|S1| ≤ CN−k∥vN ∥S . (2.81)

We next estimate the second term S2. With the help of (2.44) and using the assumption
that σ ≥ k + 1, we arrive at

|⟨PL, bv0n⟩| = |⟨PL, b (v0 − vb) n⟩|

≤
∣∣∣L (xN/2−1

)
(b (v0 − vb))

(
x−

N/2−1

)∣∣∣+ ∣∣∣L (xN/2−1
)

(b (v0 − vb))
(
x+

N/2−1

)∣∣∣
≤ CN−(k+1)

(∣∣∣(v0 − vb)
(
x−

N/2−1

)∣∣∣+ ∣∣∣(v0 − vb)
(
x+

N/2−1

)∣∣∣)
≤ CK(ϱ)N−(k+1)

(
ϱ N

2 −2

∣∣∣∣(v0 − vb)
(

x−
N
2 −1

)∣∣∣∣2 + ϱ N
2 −1

∣∣∣∣(v0 − vb)
(

x+
N
2 −1

)∣∣∣∣2
)1/2

≤ CN−(k+1)K(ϱ)sd (vN , vN ) ≤ CN−(k+1)∥vN ∥S ,

(2.82)

where K(ϱ) :=
(
ϱ−1

N/2−2 + ϱ−1
N/2−1

)1/2
and we have used (2.4) and (2.11) in the second

inequality. From (2.81) and (2.82), we get

|T2(u, vN )| ≤ CN−k∥vN ∥S . (2.83)
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We finally estimate T3(u, vN ). By making use of the Cauchy-Schwarz inequality and the
estimates (2.47)-(2.49) of Lemma 2.10 and Lemma 2.9 we get

|T3(u, vN )| ≤C

(
∥ξR∥∥v0∥ +

N/2∑
n=1

∥ξL∥L2(In)∥v0∥L2(In)

+
N∑

n= N
2 +1

∥ξL∥L2(In)∥v0∥L2(In) + ∥PL∥∥v0∥
)

≤C

(
N−(k+1) + ε1/2N−(k+1) + N−(k+1) + N−(k+1)

)
∥vN ∥S

≤CN−(k+1)||vN ||S .

(2.84)

From (2.73), (2.83), and (2.84), we have

|T (u, vN )| ≤ N−k||vN ||S ,

which is the desired result (2.70). Thus we complete the proof. □

Theorem 2.16. Let Pu be the interpolation defined by (2.40) of the exact solution u ∈
Hk+1(Ω) and uN ∈ S0

N be the WG-FEM solution computed by (2.22) on the Bakhvalov-
type mesh for the problem (2.1), respectively. Assume that σ ≥ k + 1. Then we have the
following estimate

||Pu − uN ||S ≤ CN−k,

where C is independent of N and ε.

Proof. With the help of Lemma 2.8, we have

a(Pu − uN ,Pu − uN ) ≥ C||Pu − uN ||2S . (2.85)

Choosing vN = Pu − uN in the error equation (2.67) yields

a(Pu − uN ,Pu − uN ) = T (u,Pu − uN ).

Using Lemma 2.15, we have

a(Pu − uN ,Pu − uN ) ≤ CN−k||Pu − uN ||S ,

which together with (2.85) gives the desired result. Thus we complete the proof. □

Theorem 2.17. Let uI be the Lagrange interpolation of the exact solution u ∈ Hk+1(Ω)
and uN ∈ S0

N be the WG-FEM solution computed by (2.22) on the Bakhvalov-type mesh
for the problem (2.1), respectively. Assume that σ ≥ k + 1. Then we have the following
estimate

||uI − uN ||S ≤ CN−k,

where C is independent of N and ε.

Proof. Using (2.44) and the triangle inequality, we have ||uI − uN ||S ≤ ||Pu − uN ||S +
||PL||S . Lemma 2.9 and Theorem 2.16 imply the desired result. The proof is now com-
pleted. □

Theorem 2.18. Assume that u ∈ Hk+1(Ω) is the exact solution and uI is the Lagrange
interpolation of the solution of the problem (2.1), respectively. Assume that σ ≥ k + 1.
Then we have the following estimate

||u − uI ||S ≤ CN−k,

where C is independent of N and ε.
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Proof. Since ξ = u − uI is continuous in Ω, we have |ξ|u = sd(ξ, ξ) = 0. Then,

∥ξ∥2
S = ε∥ξ′∥2

L2(Ω) + ∥γξ∥2
L2(Ω). (2.86)

Using (2.49) of Lemma 2.10, we have

∥ξ∥2 ≤ CN−2(k+1). (2.87)

From (2.47), (2.50) and (2.51), we have

ε∥ξ′∥2
L2(Ω) = ε

(
∥ξ′

R∥2
L2(Ω) +

N/2∑
n=1

∥ξ′
L∥2

L2(In) +
N∑

n= N
2 +1

∥ξ′
L∥2

L2(In)

)
≤ Cε

(
N−2k + ε−1N−2k + N−2k

)
≤ CN−2k.

(2.88)

Combining (2.86), (2.87) and (2.88) leads to

||u − uI ||S ≤ CN−k.

The proof is now completed. □

The main theorem of this section is the following.

Theorem 2.19. Assume that u ∈ Hk+1(Ω) is the exact solution and uN ∈ S0
N is the

WG-FEM solution computed by (2.22) on the Bakhvalov-type mesh for the problem (2.1),
respectively. Assume that σ ≥ k + 1. Then we have the following estimate

||u − uN ||S ≤ CN−k,

where C is independent of N and ε.

Proof. By Theorem 2.17, Theorem 2.18 and the triangle inequality, we conclude the
desired result. □

3. Numerical experiments
In this section, we give several numerical experiments to verify computationally the the-

oretical convergence results obtained in Theorem 2.19. All the calculations are calculated
in MATLAB R2016a and all integrals in the proposed method are approximated by using
the 5-point GaussLegendre quadrature rule. Let eN be the error between the exact solu-
tion and the approximate solution on the Bakhvalov-type mesh with N elements. Then
we compute the order of convergence OC(N) by the formula

OC(N) = log2(
eN/2
eN

).

We first present the convergence rate of the WG-FEM solution uN = {u0, ub} obtained by
(2.22) and the exact solution u in the ∥ · ∥S-norm given by (2.32). Besides, we investigate
the error u − uN in the L2-norm and the discrete L∞-norm defined by, respectively,

∥u − u0∥L2(TN ) :=
{

N∑
n=1

∥u − u0∥2
L2(In)

}1/2

,

and

∥u − ub∥L∞(TN ) := max
0≤n≤N

|u(xn) − ub(xn)|.

Example 3.1. Consider the following singularly perturbed problem adapted from [35]{
−εu′′(x) − (3 − x)u′(x) + u(x) = f(x) x ∈ (0, 1),
u(x) = u(1) = 0.

(3.1)
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Bakhvalov-type mesh
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Figure 2. The Bakhvalov-type mesh (2.5) for various values of ε with ε = 10−3,
ε = 10−5 and ε = 10−7.
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Figure 3. The exact solution of the problem in Example 3.1 with ε = 10−3,
ε = 10−2 and ε = 10−1.

where the function f is chosen such that the exact solution is given by

u(x) = cos(π

2
x)(1 − exp(−2x/ε)). (3.2)

For the values of ε = 10−3, ε = 10−2 and ε = 10−1, we plot the exact solution of (3.1)
in Figure 3. We observe that there is a boundary layer near x = 0 for small ε.

For the Bakhvalov-type mesh (2.5), we take σ = k + 1 and β = 2. We plot the
Bakhvalov-type mesh (2.5) for various values of ε in Figure 2.

We report the history of convergence of the WG-FEM in the ∥ · ∥S-norm for Example
3.1 with ε = 10−3, 10−5, 10−7, k = 1, 2, 3, 4 and N = 2r, r = 3, . . . , 8 in Table 1. It is
clear indication that the convergence rate of order k in the ∥ · ∥S-norm is obtained and
we numerically confirm the result of Theorem 2.19. We plot the errors in the ∥ · ∥S-norm,
L2-norm and the discrete L∞-norm for Example 3.1 with ε = 10−9 on log-log scales in
Figure 4. We observe that the order of convergence in the ∥ · ∥S-norm is O(N−k) which
supports the conclusion of Theorem 2.19. Furthermore, Table 2 and Table 3 indicate that
the proposed WG-FEM has the optimal order of convergence of O(N−(k+1)) in the L2-
norm and the discrete L∞-norm. Theoretical results for the optimal convergence rates in
these norms can be accomplished using the techniques such as the corresponding discrete
Green’s function to the problem and weighted estimates. This will be investigated in a
future study.
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N ||u − uN ||S OC ||u − uN ||S OC ||u − uN ||S OC
k = 1 ε = 10−3 ε = 10−5 ε = 10−7

8 4.3403e-01 - 4.3445e-01 - 4.3455e-01 -
16 2.3353e-01 0.89 2.3370e-01 0.89 2.3371e-01 0.89
32 1.2117e-01 0.95 1.2126e-01 0.95 1.2126e-01 0.95
64 6.1744e-02 0.97 6.1785e-02 0.97 6.1786e-02 0.97
128 3.1170e-02 0.99 3.1191e-02 0.99 3.1191e-02 0.99
256 1.5661e-02 0.99 1.5672e-02 0.99 1.5672e-02 0.99
512 7.8496e-03 1.00 7.8549e-03 1.00 7.8550e-03 1.00
k = 2 ε = 10−3 ε = 10−5 ε = 10−7

8 1.4188e-01 - 1.4209e-01 - 1.4209e-01 -
16 3.9821e-02 1.83 3.9883e-02 1.83 3.9882e-02 1.83
32 1.0475e-02 1.93 1.0491e-02 1.93 1.0491e-02 1.93
64 2.6807e-03 1.97 2.6849e-03 1.97 2.6848e-03 1.97
128 6.7771e-04 1.98 6.7878e-04 1.98 6.7877e-04 1.98
256 1.7036e-04 1.99 1.7063e-04 1.99 1.7062e-04 1.99
512 4.2705e-05 2.00 4.2773e-05 2.00 4.2772e-05 2.00
k = 3 ε = 10−3 ε = 10−5 ε = 10−7

8 4.6352e-02 - 4.6461e-02 - 4.6462e-02 -
16 6.8032e-03 2.77 6.8199e-03 2.77 6.8200e-03 2.77
32 9.0639e-04 2.91 9.0862e-04 2.91 9.0865e-04 2.91
64 1.1640e-04 2.96 1.1669e-04 2.96 1.1669e-04 2.96
128 1.4730e-05 2.98 1.4766e-05 2.98 1.4767e-05 2.98
256 1.8520e-06 2.99 1.8566e-06 2.99 1.8566e-06 2.99
512 2.3216e-07 3.00 2.3273e-07 3.00 2.3274e-07 3.00
k = 4 ε = 10−3 ε = 10−5 ε = 10−7

8 1.4931e-02 - 1.4978e-02 - 1.4978e-02 -
16 1.1583e-03 3.69 1.1622e-03 3.69 1.1622e-03 3.69
32 7.8256e-05 3.89 7.8520e-05 3.89 7.8523e-05 3.89
64 5.0432e-06 3.96 5.0602e-06 3.96 5.0604e-06 3.96
128 3.1941e-07 3.98 3.2049e-07 3.98 3.2050e-07 3.98
256 2.0086e-08 3.99 2.0154e-08 3.99 2.0154e-08 3.99
512 1.2602e-09 3.99 1.2636e-09 4.00 1.2637e-09 4.00

Table 1. The numerical errors in the || · ||S norm and their orders of convergence
for Example 3.1
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N ||u − u0||L2(Th
) OC ||u − u0||L2(Th

) OC ||u − u0||L2(Th
) OC

k = 1 ε = 10−3 ε = 10−5 ε = 10−7

8 6.1483e-03 - 6.4609e-03 - 6.4768e-03 -
16 1.4839e-03 2.05 1.5604e-03 2.05 1.5623e-03 2.05
32 3.6509e-04 2.02 3.8449e-04 2.02 3.8488e-04 2.02
64 9.0317e-05 2.02 9.5510e-05 2.01 9.5615e-05 2.01
128 2.2227e-05 2.02 2.3802e-05 2.00 2.3833e-05 2.00
256 5.3495e-06 2.05 5.9394e-06 2.00 5.9498e-06 2.00
512 1.2283e-06 2.12 1.4825e-06 2.00 1.4864e-06 2.00
k = 2 ε = 10−3 ε = 10−5 ε = 10−7

8 4.2873e-04 - 3.7702e-04 - 3.7658e-04 -
16 5.4863e-05 2.97 4.8085e-05 2.97 4.8026e-05 2.97
32 6.7713e-06 3.02 6.0502e-06 2.99 6.0450e-06 2.99
64 8.0207e-07 3.08 7.5712e-07 3.00 7.5729e-07 3.00
128 9.0940e-08 3.14 9.4485e-08 3.00 9.4731e-08 3.00
256 1.0218e-08 3.15 1.1756e-08 3.01 1.1844e-08 3.00
512 1.3038e-09 2.97 1.4554e-09 3.01 1.4806e-09 3.00
k = 3 ε = 10−3 ε = 10−5 ε = 10−7

8 7.9959e-05 - 2.6925e-06 - 1.9916e-05 -
16 1.3509e-05 2.56 2.0709e-06 3.36 1.9149e-06 3.37
32 1.8595e-06 2.86 1.8895e-07 3.45 1.8003e-07 3.41
64 2.2406e-07 3.05 1.6457e-08 3.52 1.5171e-08 3.56
128 2.4313e-08 3.20 1.1724e-09 3.81 1.0755e-09 3.81
256 2.4613e-09 3.31 1.0916e-10 3.91 7.0681e-11 3.92
512 1.9872e-10 3.63 7.0457e-12 3.95 4.5248e-12 3.96
k = 4 ε = 10−3 ε = 10−5 ε = 10−7

8 1.2658e-05 - 2.6925e-06 - 2.3915e-06 -
16 1.0946e-06 3.53 1.2603e-07 4.41 1.0919e-07 4.45
32 7.5175e-08 3.86 5.6907e-09 4.46 4.9693e-09 4.45
64 4.3268e-09 4.11 2.3271e-10 4.61 2.0448e-10 4.60
128 2.2571e-10 4.26 8.2572e-12 4.81 6.9458e-12 4.87
256 8.7364e-12 4.69 2.7548e-13 4.90 2.2374e-13 4.95
512 3.1961e-13 4.77 8.8520e-15 4.95 7.1101e-15 4.97

Table 2. The numerical errors in the L2-norm and their orders of convergence
for Example 3.1
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N ||u − ub||L∞(Th
) OC ||u − ub||L∞(Th

) OC ||u − ub||L∞(Th
) OC

k = 1 ε = 10−3 ε = 10−5 ε = 10−7

8 6.4371e-03 - 6.1521e-03 - 5.9496e-03 -
16 2.9132e-03 1.14 2.8997e-03 1.09 2.8870e-03 1.04
32 8.4071e-04 1.79 8.3915e-04 1.79 8.3833e-04 1.78
64 2.3173e-04 1.86 2.3133e-04 1.86 2.3126e-04 1.86
128 6.0347e-05 1.94 6.0255e-05 1.94 6.0250e-05 1.94
256 1.5401e-05 1.97 1.5379e-05 1.97 1.5378e-05 1.97
512 3.8905e-06 1.98 3.8856e-06 1.98 3.8855e-06 1.98
k = 2 ε = 10−3 ε = 10−5 ε = 10−7

8 1.7868e-03 - 1.8305e-03 - 1.8496e-03 -
16 1.8774e-04 3.25 1.9062e-04 3.26 1.9090e-04 3.28
32 1.4028e-05 3.74 1.4546e-05 3.71 1.4556e-05 3.71
64 1.0389e-06 3.76 1.1619e-06 3.65 1.1635e-06 3.65
128 7.1667e-08 3.86 9.9040e-08 3.55 9.9410e-08 3.55
256 3.7472e-09 4.26 9.4948e-09 3.38 9.5871e-09 3.37
512 4.8182e-10 2.96 1.0176e-09 3.22 1.0403e-09 3.20
k = 3 ε = 10−3 ε = 10−5 ε = 10−7

8 1.2865e-04 - 1.2983e-04 - 1.2984e-04 -
16 1.0720e-05 3.58 1.0741e-04 3.59 1.0742e-04 3.59
32 8.1671e-07 3.71 8.1704e-07 3.71 8.1705e-07 3.71
64 5.8389e-08 3.80 5.8395e-08 3.80 5.8365e-08 3.80
128 3.8467e-09 3.92 3.8469e-09 3.92 3.8469e-09 3.92
256 2.4994e-10 3.94 2.4505e-10 3.94 2.4544e-10 3.94
512 1.5740e-11 3.98 1.5790e-11 3.98 1.5781e-11 3.98
k = 4 ε = 10−3 ε = 10−5 ε = 10−7

8 1.1480e-05 - 1.0988e-05 - 1.0983e-05 -
16 4.7924e-07 4.58 4.4839e-07 4.61 4.4816e-07 4.61
32 1.8278e-08 4.71 1.6797e-08 4.73 1.6731e-08 4.73
64 6.3773e-10 4.86 6.0005e-10 4.80 6.0028e-10 4.80
128 2.0781e-11 4.93 1.9500e-11 4.94 1.9523e-11 4.94
256 6.7244e-13 4.94 6.1513e-13 4.98 6.1554e-13 4.98
512 2.1141e-14 4.99 1.9257e-14 4.99 1.9285e-14 4.99

Table 3. The numerical errors in the discrete L∞-norm and their orders of con-
vergence for Example 3.1
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Figure 4. Convergence rates of there norms using (a) Linear and (b) Quadratic
element functions for Example 3.1 with ε = 10−9.



WG-FEM for SPPs of convection-dominated type 873

4. Conclusion
In this work, we introduce and analyze a WG-FEM for the one-dimensional singularly

perturbed problem of convectiondiffusion type. We introduce two stabilization terms for
discretization of the diffusion term and convection term in order to derive an optimal and
uniform error estimate for the convection dominated problems. The parameter-free error
estimates in the corresponding energy norm of the proposed method is established on
Bakhvalov-type mesh using high order elements. The present method and analyses can be
extended to higher dimensional SPPs since the construction of the interpolation operator
is simple and is suitable for the analysis of the WG-FEM. We will study this direction in
upcoming paper.
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