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Abstract – Given that the definition of the multi-objective optimization problem is raised when number of objectives is increased 

in number at the optimization problem, where not only the number of objectives but also the computational resources which are 

needed to solve the problem, is also more desired. Therefore, novel approaches had required to solve multi-objective optimization 

problem in a reasonable time. One of this novel approach is utilization of the decomposition method with the evolutionary 

algorithm/operator. This algorithm was called multi-objective evolutionary algorithm based on decomposition (MOEA/D). Later 

on, variants have been proposed to improve the performance of the MOEA/D algorithm. However, a general comparison between 

these variants has needed for demonstrate the performance of these algorithm. For this reason, in this research the variants of 

MOEA/D algorithms have implemented on benchmark problems (DTLZ and MaF) and the performances has compared with 

each other. Two metrics had selected to evaluate/compare the performances of the variants. The metrics are IGD and Spread 

metrics. The results at the end of the implementations suggest that adaptive weighting idea is the most promising idea to increase 

the performance of the MOEA/D algorithm.  
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I. INTRODUCTION 

The number of objectives in the optimization problem 

decides the complexity and the title of the problem set. İf the 

number of objectives is more than one, it is called 

multiobjective optimization problem. The definition of the 

multi-objective optimization problem is given as 

 

min    𝐹(𝑥) = (𝑓1(𝑥)… 𝑓𝑀(𝑥))                 (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ Ω  
                          g(x) ≤ 0 

                          h(x) = 0 

where g(x) and h(x) are constraints with the decision vector 

xϵΩ is the decision space and F:Ω→RM is the real valued 

objective space, where F is the objective function vector of real 

valued f. As the number of objectives is increase in number 

conventional methods for sorting the solutions with respect to 

the dominance become computationally costly and since the 

distance between dimensions on the objective space increase, 

it is hard to obtain a more diverse solutions on the objective 

space. Therefore, modern multiobjective optimization 

algorithms prefer alternative methods like decomposition. 

Multi-objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) [1] is an evolutionary multi 

objective optimization algorithm which is proposed by Zhang 

et al. in 2007. The algorithm is based on decomposition 

(Aggregation function). Decomposition stands for converting 

the multiobjective problem into many single objective sub-

problems. The sub-problems composed from the solutions on 

the objective space and the pre-defined weight vectors. The 

diversity of the population is detected explicitly from these 

weight vectors. MOEA/D is an evolutionary multiobjective 

optimization algorithm so that the algorithm is built from 

Genetic operators; crossover, mutation and selection. Instead 

of the selection operator; other two operators are almost same 

at MOEA/D. SBX method is selected as the crossover operator 

at the algorithm. However, parents are selected from 

neighbouring members of the population. For this reason, two 

set of vectors are recorded for neighbouring data and weights 

for the decomposition. Polynomial mutation is selected as the 

mutation operator. Selection operator differs from 

evolutionary algorithms. Decomposition is applied to the 

solutions on the objective space by using a set of weight 

vectors. Then solutions are converted to the number of sub-

problems. The sub-problem values of the offspring and parents 

are compared in number with respect to the minimization or 

maximization. Finally, the best members are survived to the 

next generation. 

Even MOEA/D proves itself on many problems, still the 

performance of the algorithm needs to be improved to get a 

better distribution of the solutions with a better result with a 

faster or by using lower computational resources. Therefore, 

many variants are proposed to increase the performance of the 

algorithm. To discuss the performance of these variances, in 

this paper the performance of these variants on 22 benchmark 

problems with five objectives are compared with each other. 

This paper is organized as four sections. After the 

introduction materials and methods used in this research is 

given. These are optimization algorithms, benchmark 

problems and metrics. Then implementation results are given 

numerically and finally the conclusion of the paper is given as 

the final section. 

https://dergipark.org.tr/en/pub/ijmsit
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Table 1. DTLZ Benchmark Problems 

 Mathematical Formulation 

DTLZ1 𝑓1 =
1

2
𝑥1𝑥2. . . 𝑥𝑀−1(1 + 𝑔(𝑥𝑀)) . . . (1 − 𝑥𝑀−1)(1 + 𝑔(𝑥𝑀))…𝑓𝑀 =

1

2
(1 − 𝑥1)(1 + 𝑔(𝑥𝑀)) 

𝑔(𝑥𝑀) = 100 [|𝑥𝑀| +∑((𝑥𝑖 −
1

2
)
2

+ 𝑐𝑜𝑠 (20𝜋 (𝑥𝑖 −
1

2
)))

𝑀

𝑖=1

] 

DTLZ2 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1
𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
)… 

𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1
𝜋

2
)𝑔(𝑥𝑀) =∑((𝑥𝑖 −

1

2
)
2

)

𝑀

𝑖=1

 

DTLZ3 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1
𝜋

2
)… 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
)…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1

𝜋

2
) 

 𝑔(𝑥𝑀) = 100 [|𝑥𝑀| +∑((𝑥𝑖 −
1

2
)
2

+ 𝑐𝑜𝑠 (20𝜋 (𝑥𝑖 −
1

2
)))

𝑀

𝑖=1

] 

DTLZ4 
𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1

100 𝜋

2
) . . . 𝑐𝑜𝑠 (𝑥100𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥100𝑀−1

𝜋

2
)…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥

100
1
𝜋

2
) , 𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −

1

2
)
2

)𝑀
𝑖=1  

DTLZ5 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝜃1
𝜋

2
)…𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝜃𝑀−1

𝜋

2
) … 𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝜃𝑀−1

𝜋

2
)…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝜃1

𝜋

2
)  

𝜃𝑖 =
𝜋

4(1 + 𝑔(𝑥𝑀))
(1 + 2𝑔(𝑥𝑀)𝑥𝑖), 𝑔(𝑥𝑀) =∑((𝑥𝑖 −

1

2
)
2

)

𝑀

𝑖=1

 

DTLZ6 𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝜃1
𝜋

2
) . . . 𝑐𝑜𝑠 (𝜃𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝜃𝑀−1

𝜋

2
) 

…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝜃1
𝜋

2
) 𝜃𝑖 =

𝜋

4(1+𝑔(𝑥𝑀))
(1 + 2𝑔(𝑥𝑀)𝑥𝑖), 𝑔(𝑥𝑀) = ∑ (𝑥𝑖

0.1)𝑀
𝑖=1  

DTLZ7 
𝑓1 = 𝑥1, 𝑓2 = 𝑥2…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))ℎ𝑔(𝑥𝑀) = 1 +

9

|𝑥𝑀|
∑𝑥𝑖 , ℎ = 𝑀 − ∑ (

𝑓𝑖

1+𝑔
(1 + 𝑠𝑖𝑛(3𝜋𝑓𝑖)))

𝑀−1
𝑖=1  

 

II. MATERIALS AND METHOD 

In this section the variants (16) of MOEA/D are briefly 

given. Then benchmark problems are defined with the metrics 

that used to compare the performances of the algorithms. 

A. Optimization Algorithms 

 

MOEA/D Adaptive Weight Vector Adjustment (MOEA/D-

AWA) [2]: 

This paper aims at developing a method for weights of the 

decomposition process. It is stated on the paper that uniformly 

distributed weights for the decomposition cannot work well on 

the relatively complex Pareto front. At the problems with 

complex Pareto front, several sub-problems produce same 

optimal solution; causes wase of computational sources. 

Therefore, in this paper, a weight initialization method based 

on geometric relationship between weight vectors is proposed. 

For this reason, this variant is a special case solution to address 

the complex Pareto front problems. The idea behind the 

method is to find the crowding and sparse area of the objective 

space. Overpopulated subproblems are deleted and new 

subproblems are added to the sparse regions.  

 

Covariance Matrix Adaptation-based MOEA/D (MOEA/D-

CMA) [3]: 

Covariance Matrix Adaptation is a classical method for 

solving single objective optimization algorithms. In 

conventional MOEA/D algorithm the operators from Genetic 

Algorithm like SBX and Polynomial Operator. Generally, 

instead of SBX, DE is selected as the optimizer however in this 

variant Covariance Matrix Adaptation method is selected and 

applied to the MOEA/D algorithm. The results showed that 

instead of DE, CMA presents better performance than DE. 

 

Multi-objective Evolutionary Algorithm based on 

Dominance and Decomposition (MOEA/D-DD) [4]: 

In this variant both decomposition and dominance ideas are 

joint to balance the convergence and diversity properties. The 

idea behind the paper is expending the MOEA/D performance 

for especially large number of objectives. In this method, 

widely spread weight vectors for both subproblem and 

subregion defines. The subregion is considered as niche of the 

population and the density of the population on this subregion 

is estimated. Therefore, most of the parents are selected from 

the neighbouring sub-regions (like in MOEAD-M2M). Instead 

of all offspring, only one offspring is considered for updating 

the population.   

 

MOEA/D with Detect-and-Escape Strategy (MOEA/D-

DAE) [5]: 

This is an improved version of the MOEA/D algorithm 

especially for the constrained problems. It is stated that the 

conventional constraint handling method like ϵ-constraint 

method, is built based on to drag the solution from infeasible 

region to the feasible region. However, if the population map 

trap on this new region. Therefore, a new method called detect-

and-escape strategy is proposed. Since the proposal is based 

on only for the constraint problems (even boundaries), it is not 

expected a better performance than MOEA/D under un-

constrained (or boundary) problems. 

 

MOEA/D with Differential Evolution (MOEA/D-DE) [6]: 

The conventional MOEA/D algorithm is proposed to use 

SBX crossover, polynomial mutation, and mostly PBI 

aggregation function. In this variant instead of SBX crossover 

operator, Differential Evolution rules are applied to obtain 

offspring through the algorithm. 

 

MOEA/D with Dynamical Resource Allocation (MOEA/D-

DRA) [7]: 

In this variant of MOEA/D, tournament selection operator is 

preferred. To assign different computational effort, the idea of 

Dynamic Resource Allocation is defined so that for ever fifty 
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generation the index for determining the number of individuals 

for selection operator is updated. 

 

Table 2. MaF Benchmark Problems 

 Mathematical Formulation 

MaF1 
𝑓1 = (1 − 𝑥1…𝑥𝑀−1). . . (1 + 𝑔(𝑥𝑀))…𝑓𝑀 = (𝑥1)(1 + 𝑔(𝑥𝑀)), 𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −

1

2
)
2

)𝑀
𝑖=1  

MaF2 
𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (

𝜋

2
(
𝑥1
2
+
1

4
)) . . . 𝑐𝑜𝑠 (

𝜋

2
(
𝑥𝑀−1
2

+
1

4
))…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑥1𝑠𝑖𝑛(

𝜋

2
(
𝑥𝑀
2
+
1

4
))  𝑔(𝑥𝑀) =∑((

𝜋

2
(
𝑥𝑖
2
+
1

4
) −

1

2
)
2

)

𝑀

𝑖=1

 

MaF3 
𝑓1 = [(1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1

𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
)… 𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
)]
4

…𝑓𝑀 = [(1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1
𝜋

2
)]
2

 

 𝑔(𝑥𝑀) = [100|𝑥𝑀| +∑((𝑥𝑖 −
1

2
)
2

+ 𝑐𝑜𝑠 (20𝜋 (𝑥𝑖 −
1

2
)))

𝑀

𝑖=1

] 

MaF4 𝑓1 = 𝑎(1 + 𝑔(𝑥𝑀)) (1 − 𝑐𝑜𝑠 (𝑥1
𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
))…𝑓𝑀 = 𝑎(1 + 𝑔(𝑥𝑀)) (1 − 𝑠𝑖𝑛 (𝑥1

𝜋

2
)) 

MaF5 
𝑓1 = 𝑎

𝑚 [(1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥
𝑎
1
𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑎𝑀−2

𝜋

2
) 𝑐𝑜𝑠 (𝑥𝑎𝑀−1

𝜋

2
)…𝑐𝑜𝑠 (𝑥𝑎𝑀−2

𝜋

2
) 𝑠𝑖𝑛 (𝑥𝑎𝑀−1

𝜋

2
)]
4

…𝑓𝑀 = 𝑎 [(1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥
𝑎
1
𝜋

2
)]
4

  

MaF6 
𝑓1 = (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠(𝜃1)… 𝑐𝑜𝑠(𝜃𝑀−2)𝑐𝑜𝑠(𝜃𝑀−1)… 𝑐𝑜𝑠(𝜃𝑀−2)𝑠𝑖𝑛(𝜃𝑀−1)…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛(𝜃1)𝑔(𝑥𝑀) = ∑ ((𝑥𝑖 −

1

2
)
2

) 𝑀
𝑖=1  

𝜃𝑖 = {

𝜋

2
𝑥𝑖 , 𝑖 = 1,2, … , 𝑙 − 1

𝜋

4(1 + 𝑔(𝑥𝑀))
(1 + 2𝑔(𝑥𝑀)𝑥𝑖), 𝑖 = 𝑙, … ,𝑀 − 1

 

MaF7 
𝑓1 = 𝑥1, 𝑓2 = 𝑥2…𝑓𝑀 = (1 + 𝑔(𝑥𝑀))ℎ𝑔(𝑥𝑀) = 1 +

9

|𝑥𝑀|
∑𝑥𝑖 , ℎ = 𝑀 − ∑ (

𝑓𝑖

1+𝑔
(1 + 𝑠𝑖𝑛(3𝜋𝑓𝑖)))

𝑀−1
𝑖=1  

MaF8 Multi-Point Distance Minimization Problem 𝑓1 = 𝑑(𝑥, 𝐴1), 𝑓2 = 𝑑(𝑥, 𝐴2),… 𝑓𝑀 = 𝑑(𝑥, 𝐴𝑀) 

MaF9 Multi-Line Distance Minimization Problem 𝑓1 = 𝑑(𝑥, 𝐴1𝐴2), 𝑓2 = 𝑑(𝑥, 𝐴2𝐴3),… 𝑓𝑀 = 𝑑(𝑥, 𝐴1𝐴𝑀) 

MaF10 

𝑓1 = 𝑦𝑀 + 2(1 − 𝑐𝑜𝑠 (𝑦1
𝜋

2
))…(1 − 𝑐𝑜𝑠 (𝑦𝑀−1

𝜋

2
))𝑓𝑀 = 𝑦𝑀 + 2𝑀(1− 𝑦1 −

𝑐𝑜𝑠 (10𝜋𝑦1 +
𝜋
2
)

10𝜋
) , 𝑧𝑖 =

𝑥𝑖
2𝑖
𝑓𝑜𝑟 𝑖 = 1,… , 𝐷 

𝑡1𝑖 = {

𝑧𝑖  𝑖𝑓 𝑖 = 1,… , 𝐾
|𝑧𝑖 − 0.35|

|0.35 − 𝑧𝑖| + 0.35
𝑖𝑓 𝑖 = 𝐾 + 1,… , 𝐷

, 𝑡2𝑖 = {

𝑡1𝑖

0.8 +
0.8(0.75 − 𝑡𝑖

1)𝑚𝑖𝑛(0, [𝑡𝑖
1 − 0.75])

0.75
−
0.2(𝑡𝑖

1 − 0.85)𝑚𝑖𝑛(0, [0.85 − 𝑡𝑖
1])

0.15

 

𝑡3𝑖 = 𝑡
2
𝑖
0.02

, 𝑡4𝑖 =

{
 
 

 
 ∑2𝑗𝑡

3
𝑖

∑2𝑗

∑2𝑗𝑡3𝑖
∑2𝑗

, 𝑦𝑖 = {
(𝑡4𝑖 − 0.5)𝑚𝑎𝑥(1, 𝑡

4
𝑖) + 0.5

𝑡4𝑀
 

MaF11 
𝑓1 = 𝑦𝑀 + 2(1 − 𝑐𝑜𝑠 (𝑦1

𝜋

2
))…(1 − 𝑐𝑜𝑠 (𝑦𝑀−1

𝜋

2
))𝑓𝑀 = 𝑦𝑀 + 2𝑀(1 − 𝑦1𝑐𝑜𝑠

2(5𝜋𝑦1)), 𝑧𝑖 =
𝑥𝑖
2𝑖
𝑓𝑜𝑟 𝑖 = 1,… , 𝐷 

𝑡1𝑖 = {

𝑧𝑖  𝑖𝑓 𝑖 = 1,… ,𝐾
|𝑧𝑖 − 0.35|

|0.35 − 𝑧𝑖| + 0.35
𝑖𝑓 𝑖 = 𝐾 + 1,… , 𝐷

, 𝑡2𝑖 = {
𝑡1𝑖

𝑡1𝐾+2(𝑖−𝐾)−1 + 𝑡
1
𝐾+2(𝑖−𝐾) + 2𝑡

1
𝐾+2(𝑖−𝐾)−1 − 𝑡

1
𝐾+2(𝑖−𝐾)

 

𝑡3𝑖 =

{
 
 

 
 ∑ 𝑡2𝑖
𝐾/𝑀 − 1

∑𝑡2𝑖
𝐷 − 𝐾/2

, 𝑦𝑖 = {
(𝑡3𝑖 − 0.5)𝑚𝑎𝑥(1, 𝑡

3
𝑖) + 0.5

𝑡3𝑀
 

MaF12 
𝑓1 = 𝑦𝑀 + 2(1 − 𝑐𝑜𝑠 (𝑦1

𝜋

2
))…(1 − 𝑐𝑜𝑠 (𝑦𝑀−1

𝜋

2
))𝑓𝑀 = 𝑦𝑀 + 2𝑀(1 − 𝑦1𝑐𝑜𝑠(

𝜋

2
𝑦1)) , 𝑧𝑖 =

𝑥𝑖
2𝑖
𝑓𝑜𝑟 𝑖 = 1,… , 𝐷 

𝑦𝑖 = {
(𝑡3𝑖 − 0.5)𝑚𝑎𝑥(1, 𝑡

3
𝑖) + 0.5

𝑡3𝑀
 

MaF13 
𝑓1 = 𝑠𝑖𝑛 (

𝜋

2
𝑥1) +

2

𝐽1
∑𝑦𝑗

2 , … , 𝑓𝑀 = 𝑓1
2 + 𝑓2

10 + 𝑓3
10 +

2

𝐽4
∑𝑦𝑗

2 

MaF14 𝑓1 = 𝑥1
𝑓
…𝑥𝑀−1

𝑓
(1 +∑𝑐1,𝑗𝑔1) , … , 𝑓𝑀 = (1 − 𝑥1

𝑓
) (1 +∑𝑐1,𝑗𝑔1) 

MaF15 
𝑓1 = (1 − 𝑐𝑜𝑠 (

𝜋

2
𝑥1
𝑓
)…𝑐𝑜𝑠 (

𝜋

2
𝑥𝑀−1
𝑓

))(1 +∑𝑐1,𝑗𝑔1) , … , 𝑓𝑀 = 1 − 𝑠𝑖𝑛 (
𝜋

2
𝑥1
𝑓
) (1 +∑𝑐1,𝑗𝑔1) 

 

MOEA/D with Distance-based Updating Strategy 

(MOEA/D-DU) [8]: 

The motivation of the proposed method is to maintain the 

desired diversity of the population. For this purpose, the 

perpendicular distance between solution on the objective space 

and the weight vector calculate. For the multiobjective 

problems (three or less objective) the propose idea will fall 

behind the conventional decomposition algorithm. However, 

as indicated in the paper, the distance calculation (as a metric) 

is well suited for many objective optimization problems. Only 

the updating scheme differs from MOEA/D algorithm. First a 

new solution is produced (offspring), then perpendicular 

distance to all weight vectors is calculated. Then, some of 

these minimum distance solutions are selected. They are 

compared with neighbourhood solutions and replaced if 

objective value is smaller. 

 

Dynamic Thompson Sampling for MOEA/D (MOEA/D-

DYTS) [9]:  
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This paper is another variant of the MOEA/D-FRRMAB so 

that multi-armed bandit problem where the dynamic 

Thompson sampling (DYTS) is applied to adapt the bandit 

model. Therefore, to solve Multiarmed Bandit problem an 

alternative solution algorithm called Thompson sampling is 

integrated into MOEA/D algorithm.  

 

 
Table 3. IGD Metric Value for DTLZ1-DTLZ7  

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

MOEAD 6.8068e-2  

(6.54e-5) = 

2.1216e-1  

(1.36e-4) = 

2.1261e-1  

(2.97e-4) = 

4.0601e-1  

(1.23e-1) - 

2.6947e-2  

(6.83e-4) + 

2.6433e-2  

(2.56e-3) + 

1.0009e+0  

(1.96e-1) + 

MOEADDU 6.8935e-2  
(3.83e-4) - 

2.1578e-1  
(8.37e-4) - 

2.2094e-1  
(1.53e-3) - 

2.1772e-1  
(1.30e-3) + 

1.5516e-1  
(1.28e-2) - 

1.5026e-1  
(2.21e-2) - 

9.9328e+0  
(3.17e+0) - 

MOEADUR 6.9644e-2  

(1.25e-3) - 

2.1228e-1  

(1.42e-3) = 

2.3047e-1  

(2.02e-3) - 

3.2507e-1  

(1.75e-1) - 

2.8850e-2  

(4.84e-3) + 

3.1476e-2  

(7.68e-3) + 

4.8472e-1  

(2.62e-2) + 

MOEADURAW 6.7862e-2  

(9.25e-4) = 

2.1213e-1  

(1.28e-3) = 

2.3258e-1  

(6.62e-3) - 

3.8249e-1  

(1.94e-1) - 

6.4273e-2  

(1.12e-2) + 

7.6124e-2  

(2.47e-2) + 

3.0985e-1  

(1.21e-2) + 

MOEADD 6.8082e-2  

(1.90e-5) 

2.1221e-1  

(2.29e-6) 

2.1272e-1  

(2.08e-4) 

2.5670e-1  

(9.38e-2) 

8.5350e-2  

(1.23e-2) 

1.0025e-1  

(1.49e-2) 

3.0005e+0  

(1.03e-6) 

 

Table 4. IGD Metric Value for MaF1-MaF8 

Problem MaF1 MaF2 MaF3 MaF4 MaF5 MaF6 MaF7 MaF8 

MOEAD 2.2409e-1  

(2.62e-3) + 

1.3617e-1  

(1.40e-3) + 

1.2579e-1  

(1.84e-3) - 

1.0244e+1  

(4.70e-1) - 

1.0849e+1  

(4.26e+0) - 

2.0358e-1  

(2.93e-1) = 

1.0947e+0  

(8.50e-2) + 

2.9575e-1  

(1.15e-2) + 

MOEADDU 2.5433e-1  
(1.37e-2) = 

1.3504e-1  
(2.30e-3) + 

9.8807e-2  
(5.77e-4) + 

4.3000e+0  
(3.55e-1) + 

2.6880e+0  
(3.09e-2) + 

5.0453e-2  
(8.02e-4) + 

1.0986e+1  
(3.28e+0) - 

8.0931e+2  
(1.18e+3) = 

MOEADUR 1.8549e-1  

(4.58e-3) + 

1.3334e-1  

(2.80e-3) + 

9.7018e-2  

(1.11e-2) + 

2.7576e+0  

(6.68e-2) + 

3.5005e+0  

(1.33e+0) + 

9.6127e-3  

(6.54e-4) + 

4.8641e-1  

(3.43e-2) + 

1.5651e-1  

(7.76e-3) + 

MOEADURAW 1.4938e-1  
(8.90e-4) + 

1.1949e-1  
(2.00e-3) + 

9.7627e-2  
(1.01e-2) + 

2.1795e+0  
(1.79e-2) + 

2.8346e+0  
(1.30e+0) + 

5.0413e-3  
(4.99e-5) + 

3.3438e-1  
(4.94e-2) + 

1.2899e-1  
(2.28e-3) + 

MOEADD 2.5944e-1  

(1.61e-2) 

1.5669e-1  

(2.78e-3) 

1.1565e-1  

(3.26e-3) 

7.6115e+0  

(2.40e-1) 

6.6025e+0  

(5.30e-1) 

8.2438e-2  

(5.79e-3) 

2.8126e+0  

(5.94e-1) 

3.7499e-1  

(1.23e-2) 

 
Table 5. IGD Metric Value for MaF9-MaF15 

Problem MaF9 MaF10 MaF11 MaF12 MaF13 MaF14 MaF15 +/-/= 

MOEAD 1.4732e-1  

(1.54e-3) + 

7.8067e-1  

(7.28e-3) - 

7.6132e-1  

(6.26e-3) - 

1.8090e+0  

(1.47e-1) - 

1.8624e-1  

(3.27e-2) + 

6.5899e-1  

(2.52e-1) = 

6.8952e-1  

(7.14e-2) - 

9/8/5 

MOEADDU 3.5747e-1  
(1.36e-2) - 

4.9382e-1  
(5.72e-3) + 

5.2448e-1  
(9.48e-3) + 

1.4959e+0  
(3.57e-2) - 

2.0459e-1  
(1.30e-2) + 

7.6645e-1  
(1.04e-1) = 

2.8804e+0  
(7.90e-1) - 

9/10/3 

MOEADUR 1.8975e-1  

(7.83e-3) + 

5.7551e-1  

(2.84e-2) = 

5.0500e-1  

(1.08e-2) + 

1.2627e+0  

(2.12e-2) + 

1.8528e-1  

(2.68e-2) + 

7.5975e-1  

(1.72e-1) = 

5.5488e-1  

(8.74e-2) = 

15/3/4 

MOEADURAW 2.0152e-1  
(1.36e-2) + 

5.0565e-1  
(3.29e-2) + 

5.5437e-1  
(1.11e-2) + 

1.1953e+0  
(1.59e-2) + 

1.5749e-1  
(2.30e-2) + 

9.0937e-1  
(1.10e-1) - 

5.8964e-1  
(9.34e-2) = 

16/3/3 

MOEADD 2.9661e-1  

(2.86e-3) 

5.8604e-1  

(3.35e-2) 

5.8168e-1  

(1.45e-2) 

1.3438e+0  

(1.31e-2) 

2.8767e-1  

(5.31e-2) 

6.8320e-1  

(1.52e-1) 

5.1391e-1  

(6.54e-2) 

  

 

 

MOEA/D Efficient Global Optimization (MOEA/D-EGO) 

[10]: 

This algorithm is proposed especially solving the expensive 

optimization problems. This algorithm is based on efficient 

global optimization algorithm which has been widely accepted 

as one of the most popular methods using Gaussian Process 

Model. Through this algorithm, Gaussian model for each 

subproblem is built based on obtained data from previous 

generation. In this variation, sampled points select among the 

decision space. The function value for this sampled data 

calculates. Decomposed sub-problems and their objective 

values are collected and predictive model are generated. The 

idea behind this paper aims at developing a cost-efficient 

method, hence it is expected to present better performance for 

expensive optimization problems.  

 

MOEA/D Fitness-rate-rank-based Multiarmed Bandit 

(MOEA/D-FRRMAB) [11]: 

Adaptive operator selection is a method for deciding which 

operator should be employed in the MOEA/D algorithm. Two 

stage operator selection is to give reward to the operator, and 

at the second stage based on the reward operator is selected. 

The reward mechanism is related to the exploration vs. 

exploitation dilemma in multiobjective optimization problem 

similar to a common problem called multiarmed bandit 

problem. Therefore, upper confidence bound algorithm is 

employed to address this problem. The overall algorithm is 

named as Fitness-rate-rank-based Multiarmed Bandit 

MOEA/D algorithm. As the MOEA/D algorithm, instead of 

GA operators like SBX crossover and polynomial mutation, in 

this algorithm Differential Evolution (DE) operators 

(DE/rand/1, DE/rand/2, DE/current-to-rand/1, and 

DE/current-to-rand/2) are selected from this proposed method. 

 

Number of Simple Multiobjective Subproblems-based 

MOEA/D (MOEA/D-M2M) [12]: 

The decomposition method at the MOEA/D algorithm aims 

at developing such a method for obtaining many single-

objective optimization problems/sub-problems. In this variant, 

instead of a many single objective problems (aggregated) 

number of simple multiobjective problems are considered and 

algorithm solves these problems in a collaborative way in a 

single run. In other words, the objective space divide into 

subregions and considered as multiobjective problems.  

 

MOEA/D with Maximum Relative Diversity Loss (MOEA/D-

MRDL) [13]: 
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At each generation of the MOEA/D algorithm the 

populations slowly (relatively) converge to the Pareto front. At 

each generation the direction of the convergency is differs and 

it causes loss of the diversity. Therefore, in the current 

algorithm the notion of maximum relative diversity loss. The 

idea is to compare the parent solution o any other parent 

solutions since they lead to poor convergence. Similarly, 

offspring are compared for similarity with respect to the 

estimated convergence direction. 

 
Table 6. Spread Metric Value for DTLZ1-DTLZ7 

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

MOEAD 3.5257e-2 

(6.95e-4) - 

1.7181e-1 

(2.03e-3) + 

1.6727e-1 

(2.07e-3) + 

7.0562e-1 

(3.31e-1) = 

1.6592e+0 

(1.53e-2) = 

1.7142e+0 

(5.19e-2) - 

1.0006e+0 

(1.19e-1) - 

MOEADDU 6.7552e-2 

(1.32e-2) - 

2.0470e-1 

(5.23e-3) - 

2.4238e-1 

(1.43e-2) - 

2.1815e-1 

(8.52e-3) + 

5.8727e-1 

(4.29e-2) + 

9.5654e-1 

(7.61e-2) - 

1.0005e+0 

(9.35e-4) - 

MOEADUR 3.1791e-1 
(7.88e-2) - 

1.8340e-1 
(3.02e-2) = 

5.4401e-1 
(3.54e-2) - 

4.8640e-1 
(1.44e-1) - 

1.3690e+0 
(6.60e-2) + 

1.4321e+0 
(6.69e-2) - 

8.3171e-1 
(6.39e-2) + 

MOEADURAW 2.7893e-1 

(5.02e-2) - 

1.6652e-1 

(2.02e-2) = 

6.3180e-1 

(8.46e-2) - 

2.3389e-1 

(1.44e-1) = 

3.7914e-1 

(5.80e-2) + 

6.3333e-1 

(1.56e-1) + 

3.7629e-1 

(6.32e-2) + 

MOEADD 3.3831e-2 
(8.79e-5) 

1.7482e-1 
(1.38e-4) 

1.7385e-1 
(1.39e-3) 

3.9945e-1 
(4.74e-1) 

1.5753e+0 
(1.31e-1) 

8.0050e-1 
(1.16e-1) 

1.0000e+0 
(2.05e-11) 

 
Table 7. Spread Metric Value for MaF1-MaF8 

Problem MaF1 MaF2 MaF3 MaF4 MaF5 MaF6 MaF7 MaF8 

MOEAD 1.7038e+0 

(5.77e-2) = 

4.0448e-1 

(5.82e-3) + 

5.0758e-1 

(1.81e-2) - 

1.0782e+0 

(1.20e-1) = 

1.0244e+0 

(1.92e-1) = 

1.4441e+0 

(3.09e-1) + 

9.4827e-1 

(1.67e-2) + 

7.9903e-1 

(3.85e-2) + 

MOEADDU 9.4372e-1 
(1.50e-1) + 

3.9310e-1 
(2.90e-2) + 

4.1267e-1 
(1.42e-3) + 

1.2122e+0 
(7.66e-1) = 

3.6488e-1 
(1.11e-2) + 

1.6278e+0 
(2.11e-1) + 

1.0002e+0 
(6.29e-4) + 

9.1045e-1 
(1.36e-1) + 

MOEADUR 6.1989e-1 

(4.08e-2) + 

5.4407e-1 

(4.34e-2) + 

5.7743e-1 

(8.75e-2) - 

6.6258e-1 

(7.46e-2) + 

6.9546e-1 

(6.20e-2) = 

1.0101e+0 

(6.17e-2) + 

8.1426e-1 

(5.85e-2) + 

6.8274e-1 

(6.15e-2) + 

MOEADURAW 1.4181e-1 
(1.83e-2) + 

1.6477e-1 
(1.13e-2) + 

5.3471e-1 
(7.11e-2) - 

2.0803e-1 
(5.31e-2) + 

2.2215e-1 
(1.35e-1) + 

2.4994e-1 
(2.95e-2) + 

3.6599e-1 
(6.53e-2) + 

2.8329e-1 
(5.16e-2) + 

MOEADD 1.7955e+0 

(1.46e-1) 

1.2944e+0 

(1.03e-1) 

4.3287e-1 

(1.09e-2) 

1.1162e+0 

(8.61e-2) 

1.0100e+0 

(3.44e-1) 

2.2488e+0 

(4.66e-1) 

1.0233e+0 

(7.38e-2) 

1.0554e+0 

(8.10e-2) 

 
Table 8. Spread Metric Value for MaF9-MaF15 

Problem MaF9 MaF10 MaF11 MaF12 MaF13 MaF14 MaF15 +/-/= 

MOEAD 5.4185e-1 

(1.08e-2) + 

6.5211e-1 

(1.95e-2) - 

5.9811e-1 

(1.36e-2) - 

5.0025e-1 

(4.38e-2) - 

1.2917e+0 

(6.01e-2) + 

1.0217e+0 

(2.18e-1) = 

8.5327e-1 

(5.97e-2) + 

9/7/6 

MOEADDU 1.6584e+0 

(2.05e-1) = 

4.6757e-1 

(5.27e-3) + 

4.8288e-1 

(5.41e-2) = 

8.9825e-1 

(1.09e-1) - 

1.4527e+0 

(4.53e-1) = 

1.3956e+0 

(3.46e-1) = 

2.1147e+0 

(1.64e-1) - 

10/7/5 

MOEADUR 9.5542e-1 

(1.19e-1) + 

4.9890e-1 

(7.46e-2) = 

5.0098e-1 

(4.40e-2) = 

3.6429e-1 

(5.24e-2) = 

1.0210e+0 

(1.66e-1) + 

2.0320e+0 

(9.06e-2) - 

1.2889e+0 

(2.59e-1) = 

10/6/6 

MOEADURAW 1.5266e+0 
(5.60e-1) = 

6.6860e-1 
(3.46e-2) - 

4.3264e-1 
(2.83e-2) + 

1.4906e-1 
(2.51e-2) + 

1.3248e+0 
(5.89e-1) = 

1.5382e+0 
(2.78e-1) - 

6.9317e-1 
(3.19e-1) + 

13/5/4 

MOEADD 1.6938e+0 

(2.28e-1) 

5.4218e-1 

(4.93e-2) 

4.8975e-1 

(1.02e-2) 

3.8770e-1 

(1.32e-2) 

1.5086e+0 

(1.74e-1) 

1.1115e+0 

(5.10e-1) 

1.1895e+0 

(1.35e-1) 

 

 

 

Pareto Adaptive Scalarizing MOEA/D (MOEA/D-PaS) [14]: 

In the paper initially all Lp methods for scalarization are 

evaluated and from the results it is observed that the parameter 

p is crucial for the performance of the algorithm for different 

Pareto geometries. The Lp aggregation function is calculated 

by 1/p power of the sum of weighted difference between 

objective value and ideal points. For four different parameters 

set of p, the maximum value is selected as the aggregation 

function (PaS) of the algorithm. From the information at the 

paper, it is claimed that Pareto adaptive scalarization is a cost-

efficient method that avoids the estimation of the Pareto front 

shape. 

 

Stable Matching Method-based MOEA/D (MOEA/D-STM) 

[15]: 

In this algorithm, the MOEA/D selection operator is 

considered as an operator for matching the subproblems with 

the solutions. Therefore, stable marriage problem is selected 

as a model problem. This stable matching model employ as a 

selection operator. Each subproblem has one solution in the 

current population. Subproblems are built based on 

aggregation functions, and the ranks elated to the objective 

value and the weight vector is obtained (similar to MOEA/D-

DU). The matching algorithm (STM) is applied to these values 

to assign solutions to each subproblem.  

 

 

 

 

MOEA/D with Updating when Required (MOEA/D-UR) 

[16]: 

Similar to MOEA/D-AWA algorithm, MOEA/D-UR is a 

method for changing the weights. It is stated that uniformly 

distributed weights may be failed under complex (geometry of 

the problem) Pareto front. In the proposed method, a metric is 

defined and calculated to detect convergency, based on the 

value of this improvement metric/threshold (rate of offspring 

and parent vectors obtained from Tchebycheff decompostion), 

the objective space is divided adaptively to increase diversity.  

 

MOEA/D with Uniformly Randomly Adaptive Weights 

(MOEA/D-URAW) [17]: 
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Similarly, also indicated in this variant, the shape and 

geometry of the Pareto front is the weakness of the MOEA/D 

algorithm due to the weight vector selection. In the proposed 

method, based on the sparsity of the population weight vectors 

are adapted by combining uniform random sampling with the 

adaptive weight vector selection. The flexible population size 

allows in this method. Also, the performance of the SBX over 

DE is indicated and SBX is suggested. Initially, the population 

sparsity level is calculated. Then external population stores 

non-dominated solutions during the search. Based on the 

highest sparsity level of this external population the new 

weight vector set is constructed.  

 

 
Table 9. Runtime (sec) for DTLZ1-DTLZ7 

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

MOEAD 1.2361e+1  
(1.10e-1) + 

1.2337e+1  
(1.33e-1) + 

1.2598e+1  
(1.48e-1) + 

1.2693e+1  
(9.64e-2) + 

1.2839e+1  
(9.73e-2) + 

1.3047e+1  
(9.69e-2) + 

1.2639e+1  
(7.64e-2) + 

MOEADDU 1.6550e+1  

(3.09e-1) + 

1.6541e+1  

(1.86e-1) + 

1.6457e+1  

(1.19e-1) + 

1.6807e+1  

(8.46e-2) + 

1.7224e+1  

(2.29e-1) + 

1.7547e+1  

(1.85e-1) + 

1.6883e+1  

(1.76e-1) + 

MOEADUR 2.6046e+1  

(6.46e-1) + 

2.6015e+1  

(1.73e-1) + 

2.4563e+1  

(2.00e-1) + 

2.8987e+1  

(6.07e-1) + 

2.7793e+1  

(1.71e-1) + 

2.8689e+1  

(5.25e-1) + 

2.8769e+1  

(2.87e-1) + 

MOEADURAW 2.3460e+1  

(2.40e-1) + 

3.7011e+1  

(8.03e-2) + 

1.9754e+1  

(2.38e-1) + 

3.5192e+1  

(1.24e+0) + 

2.9633e+1  

(5.52e-1) + 

2.9077e+1  

(5.26e-1) + 

3.3074e+1  

(1.18e-1) + 

MOEADD 4.1776e+1  

(3.69e-1) 

5.5178e+1  

(3.07e+0) 

4.9959e+1  

(5.22e-1) 

5.7491e+1  

(3.58e+0) 

5.5168e+1  

(8.00e-1) 

5.7953e+1  

(4.83e-1) 

5.3916e+1  

(4.49e-1) 

 
Table 10. Runtime (sec)for MaF1-MaF8 

Problem MaF1 MaF2 MaF3 MaF4 MaF5 MaF6 MaF7 MaF8 

MOEAD 1.2277e+1  
(1.34e-1) + 

1.2866e+1  
(1.18e-1) + 

1.2808e+1  
(1.54e-1) + 

1.3085e+1  
(8.25e-2) + 

1.4560e+1  
(2.43e-1) + 

1.4101e+1  
(9.21e-2) + 

1.7218e+1  
(1.57e-1) + 

1.9812e+1  
(1.35e-1) + 

MOEADDU 1.6660e+1  

(1.42e-1) + 

1.6930e+1  

(8.42e-2) + 

1.6893e+1  

(1.66e-1) + 

1.7442e+1  

(1.99e-1) + 

1.8572e+1  

(2.38e-1) + 

1.8824e+1  

(1.74e-1) + 

1.8632e+1  

(1.61e-1) + 

2.0431e+1  

(1.66e-1) + 

MOEADUR 2.9304e+1  
(2.47e-1) + 

3.0985e+1  
(4.33e-1) + 

2.8182e+1  
(4.42e-1) + 

2.8489e+1  
(4.42e-1) + 

3.2310e+1  
(2.32e-1) + 

3.1842e+1  
(3.07e-1) + 

3.3762e+1  
(4.05e-1) + 

3.6927e+1  
(2.58e-1) + 

MOEADURAW 3.2609e+1  

(1.08e-1) + 

3.5920e+1  

(1.50e-1) + 

2.0622e+1  

(3.26e-1) + 

2.3121e+1  

(2.98e-1) + 

3.9667e+1  

(9.98e-1) + 

2.4730e+1  

(1.92e-1) + 

4.0329e+1  

(1.58e-1) + 

2.5470e+1  

(3.69e-1) + 

MOEADD 5.1169e+1  

(6.12e-1) 

5.8239e+1  

(6.23e-1) 

4.8092e+1  

(2.04e+0) 

4.4284e+1  

(6.76e-1) 

5.8443e+1  

(3.09e+0) 

5.5572e+1  

(2.15e+0) 

5.6649e+1  

(7.95e-1) 

4.7841e+1  

(6.17e-1) 

 
Table 11. Runtime (sec)for MaF9-MaF15 

Problem MaF9 MaF10 MaF11 MaF12 MaF13 MaF14 MaF15 +/-/= 

MOEAD 1.9057e+1  

(1.78e-1) + 

1.9914e+1  

(1.43e-1) + 

2.0716e+1  

(1.67e-1) + 

2.1227e+1  

(1.25e-1) + 

1.9136e+1  

(1.83e-1) + 

2.2750e+1  

(1.40e-1) + 

2.3080e+1  

(2.35e-1) + 

22/0/0 

MOEADDU 1.9233e+1  
(2.06e-1) + 

2.3111e+1  
(1.33e-1) + 

2.4341e+1  
(2.40e-1) + 

2.4469e+1  
(1.78e-1) + 

2.3090e+1  
(1.13e-1) + 

2.6213e+1  
(2.67e-1) + 

2.6991e+1  
(1.62e-1) + 

22/0/0 

MOEADUR 3.1236e+1  

(2.57e-1) + 

3.3810e+1  

(3.19e-1) + 

3.5421e+1  

(2.84e-1) + 

3.6056e+1  

(2.82e-1) + 

3.3453e+1  

(2.65e-1) + 

3.6629e+1  

(3.15e-1) + 

3.8039e+1  

(4.37e-1) + 

22/0/0 

MOEADURAW 2.1531e+1  

(3.28e-1) + 

3.3416e+1  

(3.58e-1) + 

4.0231e+1  

(2.55e-1) + 

4.3848e+1  

(2.43e+0) + 

2.5660e+1  

(7.51e-1) + 

2.8468e+1  

(3.12e+0) + 

3.8587e+1  

(1.21e+0) + 

22/0/0 

MOEADD 4.8611e+1  

(6.66e-1) 

6.0058e+1  

(5.16e-1) 

6.3404e+1  

(4.25e-1) 

6.3566e+1  

(4.18e-1) 

5.6062e+1  

(9.73e-1) 

6.4232e+1  

(1.92e+0) 

6.4383e+1  

(7.30e-1) 

 

 

B. Benchmark Problems 

In this research in total 22 benchmark problems are 

considered to implement the MOEA/D variants. These 

benchmark problems are defined in DTLZ [18] (seven 

benchmark problems) and MaF [19] (15 benchmark 

problems). Table 1 and Table 2 gives the test problems 

respectively. 

C. Metrics and Statistical Tests 

Unlike single objective optimization problems, a set of 

solutions are reported from optimization algorithm. The shape 

of the solutions on the objective space is called Prato 

approximated solutions. Therefore, some functions needed to 

extract the feature from this set. These functions are named as 

metrics. Two important properties are needed to observe for 

comparison of the algorithms. These properties are accuracy 

and distribution of the solutions on objective space.  

For the accuracy, inverted generalized distance (IGD) 

metric is proposed in [20] and mathematical description of this 

metric is given as  

 

𝑓𝐼𝐺𝐷 =
∑𝑑𝑠(𝑎,𝑃)

|𝑃|
                                (2) 

 

The IGD metric is based on computing the average distance 

between obtained solution candidates and the Pareto Front 

where 𝑑𝑠(𝑎, 𝑃) =  √∑(𝑎𝑖 − 𝑝𝑖)
2. The second metric is related 

to the distribution of the solution on the objective space. The 

spread metric is defined in [21], given as  

 

𝑓𝑆𝑝𝑟𝑒𝑎𝑑 = √
1

𝑀
∑(

max(𝑎,𝑃𝐹)−min (𝑎,𝑃𝐹)

𝑃𝐹𝑚𝑎𝑥−𝑃𝐹𝑚𝑖𝑛
)
2

              (3) 

 

The metric is based on calculation of the normalized squared 

sum of the distance between maximum and minimum 

difference between produced solutions and PF. 
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III. IMPLEMENTATION AND RESULTS 

In this research the variants of the MOEA/D algorithm are 

compared with respect to the accuracy and diversity of the 

solutions. For this purpose, two metrics are selected as IGD 

and Spread, respectively. Each variant is implemented 

independently 10 times with the same number of population 

size (100) and maximum number of function evolution (105) 

for 5 objective benchmark problems.  

The variants of MOEA/D [1] algorithms are  MOEA/D-

AWA [2], MOEA/D-CMA [3], MOEA/D-DD [4], MOEA/D-

DAE [5], MOEA/D-DE [6], MOEA/D-DRA [7], MOEA/D-

DU [8], MOEA/D-DYTS [9], MOEA/D-EGO [10], 

MOEA/D-FRRMAB [11], MOEA/D-M2M [12], MOEA/D-

MRDL [13], MOEA/D-PaS [14], MOEA/D-STM [15], 

MOEA/D-UR [16], and MOEA/D-URAW [17]. These 

algorithms had applied into benchmark problems. Among all 

these variants only MOEA/D [1], MOEA/D-DD [4], 

MOEA/D-DU [8], MOEA/D-UR [16], and MOEA/D-URAW 

[17] had given the comparative results. For this reason, only 

the results belonging to these five algorithms has reported on 

the paper. The statistical results for the mean and standard 

deviation of these independent runs are reported in Tables. 

Tables 3-5 are given for IGD metric, Tables 6-8 are for Spread 

metric and Tables 9-11 is presented for runtime of these 

algorithm. 

IGD (Convergence): When all of the algorithms are 

compared with each other with respect to the number of the 

benchmark problems; URAW variant presents best 

performance for 22 benchmark problems. Original MOEA/D 

algorithm present best performance for 5 benchmark 

problems, similarly DU, DUR and DD variants present best 

performance for 3,3, and 1 benchmark problems, respectively. 

The results support the superior results of the URAW variant.  

Spread (Distribution): Spread metric gives the distribution 

of the solutions on the objective space. Well distributed 

solutions are desired from the algorithms. Therefore, for the 

comparison on the spread metric, URAW presents best result 

of 14 of 22 benchmark problems. MOEAD, DU, DUR and DD 

variants only present best results from 3, 3, 1 and 1 benchmark 

problems, respectively. 

Runtime: Since it is the main algorithm for the variants, 

MOEA/D gives the fastest results among all variants. 

However, if MOEA/D is removed from the results, DU gives 

the fastest results, meaning that it can be considered to use the 

lowest computational resources. 

IV. CONCLUSION 

The aim of this research is to compare the MOEA/D variants 

under 22 benchmark problems with five objectives. The results 

are evaluated on two metrics IGD and Spread.  From the 

results, it is clearly demonstrated that URAW variant gives the 

best results almost all benchmark problems in both IGD and 

Spread metrics. In addition, the URAW variant uses relatively 

less computational resources when it is compared with other 

variants. The reason behind that is not only the adaptive weight 

vectors but also flexible population size. Therefore, both 

convergency and distribution property of the algorithm 

improves. It is suggested with respect to the results obtained in 

this paper, weights of the decomposition method and sparce 

detecting methods will increase the performance of the 

algorithm. Also, it is suggested to compare the performance of 

a novel algorithm with URAW variant. 
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