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Abstract  Keywords 

With the development of science and technology, intelligent systems on 
aircraft help users know the device's operating status in real time. Using smart 
devices shortens the time for maintenance, repair, and operation of ground 
equipment and aircraft equipment. Therefore, building devices capable of 
self-diagnosis and warning failure are essential in aeronautical engineering. In 
many published studies, the authors often use the foundation of classic 
algorithms such as genetics, neural networks, and AI to solve the problem of 
identification and troubleshoot some simple devices. In Vietnam, there are 
currently not many published studies on failure diagnosis in aviation 
engineering, so the author's research has built the foundation for developing 
studies on fault diagnosis crash in the future. The primary purpose of the 
research is to create a complete automatic fault diagnosis and repair system 
for a specific class of inductance (angular speed sensor). The algorithms 
proposed in the paper are simulated on Matlab Simulink software, which will 
prove the feasibility of the proposed algorithm. In future studies, the author 
will apply new algorithms to build more complex fault diagnosis systems for 
other objects on the flying device. 

 
 
Angular velocity sensor 
Fault detection 
Fault diagnosis 
Aircraft  
 

 Time Scale of Article 

 
 
Received 19 May 2022 
Revised until 11 September 2022  
Accepted 21 December 2022 
Online date 29 December 2022 
 

 

1. Introduction 

Given the expected growth in passenger levels and the 
continued expansion of the world's aviation network 
with more aviation connectivity, sustainable air 

transportation will be a critical global concern. To 
manufacture gradually more efficient and ecologically 
friendly airplanes, new technical alternatives are 
becoming increasingly necessary (Arockiam, Jawaid and 
Saba, 2018), (Iemma, Pisi Vitagliano and Centracchio, 
2018), (Vieira and Bravo, 2016). Early and reliable 
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automated and self-diagnosis of faults (Wang, Zarader, 
and Argentieri, 2012) (Chen et al., 2009) that may affect 
structural loads contribute to overall aircraft design 
optimization(CHU et al., 2022) and, as a result, weight 
reduction for improved overall performance (Cardei and 
Du, 2005) in terms of sustainable aviation systems, 
optimal fuel, noise, range, and environmental footprint. 

Sensors play a very important role in aerial vehicles (AV); 
the quality of sensor operations determines the stability 
and safety of the AV operation (Khamis, 2021; Yang, 2021). 
As a result of the reduced flying duration, the least 
overall maintenance cost is offered. The standard 
operating procedure in this industry is to maintain an 
aircraft at optimal maintenance time and cost (Orhan, 
Kapanoğlu, and Karakoç, 2011). Many authors have 
researched the sensors on AVs and have come up with 
methods to fix the sensor damaged during the AV 
operation. For example, Hajiyev and Caliskan (2005), 
proposed a method for detecting and isolating aircraft 
sensor and control surface/actuator faults that impact 
the Kalman filter innovation sequence mean (Hajiyev and 
Caliskan, 2005). This approach was created to estimate 
the nonlinear flight dynamics of an F-16 fighter and the 
impacts of sensors and controlling surface/actuator 
failures, and it's particularly beneficial for isolating 
sensors and controlling surface/actuator failures. 
However, further research (Hajiyev and Caliskan, 2000) 
highlighted the failures impacting the covariance of the 
innovation sequence, which are not explored in this 
study. 

On the other hand, the sensors on AVs operate in 
individual systems (Brooks and Roy, 2021), so their role 
also varies depending on the importance of the system 
to which it provides the signal. Therefore, in some 
studies, researchers also focused on studying a number 
of different sensors such as air data parameter sensors 
(P Lu et al., 2015), engine parameter sensors (Xue, Guo 
and Zhang, 2007) or other sensors on helicopter UAV 
(Hajiyev and Soken, 2013). In addition, several methods, 
including Kalman filters (Xue, Guo and Zhang, 2007; P Lu 
et al., 2015; He et al., 2020), self-diagnostic (Sullivan, 
1988; Tuan, Firsov and Pishchukhina, 2012), adaptive 
models (Peng Lu et al., 2015), fuzzy tuning (Kim, Choi and 
Kim, 2008), and machine learning (Baskaya, Bronz and 
Delahaye, 2017) have been applied to identify faults of 
sensor operations on AVs. 

In Vietnam, there have not yet been many studies on 
sensors on AVs, while several studies have been focused 
on mining using existing equipment and fixing errors 
using good block substitution methods available. 
Therefore, this study presents an approach focusing on 
building a self-diagnostic, fault-resolving sensor system 
using the output parameters of the sensors, which can 
be applied to research and development of intelligent 
sensor systems on AVs. In a previous study (Tran et al., 

2021), an algorithm to diagnose the fault location of the 
sensor was give in the following Fig. 1. 

 

Fig. 1. Algorithm flowchart representing fault 
diagnostic algorithm 

A next problem needs to be solved that is to find the 
cause of the fault and fix it (if possible). To solve this 
problem, it is necessary to consider the typical fault 
modes of angular velocity sensor (Isermann, 2005) such 
as drifting signal, changing gain, and broken wire. The 
graph representing the signal form of the failed angular 
velocity sensor is shown in Fig. 2. 

Where:  

1- The standard characteristic curve of the sensor. 

2- Positive drift signal characteristic curve of 
sensor. 

3- Negative drift signal characteristic curve of the 
sensor. 

4- Up amplification coefficient characteristic curve 
of the sensor. 

5- Down amplification coefficient characteristic 
curve of the sensor. 

6- Broken negative wire characteristic curve of the 
sensor 

7- Broken positive wire characteristic curve of the 
sensor. 
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Fig.2. The graph shows the signal form of the fault 
sensor 

When a fault occurs, for each type of fault, the 
mathematical model of angular velocity sensor has 
different forms and is specifically shown as follows:  

- For the drift signal type  

𝑈𝐷𝑥(𝑘) = 𝑘𝐷𝑥𝜔𝑋(𝑘) + ∆𝑈0(𝑘); ∆𝑈0(𝑘) ≠ 𝑐𝑜𝑛𝑠𝑡 (1) 

- For the amplification coefficient changes type  

𝑈𝐷𝑥(𝑘) = �̃�𝐷𝑥𝜔𝑋(𝑘) + 𝑀1(𝑘); 𝑀1(𝑘) =
�̃�𝐷𝑥

𝑘𝐷𝑥
= 𝑐𝑜𝑛𝑠𝑡 ≠ 1 (2) 

- For the broken wire  

𝑈𝐷𝑋(𝑘) = 𝑈𝐷𝑋(𝑘)⏟    
𝑀𝑎𝑥

= 𝑐𝑜𝑛𝑠𝑡 ;  𝑈𝐷𝑋(𝑘) = 𝑈𝐷𝑋(𝑘)⏟    
𝑀𝑖𝑛

= 𝑐𝑜𝑛𝑠𝑡 (3) 

Thus, for the above three types of fault, we find that the 
fault due to drift signal or by changing the gain can be 
overcome if we determine the values ∆𝑈0(𝑘) and 𝑀1(𝑘), 
and for damage caused by broken wire, it cannot be 
fixed.  

2. Methods 

Firstly, we build an algorithm to identify fault of the 
sensors in the improved sensor block. To simplify the 
calculation, we divide it into two types of faults: wire 
break and zero drift or gain change. The fault parameter 
calculation to lead to the fault identification is 
determined by the following expression: 

𝑍1 = {|𝑈𝐷(𝑘)| > 𝑈𝐷_𝑚𝑎𝑥} =

{
0 −
1 −

fault for signal drift or amplification coefficient changes
fault for broken wire  (4) 

Where:  𝑈𝐷(𝑘) : the value output of sensor. 

𝑈𝐷_𝑚𝑎𝑥  : the maximum value output of sensor. 

From expression (4), we build an algorithm to determine 
the fault type in the general case as follows: 

The value 𝑁 depend on the accuracy of the algorithm. 
Thus, using the algorithm in Figure 3, we have diagnosed 
the general form of the problem. After that, we build an 
algorithm to diagnose specific types of problems. 

For the fault type due to wire break. The expression to 
calculate the parameter to determine the broken wire is 
as follows: 

𝑍2 = {|𝑈𝐷(𝑘)| < 𝑈𝐷_𝑚𝑖𝑛} = {
0 −
1 −

fault for broken positive wire
fault for broken negative wire (5) 

Where: 𝑈𝐷_𝑚𝑖𝑛: the minimum value output of sensor. 

From the above expression, it is possible to build a 
diagnostic algorithm to determine the fault caused by 
the wire break as follows: 
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Fig.3. Algorithm flowchart representing fault 
identification in general case 

 

Fig.4. Algorithm flowchart representing fault 
identification in broken wire case 

The value  𝑁1 depend on the accuracy of the algorithm. 
For the fault type drift or gain change, the parameter 
calculation expression to build the fault type diagnostic 
algorithm is as follows: 

𝑍3 = {∆𝑈0(𝑘) = 𝑈𝐷(𝑘) − �̂�𝐷(𝑘) = 𝑐𝑜𝑛𝑠𝑡} =

{
0 −
1 −

fault for signal driff
fault for amplification coefficient changes

 (5) 

Where: �̂�𝐷(𝑘) : the calculated value output of sensor. 

But first, we need to build an algorithm to determine the 
value of 𝑈0𝑇𝐵 to serve as a basis for building a problem 
diagnosis algorithm. 

 

Fig.5. Algorithm flowchart representing determined 
value 𝑈0𝑇𝐵. 

The value  𝑁2 depend on the accuracy of the algorithm. 
After determining value 𝑈0𝑇𝐵, we can buid fault 
identification algorithm in Fig.3. 

From formula (5), we build an algorithm to diagnose the 
fault type of the inductor in case the fault is caused by 
drift or change in gain as follows: 
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Fig.6. Algorithm flowchart representing determining the identify of drift or change in the transmission gain 

Similar to the previous algorithm, the value  𝑁3 depend 
on the accuracy of the algorithm. Thus, we have 
perfected the method of identifying fault modes of 
angular velocity sensor. Inductor block troubleshooting 
is conducted for transmitters that have been identified 
as having a remedial problem during the identification 
process mentioned above. In which sensors have a 
remedial fault including fault due to drift signal or fault 
due to gain change. 

- For the fault due to drift signal. The physical nature of 
drift signal  is that the actual output value of the sensor 
deviates from the standard output value by a constant 
amount over time. The drift value is described by the 
following expression: 

∆𝑈𝑜(𝑘) = 𝑈𝐷(𝑘) − �̂�𝐷(𝑘) (6) 

Where: ∆𝑈𝑜(𝑘)- Deviation between the actual output 
value of the sensor and the standard output value; 

Thus, after determining the value of ∆𝑈𝑜(𝑘) allows us to 
fixed the output signal from the sensor to see if there is 
a drift problem. The corrected value is described by the 
following expression: 

𝑈𝐷.𝐹𝐼𝑋𝐸𝐷_1(𝑘) = �̃�𝐷(𝑘) − ∆𝑈𝑜(𝑘) (7) 

Where: 𝑈𝐷.𝐹𝐼𝑋𝐸𝐷_1(𝑘)- The output value of the sensor has 
been drift signal corrected.  

- For problems due to gain change. The physical nature 
of the fault due to a change in gain is that the output 
value of the inductor is always proportional to the 
reference input value by a constant value and other than 
1. If the gain value changes, the gain is described by the 
following expression: 

𝑀1(𝑘) =
�̃�𝐷(𝑘)

𝑈𝐷(𝑘)
= 𝑐𝑜𝑛𝑠𝑡 ≠ 1 (8) 

Or we can express through the gain factor as follows: 

𝑀1(𝑘) =
�̃�𝐷(𝑘)

�̂�𝐷(𝑘)
= 𝑐𝑜𝑛𝑠𝑡 ≠ 1 (9) 

 Where: �̃�𝐷(𝑘)- Actual gain of sensor. 

  �̂�𝐷(𝑘)- Standard gain of sensor. 

  𝑀1(𝑘)- Ratio gain. 

In the ideal case, the value of the scaling factor is 1 and 
we denote it as 𝑀0(𝑘). Thus, the difference between the 
scaling factor in the case of error due to the gain change 
and the ideal case is expressed by the following 
expression: 

∆𝑀(𝑘) = 𝑀1(𝑘) − 𝑀𝑜(𝑘) (10) 
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From expressions (8), (9), (10) we see that when 
determining the scaling factor 𝑀1(𝑘) allows us to correct 
the output signal from the inductor with the error of the 
gain change. The correction value is described by the 
following expression: 

𝑈𝐷.𝐹𝐼𝑋𝐸𝐷_2(𝑘) =
�̃�𝐷(𝑘)

𝑀1(𝑘)
(𝑀1(𝑘) ≠ 0) (11) 

Where: 𝑈𝐷.𝐹𝐼𝑋𝐸𝐷_2(𝑘)- The output value of the sensor has 
been corrected for gain change error. 

The algorithm to determine the value of M1(k) is as 
follows: 

 

Fig.7. Algorithm flowchart representing determined the 
amount of gain change 

The value  𝑁4 depend on the accuracy of the algorithm. 
The general algorithm for fixed the sensors block is 
defined as follows 

 

Fig.8. General algorithm flowchart representing fixed 
fault of sensors 

Build detailed algorithm diagram for the system 

- For the type of fault due to drift signal. The diagnostic 
algorithm for fault for sensor with drift problems is not 
implemented on the basis of expressions 1 to 11 and the 
mentioned algorithms are as follows: 

Where:  Block [1] - Algorithm to diagnose a problem on 
the sensor in the general case; 

Block 3 – Algorithm for identification a type of fault in 
general case. 

Block 5  - Algorithm to calculate the value U_0TB.  

Block 6  - Algorithm for specific identify of problems 
caused by drift or change in gain. 

- For the fault form due to the change of gain factor. 
Troubleshooting diagnostic algorithm for faulty sensor 
due to gain change is performed on the basis of 
expressions 1 to 11 and the algorithms in [1] are as follows: 
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Fig.9. Algorithm flowchart representing fixed fault in 
driff signal case 

 
Fig 10. Algorithm flowchart representing fixed fault in 

amplification coefficient changes case. 

 

 

Fig 11. General simulation diagram for diagnosing, identifying and fixed fault of angular velocity sensors 
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Where:  

Block 1 - Algorithm to diagnose a problem on the sensor 
in the general case  

Block 3 – Algorithm to identificate a type of fault in 
general case. 

Block 5 - Algorithm to calculate the value . 𝑈0𝑇𝐵 

Block 6 - Algorithm for specific identify of problems 
caused by drift or change in gain. 

Block 7 - Algorithm for determined the amount of gain 
change 

3. Results 

On the basis of diagnostic results for the automatic 
identification and fixed fault algorithm on MATLAB 
Simulink simulation done by the current authors. The 
parameters are assumed that: 

𝑈𝐷_𝑚𝑎𝑥 = 550 

𝑈𝐷_𝑚𝑖𝑛 = −550 

𝑁 = 𝑁1 = 𝑁2 = 𝑁3 = 𝑁4 = 100 (9) 

𝛿 = 0.5 

On the basis of diagnostic results, continuing to simulate 
the automatic error identification algorithm. Based on 
the flowchart, the algorithm determines the type of the 
drift problem or the change in the gain of the sensor 
(Figure 6). Suppose we have determined that fault sensor 
is SENSOR_X1, which is good SENSOR_X2 sensor. The 
schematic diagram of fault identification is shown in 
Figure 12. 

 

Fig 12. Fault identification simulation diagram 

The automatic fault identification process is divided into 
2 stages: Stage 1 calculates the parameters for the 
identification process using formulas 1 to 6 and 
algorithm 5 and algorithm 6. Diagram The simulation is 
shown in Figure 13.  

Where algorithm 5 is represented in block CAL_U0TB 
and algorithm 6 is represented in block 
IDENTIFICATION. Simulation is performed in the two 
cases of sensor SENSOR_X1 with signal drift fault by 

changing the drift coefficient and the signal gain of the 
inductor, respectively. Running the simulation program 
gives us the results shown in Figure 14.  

 

Fig 13. Block diagram of the fault identification block 

 

Fig 14. Fault identification simulation results 

From the fault identification results in case of drifting 
sensor, we see that the output signal of the gain is zero 
- there is no error due to the gain change, the output 
signal of drift not equal to 1- is there a problem due to 
drift error. This proves that the drift fault detection 
system does not work well and can meet the 
requirements when there is no signal drift fault or gain 
change. Next, we simulate the process of automatically 
repairing the fault of the inductor, the simulation 
diagram is shown in Figure 15.  

In which the troubleshooting block consists of 7 input 
signals and 2 output signals. Hskd-Fault signal due to 
gain change, tt2-end signal of fault identification due to 
gain change, Utc-signal from inductor fault , Utot- signal 
from inductor is working well, tk- signal is there any 
drifting problem, Utb-Average error value of inductor 
signal has problem and good sensor, tt3-signal of 
process end drift fault identification. 2 output signals are 
2 signals that have been fixed.  

https://doi.org/10.23890/IJAST.vm03is02.0205


Nguyen et al., IJAST, Volume 3, Issue 2, 2022, DOI: 10.23890/IJAST.vm03is02.0205 

120 

 

 

Fig 15. Diagram to simulate the process of 
automatically identifying and fixing fault 

To simulate the process of automatic troubleshooting, 
we simulate in two cases: sensor has a problem due to a 
change in gain; Is there a problem with the transmission 
due to drift? For the case of sensor, there is a problem 
due to the change in gain. We assume that the 
SENSOR_X1 inductor has problems due to gain changes 
or has problems due to no-signal drift, the SENSOR_X3 
inductors are good inductors. The simulation diagram 
and simulation results are shown in Figures 17, 18, 19. The 
output value of the sensor has been multiplied by the 
factor k in Figure 19. 

 

Fig 16. Automatic fixed fault signal block diagram 

Where: 1-Fixed fault sensor signal; 2-Good sensor signal; 
3-Fault sensor signal. Based on the simulation results, we 
can see that initially the troubleshooting signal coincides 
with the signal of the faulty transmitter due to the delay 
time to calculate the fault identification and fixed fault. 
After this delay, the rectified signal has the same form as 
that of the well-functioning sensor. This proves that the 
algorithm to fix the problem caused by changing the gain 
coefficient shown in Figure 10 is completely correct. 

 

Fig 17. Diagram to simulate the automatic fixed fault 
signal process 

4. Conclusions 

From an industry standpoint, any sophisticated model-
based solution for aviation systems should be clearly 
shown in terms of added value. Any modifications to an 
established and well-proven scheme must include a 
feasible technological solution that improves 
performance while maintaining resilience. New methods 
and technologies are risky, and they must be thoroughly 
validated and verified before being implemented in real-
world systems. Hundreds of aircraft have been mass-
produced in the civil aircraft industry for several 
decades. Some improvements can be planned 
throughout the aircraft building process, such as 
expanded range, increased maximum take-off weight, 
and passenger capacity. 

vOne critical need in this context is that the new design 
be adaptable to different aircraft types and systems. For 
the adaptability of a novel solution in the context of mass 
production, easy-to-tune high-level input parameters 
are required. A small number of tuning parameters is 
preferable to reduce the validation and verification 
operations necessary for certification. Identify and 
isolate aircraft faults while maintaining aircraft 
performance operations and safety as a minimum 
requirement for today's technology. This fault diagnosis 
system should not be a black box; condition monitoring 
and comprehensive diagnosis results should be made 
available to engineering consulting services. It should be 
able to assist engineers in accumulating knowledge for 
reconfiguration activities (including diagnosis 
regulations) and improving the creation of innovative 
aircraft. 

In the context of this research, the faults identification 
and repair algorithm is entirely accurate. After 
recognizing the fault pattern, the algorithm 
automatically compensates for the signal that coincides 
with the original signal form of the inductor working 
well. Based on the proposed method, it is possible to 
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build an automatic fault identification device and repair 
some faults on the aircraft to ensure the system's safety 
in all working conditions. The proposed algorithm is only 
suitable for some typical fault types, not considering 
random factors, noise, calculation speed, and other 
sensor faults. However, the algorithm needs 
improvement to speed up the computation to meet the 

shortest and most efficient time. The actual 
implementation of the algorithm can use the FPGA 
platform. The author will overcome the study's 
limitations in future investigations. Further studies will 
extend to other sensors in aircraft and use a more 
intelligent identification method. 

 

 

Fig 18. Simulation results of automatic repair of fault s for damage caused by signal gain changes 

 

Fig 19. Simulation results of automatic repair of fault s for drift fault 

 

https://doi.org/10.23890/IJAST.vm03is02.0205


Nguyen et al., IJAST, Volume 3, Issue 2, 2022, DOI: 10.23890/IJAST.vm03is02.0205 

122 

Abbreviations 

AV : Aerial Vehicles 
UAV : Unmanned Aerial Vehicle 
FDD : Fault Detection and Diagnosis 
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