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   Abstract 
 

Choosing the right parameters for the study area is a compelling process. Parameters provide different 

results when applied to different areas, and some of these parameters can be evaluated generally, 

while others reflect the characteristics and properties of the areas. A comprehensive literature study 

was conducted for this purpose. By conducting this study, only the studies in which the distance to 

the road, drainage and fault were effective in the formation of landslides were evaluated. 64 landslide 

areas in Turkey were selected for samplings used in the study. Literature research and case studies 

were compared, and the effects of the distance from the road, fault and drainage on landslides were 

investigated. Landslide-prone areas were determined according to the classification ranges for the 

parameters. The classification ranges were selected according to the literature. This study, which is 

different from the examples in the literature, was carried out in the form of comprehensive literature 

research and a comparison of analyzes. 

 
 

 

 

1. Introduction* 

 

The distance to the linear parameters is an important 

factor in a landslide. The distance to road, fault and drainage 

is frequently preferred for these parameters. In the literature, 

while some researchers were using all 3 parameters in the 

same study, some researchers evaluated only 2 of them. In 

most studies, only one of the three was preferred. 

Wang and Li [1], Kornejady et al. [2], Chen et al. [3], 

Hong et al. [4], Jaafari et al. [5], Panchal and Shrivastava 

[6], Rozos et al. [7], Kumtepe et al. [8] used all three 

parameters in their studies. Pourghasemi and Rossi [9] 

determined that landslides were reduced when moving away 

from drainage, roads and faults, according to expert opinion. 

Tanoli et al. [10], Zhang et al. [11], Kamp et al. [12], Blesius 

and Weirich [13], and Van Westen et al. [14] emphasized 

that it is very important for landslide susceptibility analysis 

to use distance to river and highway. According to Hong et 

al. [4], Poudyal et al. [15], Preuth et al. [16], and Lee and 

Chi [17], geological faults and roads are accepted as factors 

that can affect landslides. Bai et al. [18], Özdemir [19], and 
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Barredo et al. [20] evaluated the distance of the river and 

fault as a landslide susceptibility factor. 

One of the factors that destroys the natural topography 

and affects the stability in slopes is the situation of the 

existing road networks [21-25]. The construction of 

infrastructural elements like roads is accepted as human 

construction activity that affects slope instability. Slopes are 

shears for road construction, vegetation is altered, and 

highway tourism increases because of the economic activity 

near the roads [26]. The general concept is that the 

horizontal and natural sections around a road are more 

susceptible to landslides [7]. For this reason, landslides can 

occur on roads and around the edges of slopes that are 

affected by roads [27-30]. In other words, landslides can 

occur in slopes where roads intersect [31]. Many researchers 

claim that the existence of roads in mountainous areas 

increases the change that landslides will form [32-38]. 

Because of the reasons these explanations reveal, the road 

proximity parameter is used in landslide susceptibility map 

studies [2, 39-41]. The construction of infrastructure 

elements like roads is accepted as human construction 
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activity that affects slope instability.  

One of the parameters chosen in the preparation of 

landslide susceptibility maps is the structural elements. In 

particular, faults represent suitable conditions for landslides 

[42]. Faults create a weak line or region of heavily crushed 

rocks [40]. Generally, the distance or proximity to faults 

parameter is used. There may be a significant relationship 

between the landslide settlement areas' proximity to the fault 

[43]. Tectonic activities can play an important role in large-

scale landslides [44]. Zhang et al. [11] stated that the 

landslide hazard is closely related to the distance from the 

faults. In the literature, other studies are prepared to measure 

the effects of the distance from the faults on landslides [45-

51]. Pourghasemi and Rossi [9] defend that there is a direct 

relationship between the distance from the faults and the 

frequency of landslides. Çevik and Topal [52] stated an 

inverse relationship exists between the landslide distribution 

and the distance to the fault. In the literature, most 

researchers stated that landslides are frequently seen in areas 

in proximity to the fault [53-56], and landslide 

susceptibility/hazard/risk will increase in said areas [57, 58]. 

Likewise, landslides decrease as they move away from fault 

lines [9, 59-61]. Therefore, the parameter is considered one 

of the main causes of landslides [62] and it is recommended 

to use it as a parameter [63]. Çellek et al. [64] searched 

nearly 300 studies about landslide susceptibility and listed 

the most used parameters. They stated that distance to the 

fault is ranked 9th among the literature's top 10 most 

preferred parameters. This parameter was used in 120 

studies. Gökçeoğlu and Aksoy [65] field observations have 

shown that most of the landslides occurred very close to 

faults in their study area. Mathew et al. [66] observed that 

faults are one of the most important factors affecting the 

stability of slopes in the study area. Thus, they selected the 

fault buffer as one of the independent variables. Özşahin 

[67] conducted a study in an area with active faults. As a 

result, he stated that the distance from the faults effectively 

affected the landslide. Likewise, Korkmaz [68] noted that 

the faults in the study area affect the landslide. Xu et al. [6], 

Regmi et al. [69] and Wang et al. [63] stated that landslides 

occur along the fault line in the study area, and landslides 

decrease sharply as they move away from them. Ahmed et 

al. [2014] stated that the most likely triggering factor for 

large rock mass move in the study areas is proximity to the 

fault [30]. 

In contrast, some studies argue that proximity to the 

fault isn’t the main parameter in the landslide susceptibility 

study. Kayastha et al. [71] stated that they expect landslides 

to occur near the faults and decrease as the distance 

increases. However, they found that most landslides in their 

area occurred more than 100 meters away from faults. In this 

case, they concluded that faults and folds aren’t the main 

factors for landslides. Likewise, Zhang et al. [72] stated in 

the literature that many studies had associated landslides 

with proximity to the fault, but the data in their study area 

don’t reflect this. 

There are more studies that argue that proximity to the 

fault isn’t the main parameter in the landslide susceptibility 

study. Kayastha et al [71] stated that they expect landslides 

to occur near the faults and decrease as the distance 

increases. However, they found that the majority of 

landslides in their area also occurred more than 100 meters 

away from faults. In this particular case, they concluded that 

faults and folds aren’t the main factors for landslides to 

occur. Likewise, Zhang et al. [72] stated in the literature that 

many studies have associated the occurrence of landslides 

with proximity to the fault, but the data in their study area 

don’t reflect this. 

In many parts of the world, drainage plays an 

important role in landslides [73, 74]. Because a soil close to 

the drainage may have higher water content than any other 

soil far from the drainage [75]. 

In many studies on the preparation of landslide 

susceptibility maps, researchers have used the proximity of 

the drainage as a parameter in landslide evaluations by 

making use of field observations [1-3, 10, 38, 49, 50, 56, 58, 

76-78]. More than half of the landslides in Turkey are 

observed in the generation of active faults around 60 km 

wide [79]. This study examined landslide studies conducted 

in various regions of the world. Landslides that had occurred 

in areas near faults in Turkey have been analyzed. As a 

result of the study, the faults in landslide areas were selected 

and compared with the literature in Turkey. 

The effects of proximity to the drainage on landslide 

susceptibility can be evaluated in two ways. Firstly, it is 

seen that the discontinuity surfaces on the unstable slope 

can’t resist the pull of gravity, and the collapse facilitates 

ground movements [80].  

Latter relates to the degree of saturation of the material 

on the slope. The effects of groundwater and surface water 

also increase with the proximity to the drainage network. 

The drainages can negatively affect stability by eroding the 

slopes or saturating the bottom of the material until the 

water level rises. Therefore, the proximity of drainage is an 

important factor in stability [3, 49, 50]. 

A comprehensive field survey should be conducted to 

determine the effects of drainage on the slope. Statistical 

analysis shows that a strong relationship can be observed 

between landslide distribution and distance to drainage [18]. 

However, in determining the impact on landslides, it is 

uncertain how to use the main drainages or tributaries that 

make up the drainage network, and in which distances [81]. 

Hasekioğulları [82] states that 37 of its studies were 

used as a distance to the river. The usage rate of this 

parameter, which is evaluated among topographic 

parameters and called drainage, is expressed as 72.73% in 
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the studies examined by Süzen and Kaya [83]. Çellek et al. 

[64], found that distance to drainage was the 6th most 

preferred parameter with 153 studies in 300 studies that they 

examined. 

 

2. Effects on Parameters of Landslides  

 

The parameter of distance to road, fault and drainage 

disrupts the landslide susceptibility. Parameters separately 

or together create this effect. The effects on landslides are 

investigated by using many methods and techniques. The 

literature for the preparation of linear parameter maps 

utilizes field studies, topographic maps for studied areas, 

prepared data sets or linear parameter maps, aerial 

photographs, and various satellite data from low-resolution 

images such as Google Earth to high-resolution images such 

as the multispectral LISS-4 satellite, Aster, and QuickBird. 

Apart from this, there are those that gather current data with 

road, fault, drainage networks, GPS, and navigation devices. 

The researchers digitized these maps using certain ArcGIS 

programs [66, 82]. 

 

2.1. The Effect of the Road Distance Parameter 

on Landslides  

 

Based on its position on the slope, a previously or 

newly constructed road could cause landslides [84], but the 

rate of landslide decreases as the age of the road increases 

[85]. Road construction alters vegetation [22, 28, 57, 86]. 

This increases human activity with economic activity 

conducted in areas close to the roads [26, 87]. High slope 

changes the stress status and slope balance [32, 88]. It 

causes the application of static and dynamic loads [11, 54, 

55]. The traffic frequent vibrations that vehicles cause [23, 

46, 57, 64, 89, 90] trigger the fragmenting-loosening [38, 

50] of rocks with bursts in an uncontrolled manner. 

Road construction works and over vibration frequency 

generated by these works are effective in the occurrence of 

landslides [1-3, 9, 10] because it causes the loss of toe 

support based on the places where the roads pass the slope 

and because it would bring additional loads to the slope. On 

slopes that were balanced before road construction, cracks 

occur due to increased tension in the back of the slope after 

the construction [90]. Cracks that form trigger landslide 

events, as they are being subjected to negative effects such 

as water input that can come from outside [11, 58, 90]. 

Gravel materials on roads were designed and compressed to 

endure heavy loads to make surfaces flat and impermeable. 

During severe rainfall, they make road surfaces 

impermeable and provide rapid land flow and surface flow 

[23, 58]. 

Despite this, a certain section of the road can function 

as a barrier, a network resource, a network pool, or a 

corridor for water flow [91-93]. It can indirectly cause 

landslides by increasing the water concentration in the 

slope, including saturated slopes [11, 30]. Another crucial 

point is the change of natural hydraulic roads that may water 

to concentrate in the imbalanced sections of the slope [27]. 

In addition to these effects, roads cause the emergence of 

ground waters on the surface, because the roads interrupt the 

continuity of the slope, and the waters are collected by road 

drainage systems. Since inadequately or incorrectly 

projected drainage facilities are unable to securely evacuate 

these waters with precipitation after severe rainfall, they 

stand out as an element that triggers landslides [94]. 

In the literature there are researchers who have 

identified landslides originating from road construction 

work in their study areas [95]. Tangestanı [96] reported that 

development activity in the Kakan region caused the 

increase of road density. Field observations demonstrate 

that the possibility increases for slides in places where roads 

pass by worn, excessively worn, or semicircular rock units 

or by loosened soil in steep slopes. Dahal [97] reported that 

roads constructed without taking precautions negatively 

affected slopes and that many landslides were identified 

along newly constructed roads. Abedini et al. [76] used this 

parameter because landslides occurred during 

reconstruction and road expansion in their study area. Ataol 

and Yeşilyurt [98] determined that many new landslides and 

mudslides materialized during road construction work. 

Sidle [99] revealed in their study that mass movements 

were between 30 and 340 times greater in slopes that passed 

through roads than those that didn’t. Piehl et al. [100], 

reported in a study they conducted in Oregon that landslides 

that occur based on roads constitute 72% of all landslides. 

Çellek [95] reported that many landslides occurred during 

the work for a newly constructed road and that the 

construction work triggered mass movements, even though 

the study area wasn’t a landslide region. Demir [101] and 

Regmi et al. [69] reported that landslides occurred in their 

study area due to construction work on the road. Alexakis et 

al. [102] accepts the expansion of highway networks as a 

key factor for the separation of mudslide hazard zones.  

 

2.1.1. The Effect of Distance to Faults with 

Other Parameters on Landslide  

 

The road parameter is an anthropological factor that 

causes landslides. It is evaluated together with its effect on 

landslides, rock bursts, vibration frequency of vehicles 

passing by on the road, slope change, adding of load to the 

toe, presence of touristic activity along the road [restaurants 

and businesses], the change in vegetation, and the effects of 

precipitation and drainage water. 
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2.1.1.1. Relationship with Anthropology  

 

The road parameter effect originates from human 

activity in the area of landslides. They increase human 

activity with economic activity conducted in areas close to 

the roads [103]. According to the research, the frequency 

vibrations caused by cars on highways in turn cause 

landslides [104]. Many researchers have reported that roads 

along slope imbalance in study areas are the most influential 

anthropogenic factor [31, 40, 57, 63, 74, 75, 92, 105-110] 

 

2.1.1.2. Relationship with Hydrogeology 

 

Water can become concentrated in the imbalanced 

sections of the slope because of change on hydraulic roads 

during road construction [27]. Roads cause the emergence 

of ground waters on the surface because the roads interrupt 

the continuity of the slope, and the waters are collected by 

road drainage systems. Since inadequately or incorrectly 

projected drainage facilities are unable to securely evacuate 

these waters with precipitation after severe rainfall, they 

stand out as an element that triggers the landslides [94]. 

Indeed, Ataol and Yeşilyurt [98] observed in the sections in 

which there was slope imbalance in their study area that 

landslides with the water satiating the ground in rainy 

periods. Dahal et al. [111] encountered landslides that 

happened due to water that was unable to drain in the roads 

in their study area. 

 

2.1.1.3. Relationship with Vegetation  

 

Transportation lines that cause destruction in 

vegetation have a clear influence over landslides [22, 57, 

112]. Some researchers reported that deforestation 

performed during road work caused landslides. For 

example, Petley et al. [113] correlated increasing landslide 

activity to road construction that caused changes in land use 

in their study in the rugged regions of Nepal. Dahal [97] said 

that highway access was established after deforestation in 

the study area but that the deforestation caused the 

deterioration of the side slope stability. 

 

2.1.1.4. Relationship with Slope  

 

Comprehensive excavations, the implementation of 

static and dynamic loads, water drainage, the removal of toe 

support, and vegetation are some of the most common acts 

that occur in road network slopes during construction. These 

load changes are also responsible for triggering landslides 

[3, 22, 24, 57, 87, 109, 113, 114]. 

 

 

2.1.1.5. Relationship with Load Change 

 

During road construction in areas in which there are 

lithological units suitable for the landslides, slopes must be 

made to lean further to one side, slope loads must be 

decreased, and barriers must be made [98]. Generally, 

interrupting the lower slope during the construction of roads 

damages the natural condition of the slope. In this manner, 

the slope change causes landslides [2, 40, 69]. Zeng et al. 

[110] reported that landslides in the Enshi region occurred 

at slopes whose slope changed during road construction. 

 

2.2. Effect of Distance to Faults on Landslide 

 

Faults weaken rock masses and soil material. This 

makes them more susceptible to landslides [50]. Rocks and 

soils are made due to breaking and unbalancing by 

proximity to faults. Therefore it is considered as a potential 

factor contributing to landslide [88]. The effect of faults to 

landslides can be evaluated in two ways. Firstly, it increases 

the probability of a landslide with energy output. Secondly, 

due to increasing shear resistance to occur landslides [115]. 

Faults have a strong effect on the strength of the rock [93]. 

Faults generally reduce the strength of the surrounding rock 

mass by shear, seismic shake and other mechanisms [40, 74, 

116]. Faults generate weakness zones in rocks [117]. Faults 

divide the rock mass into blocks or pieces, causing joints 

and breaks [47, 90]. In addition, they increase pore pressure 

and permeability by negatively affecting the zones of 

discontinuity, fracture and joints preexisting in rocks. This 

causes deep weathering zones [62, 118, 119]. In landslide 

susceptibility studies, the effect of faults is related to the 

constitutive of fracture and discontinuities of slope [120]. 

By reducing the shear strength due to intensive shearing [1, 

56], it speeds up the weathering process [66] and increases 

the fracture ratio [121]. This causes rock slides [91]. It also 

produces discontinuities in rocks [120]. This results in 

sudden breaks [90] and fragmentation [45] in the rocks. 

According to Ruff and Czurda [122], the bedrock close to 

the structural elements is tectonically under tension. So they 

are highly unstable. Due to the faults, the soil becomes a 

resistless condition that can cause landslides [112]. 

 

2.2.1. The Effect of Distance to Faults with 

other Parameters on Landslide  

 

Parameters make the area more sensitive to landslides. 

The lithology of the area is the first parameter that should 

be evaluated with the distance to fault parameter. It becomes 

a trigger by making weak zones in the rock weaker or 

creating new weak zones. Water condition is another 

parameter that should be evaluated together with the fault. 
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Of course, erosion and weathering must also be evaluated. 

Groundwater flow varies along these planes as weathering 

zones are formed. Groundwater zones can change because 

of the fault plane. As a result weathering zones comprise. 

Climate condition is one of the parameters that should be 

evaluated with this parameter. In addition, weather 

conditions make the environment prepared by the fault even 

more insensitive, especially in heavy rains. Also, slope and 

elevation are parameters that can be evaluated together with 

the distance to fault parameter. Relatively higher slopes and 

higher areas are more affected by faulting. 

 

2.2.1.1. Relationship with Lithology 

         

It has been observed that geological parameters, 

distance to the fault and lithology trigger landslides together 

under appropriate conditions [44]. 

Ercanoğlu [123] states that the main reason for 

approaching proximity to structural elements is that 

lithological units may become weaker due to the high 

tension and deformation characteristics of being close to 

these elements. Proximity to the fault, in general, not only 

affects the surface material structures, but also contributes 

to the permeability of the land causing slope instability [11, 

31, 62, 92, 124-126]. 

Conforti et al. [62] stated that in metamorphic rocks in 

the study areas, as the distance to the fault lines decreases, 

the degree of rock breakage and weathering increases and 

therefore the area is prone to landslides. Kritikos and Davies 

[116] stated that the main fault, schist-origin mylonite and 

cataclasite, which passed through the study areas, are eroded 

and cause landslides. Aghdam et al. [24] determined that 

igneous rocks were broken and crushed by faults in the 

study area. 

 

2.2.1.2. Relationship with Hydrology 

         

The presence of a fault increases landslide 

susceptibility because faults can be related to abnormal 

groundwater conditions [127]. Selective erosion and the 

movement of water along the fault planes increase the 

possibility of landslides [57], [89-90]. Fault planes are 

suitable for improving infiltration and hydrostatic pressure 

on slope forming material [128]. Strong weather conditions 

in the faulting zone provide favorable conditions for 

landslides to occur due to the weakness it creates in the rock 

structure [58]. Petley et al. [113] stated that proximity to the 

fault directly triggered mass movements as well as 

mobilizing the material with subsequent precipitation after 

faulting. 

 

 

2.2.1.3. Relationship with Slope and Elevation  

 

Özşahin [46] states that in areas with a high slope in 

the study area, the proximity parameter to the fault triggers 

the landslides. Ahmed et al. [70] and Daneshvar [129] stated 

that the fault movements increase the sensitivity more with 

the height of the terrain. 

 

2.3. Effects of Distance to Drainage 

Parameters on Landslide  

 

Statistical analysis shows that there is a strong 

relationship between landslide distribution and distance to 

drainage [18]. However, the issue of which distances and 

how to use the main drainage or tributaries that form the 

drainage network on landslide formation is uncertain [81]. 

According to the literature, the general acceptance is that as 

the distance from the drainage line increases, the landslide 

frequency gradually decreases [1, 3, 4, 9, 10, 23, 130]. In 

other words, closer to the drainage, landslides are more 

likely to happen [7, 11, 58, 131-134]. Dai and Lee [135] and 

Mossa et al. [136] found a linear decrease between the 

distance to drainage and the landslide frequency. 

The presence of water has an inverse relationship with 

the shear strength of a substance. Since the leakage of water 

near the drainage network is much more than these, the 

shear strength decreases near the drainage network. 

Because as the percentage of water increases, the shear 

strength of the material tends to drop by half as much with 

an exponential behavior. According to this fact, high 

accumulation of drainage channels will lead to higher water 

penetration and consequently reduced shear strength of the 

formation [22, 128]. 

It is effective on landslides as they destroy the toe 

support over time due to the erosion caused by the 

weathering of the slopes. It increases the possibility of 

landslides to occur again [22, 125]. 

With the increase of the proximity value to the 

drainage network in any area, the effects of groundwater and 

surface waters will increase and therefore the surface will 

weather, making it more susceptible to landslides [137]. 

It moistens the stability of the slopes by moistening the 

part of the material that forms the slope below the drainage 

level or by saturating the part up to the drainage level with 

water [10, 76]. With the effect of water, plasticity and 

liquidity limits are reached and mass movements occur. 

Water increases the weight by reducing the angle of balance, 

reducing friction against it and facilitating movements 

[138]. 

Drainage networks form valleys in areas of steep 

slopes and create sensitive areas for mass movements. As 

water passes through an area, it washes the rough material 
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on the surface. Besides the lateral pressure, water wants to 

penetrate fine-grained material. This influence can cause the 

entire substance to collapse as a result of the following 

process [22]. Hydrographic axes constantly change the 

slopes of the drainage and therefore can be considered as 

one of the main parameters in landslide manifestation [139].  

There is maximum leakage along the slopes adjacent 

to the currents where materials have maximum permeability 

[140, 141]. It changes the surface geomorphology and 

controls the flow of water in landslide prone areas. 

Due to the weathering effect of the drainage, it drags 

the materials from the toe point and eventually causes 

stepped landslides that trigger movements from the toe to 

the top elevation with lateral spreading [131]. Pore water 

pressure is affected, which affects susceptibility [30]. 

Timilsina et al. [44], in his works, considers the closeness to 

certain drainages as it applies. Because smaller drainages 

are less effective in large-scale landslides. 

 

2.3.1. The Effect of Distance to Drainage with 

other Parameters on Landslide 

 

Considering that landslides are frequently seen in river 

valleys, it is revealed that distance to drainage in the basin 

is an important factor along with slope and lithology in 

landslides [47]. Flow and area lithology affect erosion and 

weathering processes of drainage [142]. Groundwater 

exchanges surface water directly by protecting the drainage 

base, groundwater also provides moisture for riverside 

vegetation, affects surface water and controls the shear 

strength of slope materials, thereby affecting slope stability 

and erosion processes [143]. Groundwater in smaller, low-

grade streams also provides most of the increased discharge 

during and immediately after storms [53]. 

 

2.3.1.1. Relationship with Erosion  

 

There are landslides caused by erosion associated with 

drainage channels [57, 58, 62, 71, 77, 129, 133, 142]. In 

addition, the relationship between drainage and average 

erosion rate is a landslide-triggering relationship [144]. 

 

2.3.1.2. Relationship with Groundwater 

 

The relationship between streams and groundwater is 

also important [22, 44, 53, 58, 77, 92]. Distance to drainage 

can affect the stability of the area as it affects underground 

flow [126]. With the increase of the proximity to the 

drainage network in any area, the effects of groundwater and 

surface waters will increase and therefore the surface will 

become more susceptible to landslides [137]. It also shows 

that groundwater tends to occur as a result of the flow of 

groundwater into drainages and drainages along the edges 

of the valleys and, as a result, affects shearing operations 

[78, 145, 146]. Groundwater basically provides base flow 

for all drainages and has a major impact on the amount of 

water and the chemical composition of the drainages [53].  

 

2.3.1.3. Relationship with Vegetation  

 

Drainage networks often affect vegetation by 

providing moisture for coastal vegetation [53]. The water 

supplied by the networks affect plant growth. The 

vegetation capillarity affect the mass movements, as the 

water in the ground takes up and evaporates with its roots, 

so that the leaked water holds a soil [138]. Proximity to 

drainages controls its impact on landscape evolution [116].  

 

2.3.1.4. Relationship with Lithology  

 

A drainage system developing on a surface is 

controlled by the surface's slope and the underlying rocks' 

types and attitudes [147]. Likewise, drainage channels 

significantly affect bedrock incisions [70]. Kritikos and 

Davies [116] argue that the riverbed reacts to the cut of the 

bedrock and that they have observed increased landslide 

erosion rates as the hill slope angles approach and exceed 

the threshold angle. Matebie et al. [148] determined that 

drainage plays an important role in changing the landscape 

by carving different rocks and cutting volcanic rocks and 

limestones at a depth of 1.5 km in the study areas. Pareek et 

al. [142] found that the density of landslides in the study 

areas is higher in the river basin than in quartzites and filites, 

which are more susceptible to weathering and erosion. 

 

2.3.1.5. Relationship with Seismic  

 

Xu et al. [6] argued that the landslides that were 

triggered by the Wenchuan earthquake mostly occurred 

along the drainage lines and as these areas were more 

susceptible to landslides due to drainage erosion. 

 

2.3.1.6. Relationship with Slope  

 

The proximity of the slope to the drainage structures is 

an important factor for stability. Considering that landslides 

are frequently seen in river valleys, it can be deduced that 

distance to drainages in the basin is an important factor 

along with lithology in landslides. Currents can adversely 

affect stability by eroding slopes or saturating the bottom of 

the material until it causes the water level to rise [52, 135, 

149]. Pham et al. [150] determined that landslides occur in 

areas with 0-40 m distance from the drainage and slope 

angles greater than 15 degrees. 



Seda ÇELLEK / Koc. J. Sci. Eng., 6(2): (2023) 94-113 

100 

2.3.1.6. Relationship with Climate  

 

The drainage flow is low when there isn’t rain or an 

inflow of melted snow. Streams immediately provide more 

discharge during and after rain, snow or storms. The effect 

of rivers on landslides increases in all of these events [53, 

57, 77]. 

 

2. Materials and Methods 

 

The classification of linear parameters is created using 

buffers. There are important points to be considered in 

classification. First of all, the action distance must be 

selected. It is another important issue to determine the 

intervals. Metric system is used in measurements of 

distance. Mostly, meters are preferred rather than 

kilometers. Distances range from 50 meters to 1 kilometer. 

Class numbers can also vary between 3 and 15. 

The effects of the linear parameters on landslides are 

evaluated in two manners according to the literature. The 

first classification notes the density of linear parameters, and 

the second classification calculates the distance between the 

linear parameter and the landslide. The literature mostly 

prefers the second method, landslide distance/proximity. 

Kumtepe et al. [8], in their study, they made buffer zoning 

for 2 km for roads and 1 km for drainages. 

 

3.1. The Classification of the Road Parameter 

 

Conducted classifications are over creating buffer 

zones. It is essential that different buffer zones are created 

along the lines through which roads pass to determine the 

effect of the road on the stability of the slope. The road 

proximity map determines the landslide areas and 

percentage distributions according to the degrees of road 

proximity through a comparison with the landslide 

inventory map. In the literature, studies that use equal 

distance for the general area are encountered. It was seen 

that some researchers performed classifications based on 

previously conducted classifications. For example, Özşahin 

[46] assigned the factor of distance to the road, considering 

the distinction that Yalçın et al. [143] made. Kouli et al. [87] 

noted landslide-triggering activity and data layers in road 

network buffer zones in the design of landslide 

susceptibility maps. 

Differently, some researchers applied changes to their 

buffer distances according to the places they passed by. For 

example, Ayalew and Yamagishi [105] reported on various 

buffer thresholds in their study. The researchers’ field 

observations found that the frequency of landslides was 

highest within 40 m of roads in mountains, within 100 m of 

coastal highways, and within 150 m in areas in which there 

are tunnels. For this reason, buffers were made at a length 

of 50 m along the edges of mountain roads, 100 m on coastal 

highways, and 150 m around tunnels. This showed that it is 

not possible to generalize a buffer application. Pourghasemi 

and Rossi [9] determined that the distance at which the 

effect of the road would be significantly reduced was 170 

m. Despite this, some studies accept the effective distance 

from 40 m to 200 m [13, 105, 151]. 

It is necessary to randomly create different buffer 

thresholds within the study area. This also demonstrates the 

importance of field surveys for landslide susceptibility 

studies. Indeed, Champati Ray et al. [152] created buffer 

zones by conducting field studies to support the data they 

received from satellite images.  

Researchers working in the local scale classify 

distances to highways in tens and hundreds of meters while 

mapping the typical landslide susceptibility [13, 69, 105, 

111, 153, 154]. Considering the effect of roads on 

landslides, they create buffers around the roads [151, 155]. 

Kamp et al. [12] reported that 50% of landslides that 

occurred in their study area occurred because of building 

and road construction excavations.  

An evaluation of the literature data sought to determine 

the range values and classifications used according to the 

selected studies. The review first sought to identify how 

many classification ranges researchers had identified. The 

percentage distribution graphs were created from the studies 

selected (Figure 1). 

 

 
Figure 1. The percentage distributions for the buffer ranges 

created for the distance to the road according to the literature 

 

When studying Figure 1, it was generally determined 

that researchers used 5 and 6 classification ranges. It is 

thought that the reason for this is that few classification 

ranges cannot adequately represent the area and that many 

classification ranges lead to confusion in calculations.  

The range values used in the studies were sought to be 

identified. Some studies selected randomly were used for 

this. The range number percentage distributions were 

attempted to be identified (Figure 2). 

It is seen from Figure 2 that the general preference in 

studies is 100 m ranges and that 50 m and 200 m ranges 
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follow that. It is thought that larger ranges remove 

susceptibility and that smaller ranges are not meaningful or 

that there are much fewer landslides that fall in the ranges. 

Finally, it was studied at what kind of approximate 

distance landslides occur and provide the results of the 

selected studies. The largest distances according to the 

literature are greater than 1000 m. The smallest distance is 

between 0 and 50 m. The effect of the road on landslides 

varies according to its role in the study area. Some 

researchers encountered landslides in areas up to 300 m, 

while other researchers found the most landslides occurred 

between 40 and 80 m. 

 

 
Figure 2. The percentage distribution values for the buffer 

ranges created for the distance to the road according to the 

literature 

3.2. The Classification of the Fault Parameter 

 

When using the proximity parameter for the structural 

features, more than one buffer zone is created by 

considering the different proximities. Taking this issue into 

consideration, many researchers have created different 

buffer zones. Researchers used meter and kilometer 

measurements in their studies. 50, 60, 100, 200, 250, 300, 

500, 1000 m and 1 km are class ranges that are frequently 

used in the literature. Usually there are those who use equal 

class ranges as well as those who use unequal ranges. There 

are those who use different methods when determining the 

classification. It is available to those using previously 

specified class ranges. 

Özşahin [67] used the classification prepared by 

Vahidnia et al. [156]. Dağ et al. [81] proposed a 

classification based on distances greater than m for 

sensitivity if it was determined as a result of land 

observations that the majority of landslides occurred in 

areas very close to the faults. Again, Gökçeoğlu and Aksoy 

[65] suggested a classification based on 0, 50, 100, 150, 200 

and on distances greater than 200 m for sensitivity, as a 

result of area research, that the majority of landslides 

occurred in areas very close to faults. Rozos et al. [139], the 

classes of the buffer zones “1” nearest [0-50 m], “2” very 

close [51-100 m], “3” close [101-150 m], “4” middle far 

[151- 200 m] and “5” named far [> 200 m]. Likewise, 

Kayastha et al. [71] created 3 classes as [<100 m] very close, 

[100-500 m] close, [> 500 m] far. Özşahin and Kaymaz 

[112] classified the area as very highly sensitive [<100], 

moderately sensitive [100-1000], very lowly sensitive [> 

1000] according to distance. 

Alexakis et al. [2014] suggested a buffer distance of 

500 m and Mathew et al. [2007] suggested a buffer distance 

of 300 m for main faults. Alexakis et al. [102] suggested a 

buffer distance of 250 m and Mathew et al. [66] suggested a 

buffer distance of 100 m for minor faults. Ramakrishnan et 

al. [118] created buffers for 3 types of faults in the area 

consisting of major and minor faults at 100, 50 and 5 m 

distances. 

Some other buffer ranges used according to the 

literature are as follows; 

There are those who restrict the buffers of the faults at 

a certain distance as well as those who don’t set an upper 

limit. Mathew et al. [66] limited> 2 km for main faults and 

<2 km for minor faults. Ramakrishnan et al. [118] limited> 

1 km for main faults and <1 km for minor faults. Saha et al. 

[157] prepared a 0.5 km wide buffer zone to represent the 

area of influence of structural tectonic properties on the 

landslides. Kumtepe et al. [8] used 2 km buffer zoning to 

create distance maps for the fault and these zones 

constituted the basis for classification. Özdemir [19] and 

Sujatha et al. [140] created scans in the study areas with a 

distance of 500 meters. Pareek et al. [142], 158] limited the 

buffer to 5 km. Apart from these, there are those who use 

disorderly and irregular class ranges [41, 44, 45, 57, 159, 

160].  

In the studies examined, it was observed that the 

researchers used a minimum of 3 and a maximum of 15 

classes. The classification varies according to the study area. 

Some class numbers used according to the literature are as 

follows; It can be seen from here that 5 and 6 classes are the 

most preferred. This is followed by classes 3 and 4. In the 

studies examined, no researchers preferred 9, 12, 13 and 14 

classes (Figure 3). 

 

 
Figure 3. The percentage distributions for the buffer ranges 

created for the distance to the fault according to the literature 
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Uromeihy and Mahdavifar [161], Çevik and Topal 

[52], Özşahin and Kaymaz [112] stated that they expect 

landslides in areas below that 50 m by giving a lower limit 

while others no expect a landslide. Some class values that 

aren’t observed in any landslides in the studies are as 

follows, Özşahin [46] encountered the lowest landslide 

frequency values in areas close to the fault line. The range 

values used in the studies were wished to be identified. 

Some studies selected randomly were used for this. The 

range number percentage distributions were attempted to be 

identified (Figure 4). 
 

 
Figure 4. The percentage distribution values for the buffer 

ranges created for the distance to the fault according to the 

literature 
 

It is seen from Figure 4 that the general preference in 

studies is 50 m ranges and that 1000 m and 100 m ranges 

follow that. 

 

3.3. The Classification of the Drainage 

Parameter 

 

The issue of which distances to pick and how to use 

the main streams or tributaries that form the drainage 

network on the landslide is uncertain [81]. In research, it is 

observed that landslides are concentrated after 150 m in 

general. In Akgün and Türk, [162], it is seen that more than 

50% of the landslides are within 0-200 m. He et al. [163] 

determined that 85.99% of the landslides occurred in the 

study areas at 749.53 m distance from the drainage. They 

emphasized the high incidence of landslides in areas close 

to the river. Dai and Lee [135] found in their study that 

landslides gradually decrease as they move away from the 

stream. 

Blesius and Weirich [13] and Dai ve Lee [135], on the 

other hand, determined the maximum distance as 300 m by 

calculating the effect of distance to the landslide with an 

equation. Özdemir [19] prepared a buffer showing the width 

of 250 m from all drainage lines. Sujatha et al. [140], Wang 

et al. [63], Gandhi [147] determined in their research that 

landslides occur within 500 meters of drainages. Aghdam et 

al. [24] stated that distances of more than 1000 meters have 

the lowest potential of landslides. 

Some researchers have created a classification system 

and assigned values to the classification as follows; Özşahin 

and Kaymaz [112]; <100 m [very susceptibility], 100-250 

m [highly susceptibility], 250-500 m [medium 

susceptibility], 500-1000 m [low susceptibility] and farther 

than 1000 m > [very low susceptibility]. Rozos et al. [7], 

[139]; nearest [0–50 m], nearest [51–100 m], near [101-150 

m], middle far [151-200m] and far [200 m]. 

The most landslide distances in the studied areas; 0-20 

m [164], 0 - 50 m [31], [71], [80], [160], [165], 0-75 

[22],[62] 0-100 m [11], [38], [47], [57], [112], 0-150 m [53], 

[67], [166], 50-150 m [19], 0-200 m [1], [7], [147], [162], 

[167] 100-200 m [24], 100-250 m [59], 0-250 m [131], 0-

300 m [52], 200-300 m [134], 500-1000 m [67],< 1km 

[124]. 

An evaluation of the literature data search determines 

the range values and classifications used according to the 

selected studies. The review was the first research to 

identify how many classification ranges researchers had 

identified. The percentage distribution graphs were created 

from the studies selected (Figure 5). 
 

 
Figure 5. The percentage distributions for the buffer ranges 

created for the distance to the drainage according to the 

literature 

 

The range values used in the studies were sought to be 

identified. Some studies selected randomly were used for 

this. The range number percentage distributions were 

attempted to be identified (Figure 6). 
 

 
Figure 6. The percentage distribution values for the buffer 

ranges created for the distance to the drainage according to 

the literature 
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It is seen from Figure 6 that the general preference in 

studies is 50 m ranges and that 200 m and 25 m, 100 m, and 

500 m ranges follow that. 

 

4. Linear Parameters Case Study of Turkey 

 

In this study, how the linear parameters were used in 

the literature, which class intervals were selected, in which 

class intervals landslide occurred, were determined. In that 

part of the chosen landslides in Turkey this study has tried 

to investigate the effect of these parameters. Primarily, for 

the study, 1: 25.000 scale landslide 64 sheets with 1: 25.000 

scale were acquired from the General Directorate of Mineral 

Research and Exploration [MTA]. Later, road, fault and 

drainage maps of the areas were taken from the address of 

the institution "http://yerbilimler.mta.gov.tr/anasayfa.aspx”. 

All maps are digitized. Table 1 was prepared as a result of 

analysis of distance to road, fault and drainage parameters. 

 

Table 1.  Areal distribution of landslides according to class 

ranges (m2) 

Distance Fault Road Drainage Total 

0-50 15 45 11 71 

50-100 15 60 11 87 

100-150 17 57 12 86 

150-250 33 87 26 146 

250-500 74 165 70 309 

500-750 64 135 68 267 

750-1000 63 100 67 230 

1000-1500 108 136 127 370 

1500-2000 98 91.83 109 299 

2000> 677 289 643 1608 

Total 1163 1166 1144 3473 
 

While calculating the class values, the three 

parameters were accepted simultaneously. Thirty-eight 

maps provided this requirement. Total landslide areas 

according to class ranges are given in Figure 7. 
 

 
Figure 7. Class range distribution of 3 parameters according 

to total landslide areas 
 

It is determined that landslides occur in areas close to 

the road, mostly in areas up to <1500 meters. The % 

percentage distribution of landslide areas by parameters is 

given in Figure 8. 

 

 
Figure 8. Distribution of landslide areas in% by parameters 

 

Finally, the distribution of all parameters according to 

each class is given separately in Figure 9. Each graph was 

created with 50 m intervals, and the value ranges are 

provided in the chart titles. 

 

 

 
Figure 9. Landslide distribution graphs according to the 

class ranges of the parameters, According to the 

intermediate value, the variation of the distance to the road, 

fault and drainage in the areas according to the landslides, 

a) 0-50 m; b) 50-100 m, c) 100-150 m, d) 150-250 m, e) 

250-500 m, f) 500-750 m, g) 750-1000 m, h) 1000-1500 m, 

i) 1500-2000 m, j) >2000 m 
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Figure 9. (Continued) Landslide distribution graphs according to the class ranges of the parameters, According to the 

intermediate value, the variation of the distance to the road, fault and drainage in the areas according to the landslides, a) 0-

50 m; b) 50-100 m, c) 100-150 m, d) 150-250 m, e) 250-500 m, f) 500-750 m, g) 750-1000 m, h) 1000-1500 m, i) 1500-2000 

m, j) >2000 m 

 

5. Results 

 

According to the literature, classes ranging from 3 to 

15 were selected. In this study, 10 class ranges were 

preferred for each area. It was observed that different equal 

class ranges from 50 m to 1000 m [1 km] were used. Apart 

from that, scattered class ranges were also preferred. In this 

study, a scattered class range was preferred [0-50, 50-100, 

100-150, 150-250, 250-500, 500-750, 750-1000, 1000-

1500, 1500-2000 and> 2000 m].  

As can be seen from here, the range of classes’ 

susceptibility to one area may be unfavourable for another 

area. While landslide frequency values close to the fault are 

high for one area, it can give the lowest landslide frequency 

values for another area. 

It was seen that positive results were obtained for 

certain areas. It was seen that it was useful to use the 
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classification range values previously used, based on the 

character of the study area. For example, 50 m, 100 m, 250 

m, 500 m range classification, classification range value 

used in previous studies, was evaluated. It was seen that it 

was useful in half of the selected map section. This 

demonstrates that classification ranges must be selected 

through test bias in future studies. It is emphasized that field 

surveys are a useful method for research that cannot be 

conducted. When all map sections were evaluated, it was 

seen that more than 80% of landslides occurred in a distance 

of less than 2 km. It is seen that 55% of landslides occurred 

in a 1 km area. As a result, a limited number of studies were 

tested with a certain number of map sections. However, by 

creating options for the classification ranges and 

classifications that can be selected, a study was sought to 

provide ideas for future studies. 

Out of 64 layouts, 5 of them don't have 3 parameters. 

There was no fault in 59, 9 in 7, road in 7 and no drainage 

in 9. In the study, the class ranges with the most landslides 

are listed as follows: <2000, 1000-1500, 250-500, 1500-

2000, 500-750, 750-1000, 150-250, 50-100, 100-150, 0 -50 

meters. Landslides are the most in order; the road can be 

seen in areas close to drainage and fault. 

 

6. Conclusions 

 

Landslide susceptibility studies, which have been 

going on for years, still continue today with the application 

of different methods and parameters. In the studies, 

performed methods are held in high importance, meanwhile 

parameter selection is ignored. Each field has a unique 

structure, and the parameters of that field should be selected 

accordingly. Parameter usage is not standard. should be 

selected according to the area. The same rule applies to 

subparameter class selection. This study is very different 

from a standard susceptibility study. Weight values are not 

given to the parameters; only the class ranges of the 

parameters are evaluated. Instead of comparing with other 

parameters, linear parameters are evaluated within 

themselves. This study shows that the selected class range 

is as important as the selected parameter. And this 

constitutes a more important issue than the method used. 

The distances given here also shed light on what kind of 

changes may occur in the studies. The point that should be 

evaluated before coming to the weights of the parameters is 

the distances of their values with class intervals. The ratio 

of the application of large values to small values should be 

considered. The distances given in this study will shed light 

on the future researchers who will use these parameters, and 

the researcher will consider the application distances of 

these parameters in the field. 

Parameter selection is particularly important in the 

preparation of landslides susceptibility maps. A literature 

review constitutes the first step of these types of studies. 

While there are general classifications for almost no 

parameters, techniques performed previously in similar 

studies are implemented. This study sought to determine and 

implement the distance to road, fault, drainage 

classifications and range values used in the literature. 

Therefore regarding the answer to the question “how 

effective is the distance to linear parameters in a landslide” 

these are the parameters that vary according to the study area 

and are very effective according to their location. 
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