
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (5) (2023), 1219 – 1228

DOI : 10.15672/hujms.1119353

Research Article

Actions of generalized derivations on prime ideals
in ∗-rings with applications

Adnan Abbasi1�, Abdul Nadim Khan2
�, Mohammad Salahuddin Khan∗3

�

1Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle-517325, India
2Department of Mathematics, College of Science & Arts-Rabigh, King Abdulaziz University, Saudi Arabia

3Department of Applied Mathematics, Z. H. Collage of Engineering & Technology, Aligarh Muslim
University, Aligarh-202002, India

Abstract
In this paper, we make use of generalized derivations to scrutinize the deportment of prime
ideal satisfying certain algebraic ∗-identities in rings with involution. In specific cases, the
structure of the quotient ring R/P will be resolved, where R is an arbitrary ring and
P is a prime ideal of R and we also find the behaviour of derivations associated with
generalized derivations satisfying algebraic ∗-identities involving prime ideals. Finally, we
conclude our paper with applications of the previous section’s results.
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1. Introduction
The study of additive maps on rings possessing involution was initiated by Brešar et

al. [10] and they characterized the additive centralizing mappings on the skew-symmetric
elements of prime rings possessing involution. The algebra of derivations and generalized
derivations play a crucial role in the study of ∗-functional identities and their applica-
tions. In, 2022, some work have been done by researcher on the structure of a quotient
ring R/P with the help of different additive mappings (See [7, 8, 15]). In this paper, we
are interested in the study of rings with involution given as a quotient ring R/P, where R
is an arbitrary ring and P is a prime ideal of R involving certain ∗-differential/functional
identities on prime ideals. The originality in this work is that we use a derivation on R
(and not on R/P) which satisfies an algebraic property on R with respect to P.

If not otherwise stated, R in that manuscript always represents an associative ring with
centre Z(R). Retrieve that a proper ideal P is called prime if aRb ⊆ P implies a ∈ P
or b ∈ P. In case P = (0), the ring is called prime. An additive mapping f : R → R
is said to be left centralizer if f(xy) = f(x)y holds for all x, y ∈ R. By a derivation
of R, we mean an additive map φ : R → R satisfying φ(xy) = φ(x)y + xφ(y) for all
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x, y ∈ R. A first generalization of derivation on R is known in literature as generalized
derivation which was introduced by Brešar [9], and defined as F (xy) = F (x)y + xφ(y)
for all x, y ∈ R, where φ is an associated derivation on R. The analyses of generalized
derivations have primarily been studied on operator algebras. Therefore, any investigation
from the algebraic point of view might be fascinating (see [14, 21] for details). We refer
to an involution ∗ on a ring R as a conjugate linear anti-automorphism of period two
i.e., an additive map x 7→ x∗ satisfying (x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ R. A
ring equipped with involution is referred to as ring with involution or ∗-ring. An element
x in a ring with involution is said to be symmetric if x∗ = x and skew-symmetric if
x∗ = −x. The sets of all symmetric and skew-symmetric elements of R will be denoted by
H(R) and S(R), respectively. Generally, involutions are considered to be the first kind if
Z(R) ⊆ H(R), otherwise, they are considered of the second kind. S(R) ∩Z(R) 6= {0} in
the last-mentioned case. We refer the reader to [4, 13] for justification and amplification
for the notations discussed above and key definitions.

2. Results on prime ideals
In the early nineties, after a memorable work on the structure theory of rings, a tremen-

dous work has been established by Brešar considering centralizing mappings,
commuting mappings, commutativity preserving (CP) mappings and strong commuta-
tivity preserving (SCP) mappings on some appropriate subset of rings. Since then it
became a tempting research idea in the matrix theory/operator theory/ring theory for al-
gebraists. Commutativity preserving (CP) maps were introduced and studied by Watkins
[24] and further extended to SCP by Bell and Mason [6]. By mean SCP, is an additive
map ψ : R → R satisfying [ψ(x), ψ(y)] = [x, y] for all x, y ∈ R. A great account of work
has been done on these maps possessing a variety of derivations on many algebraic struc-
tures. See [12, 18, 19] and the references therein. In 2014, Ali et al. [1] studied the SCP
maps in different way on rings possessing involution. They established the commutativ-
ity of prime ring of characteristic not two possessing second kind of involution satisfying
[φ(x), φ(x∗)] − [x, x∗] = 0 for every x ∈ R, where φ is a nonzero derivation of R. Later,
Dar and Khan [11] improved this result by studying the case of generalized derivations.
Further, Khan and Ali [16] studied SCP maps as endomorphisms on rings with involution.
Recently, Raza et al. [22] established the same result for b-generalized derivations. Very
recently Khan et al. [17] proved the above result for prime ideals in rings with involution
[17, Theorem 2.14]. Motivated by the above research, we deal the following result with a
pair of generalized derivations in the case of prime ideals, as follows:

Theorem 2.1. Let R be a ring with involution ∗ of the second kind, P a prime ideal of R
such that S(R)∩Z(R) * P and char(R/P) 6= 2. If R admits two generalized derivations
F and G associated with two derivations φ and ψ respectively, such that F 6= IR or
G 6= IR and satisfying the condition [F (x),G (x∗)]± [x, x∗] ∈ P for all x ∈ R, then either
R/P is a commutative integral domain or (φ(R) ⊆ P, ψ(R) ⊆ P).

Proof. We have
[F (x),G (x∗)] ± [x, x∗] ∈ P (2.1)

for all x ∈ R. Consider either F or G or both are zero then we have ±[x, x∗] ∈ P for
all x ∈ R. Then R/P is commutative integral domain in view of [17, Lemma 2.2]. Now
consider neither F nor G be zero. Linearization of (2.1), yields that

[F (x),G (y∗)] + [F (y),G (x∗)] ± [x, y∗] ± [y, x∗] ∈ P (2.2)
for all x, y ∈ R. Now substitute yh0 for y in (2.2), where h0 ∈ H(R) ∩Z(R), we find that

[F (x),G (y∗)]h0 + [F (x), y∗]ψ(h0) + [F (y),G (x∗)]h0 + [y,G (x∗)]φ(h0)
±[x, y∗]h0 ± [y, x∗]h0 ∈ P (2.3)
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for all x, y ∈ R. Using (2.2) in (2.3), we obtain
[F (x), y∗]ψ(h0) + [y,G (x∗)]φ(h0) ∈ P (2.4)

for all x, y ∈ R. Taking k2
0 for h0 in (2.4) where k0 ∈ S(R) ∩ Z(R), we get

2([F (x), y∗]ψ(k0) + [y,G (x∗)]φ(k0))k0 ∈ P (2.5)
for all x, y ∈ R. Using the hypotheses char(R/P) 6= 2 and S(R) ∩Z(R) * P, we arrive
at

[F (x), y∗]ψ(k0) + [y,G (x∗)]φ(k0) ∈ P (2.6)
for all x, y ∈ R. Substituting yk0 in place of y in (2.6) and using the fact that S(R) ∩
Z(R) * P , we obtain

−[F (x), y∗]ψ(k0) + [y,G (x∗)]φ(k0) ∈ P (2.7)
for all x, y ∈ R. Now replacing y by yk0 in (2.2), where k0 ∈ S(R) ∩ Z(R), we get

−[F (x),G (y∗)]k0 − [F (x), y∗]ψ(k0) + [F (y),G (x∗)]k0 + [y,G (x∗)]φ(k0)

∓[x, y∗]k0 ± [y, x∗]k0 ∈ P (2.8)
for all x, y ∈ R. Application of (2.7) in (2.8) yields

−[F (x),G (y∗)]k0 + [F (y),G (x∗)]k0 ∓ [x, y∗]k0 ± [y, x∗]k0 ∈ P (2.9)
for all x, y ∈ R. Since S(R) ∩ Z(R) * P , it follows that

−[F (x),G (y∗)] + [F (y),G (x∗)] ∓ [x, y∗] ± [y, x∗] ∈ P (2.10)
for all x, y ∈ R. Now combining (2.2) and (2.10), we get

2([F (y),G (x∗)] ± [y, x∗]) ∈ P

for all x, y ∈ R. This implies that
[F (y),G (x∗)] ± [y, x∗] ∈ P (2.11)

for all x, y ∈ R. Replacing x by x∗ in (2.11), we get
[F (y),G (x)] ± [y, x] ∈ P for all x, y ∈ R.

Thus in view of [23, Theorem 1.4], we get R/P is commutative integral domain or
(φ(R) ⊆ P, ψ(R) ⊆ P). This completes the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 2.1:

Corollary 2.2. Let R be a ring with involution ∗ of the second kind, P a prime ideal
of R such that S(R) ∩ Z(R) * P and char(R/P) 6= 2. If R admits a generalized
derivation F associated with a derivation φ such that F 6= IR and satisfying the condition
[F (x),F (x∗)] ± [x, x∗] ∈ P for all x ∈ R, then either R/P is a commutative integral
domain or φ(R) ⊆ P .

Corollary 2.3 ([17, Theorem 2.14]). Let R be a ring with involution ∗ of the second kind,
P a prime ideal of R such that S(R) ∩Z(R) 6⊆ P and char(R/P) 6= 2. If d1 and d2 are
derivations of R satisfying the condition [d1(x), d2(x∗)] − [x, x∗] ∈ P for all x ∈ R, then
R/P is a commutative integral domain.

Now we establish the following results in the light of above theorem, which may help
to develop the interests of readers:

Theorem 2.4. Let R be a ring with involution ∗ of the second kind, P a prime ideal of
R such that S(R)∩Z(R) * P and char(R/P) 6= 2. If R admits a generalized derivation
F associated with a derivation φ, such that [F (x ◦ x∗), x] ∈ P for all x ∈ R, then either
R/P is a commutative integral domain or φ(R) ⊆ P.
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Proof. We have
[F (x ◦ x∗), x] ∈ P for all x ∈ R. (2.12)

Substituting h for x in (2.12), where h ∈ H(R), we obtain
2[F (h2), h] ∈ P for all h ∈ H(R).

Since char(R/P) 6= 2, the above expression reduces to
[F (h2), h] ∈ P for all h ∈ H(R). (2.13)

Writing h+ h0 instead of h in (2.13), where h0 ∈ H(R) ∩ Z(R) and using (2.13), we get
[F (h2

0), h] + 2[F (hh0), h] ∈ P (2.14)
for all h ∈ H(R). This gives

[F (h0), h]h0 + 2[F (h), h]h0 ∈ P (2.15)
for all h ∈ H(R). Taking h0 = k2, where k ∈ S(R) ∩ Z(R) * P, we find that

[F (k), h]k + 2[F (h), h] ∈ P (2.16)
for all h ∈ H(R). Putting −h for h in (2.16), we obtain

−[F (k), h]k + 2[F (h), h] ∈ P (2.17)
for all h ∈ H(R). Combining (2.16) and (2.17), we get

4[F (h), h] ∈ P for all h ∈ H(R).
Since char(R/P) 6= 2, this implies that

[F (h), h] ∈ P for all h ∈ H(R). (2.18)
Linearization of (2.18) gives that

[F (h), h′] + [F (h′), h] ∈ P for all h, h′ ∈ H(R). (2.19)
Replacing h′ by k′k0 in (2.19), where k′ ∈ S(R) and k0 ∈ S(R) ∩ Z(R), we get

[F (h), k′k0] + [F (k′k0), h] ∈ P (2.20)
for all h ∈ H(R) and k′ ∈ S(R), which further gives that

[F (h), k′]k0 + [F (k′), h]k0 + [k′, h]φ(k0) ∈ P (2.21)
for all h ∈ H(R) and k′ ∈ S(R). Now consider (2.18) and replacing h by k′k0 in (2.18),
we get

[F (k′k0), k′k0] ∈ P for all k′ ∈ S(R) and k0 ∈ S(R) ∩ Z(R). (2.22)
This implies that

[F (k′), k′] ∈ P for all k′ ∈ S(R). (2.23)
Linearization of (2.23) yields that

[F (k), k′] + [F (k′), k] ∈ P for all k, k′ ∈ S(R). (2.24)
Replacing k′ by h′k0 in (2.24), where k0 ∈ S(R) ∩ Z(R), we obtain

[F (k), h′k0] + [F (h′k0), k] ∈ P for all h′ ∈ H(R). (2.25)
This can be further written as

[F (k), h′]k0 + [F (h′), k]k0 + [h′, k]φ(k0) ∈ P (2.26)
for all h′ ∈ H(R) and k ∈ S(R). Substituting h for h′ and k for k′ in (2.26), we get

[F (k′), h]k0 + [F (h), k′]k0 + [h, k′]φ(k0) ∈ P (2.27)
for all h ∈ H(R) and k′ ∈ S(R). Combining (2.21) and (2.27), we obtain

2([F (h), k′] + [F (k′), h])k0 ∈ P (2.28)
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for all h ∈ H(R) and k′ ∈ S(R). This implies that
[F (h), k′] + [F (k′), h] ∈ P (2.29)

for all h ∈ H(R) and k′ ∈ S(R). Now consider
4[F (x), x] = [2F (x), 2x]

= [F (2x), 2x]
= [F (h+ k′), h+ k′]
= [F (h), h] + [F (h), k′] + [F (k′), h] + [F (k′), k′].

Thus in view of (2.18), (2.23) and (2.29), we obtain 4[F (x), x] ∈ P for all x ∈ R. Since
char(R/P) 6= 2, it follows that [F (x), x] ∈ P for all x ∈ R. Hence [23, Lemma 1.1], we
get the required results. This completes the proof of the theorem. �

Theorem 2.5. Let R be a ring with involution ∗ of the second kind, P a prime ideal of
R such that S(R)∩Z(R) * P and char(R/P) 6= 2. If R admits a generalized derivation
F associated with a derivation φ, such that [F (x) ◦ x∗, x] ∈ P for all x ∈ R, then either
R/P is a commutative integral domain or φ(R) ⊆ P.

Proof. By the given hypothesis, we have
[F (x) ◦ x∗, x] ∈ P for all x ∈ R. (2.30)

Substituting h for x in (2.30) where h ∈ H(R), we obtain
[F (h) ◦ h, h] ∈ P for all h ∈ H(R). (2.31)

This can be further written as
[F (h)h+ hF (h), h] ∈ P for all h ∈ H(R). (2.32)

Replacing h by h+ h0 where h0 ∈ H(R) ∩ Z(R) in (2.32), we get
2[F (h), h]h0 + [F (h0), h]h+ h[F (h0), h] + 2[F (h0), h]h0 ∈ P (2.33)

for all h ∈ H(R). Substituting −h for h in (2.33), then we have
2[F (h), h]h0 + [F (h0), h]h+ h[F (h0), h] − 2[F (h0), h]h0 ∈ P (2.34)

for all h ∈ H(R). Combination of (2.33) and (2.34) gives that
2[F (h), h]h0 + [F (h0), h]h+ h[F (h0), h] ∈ P (2.35)

for all h ∈ H(R). Again substituting h+ h0 for h in (2.35), we get
4[F (h0), h]h0 ∈ P (2.36)

for all h ∈ H(R). Using the primeness of P and the fact that char(R/P) 6= 2, we obtain
[F (h0), h] ∈ P or h0 ∈ P.

Consider, if h0 ∈ P for all h0 ∈ H(R) ∩ Z(R), then k2 ∈ P for all k ∈ S(R) ∩ Z(R).
This further gives that k ∈ P, which contradicts the fact S(R) ∩ Z(R) * P. Thus, we
have

[F (h0), h] ∈ P (2.37)
for all h ∈ H(R). In view of (2.37), the relation (2.33) reduces to

2[F (h), h]h0 ∈ P (2.38)
for all h ∈ H(R). The primeness of P and the conditions char(R/P) 6= 2, S(R)∩Z(R) *
P forces that

[F (h), h] ∈ P for all h ∈ H(R). (2.39)
Now following the same lines of proof as we did after (2.18), we get either R/P is a
commutative integral domain or φ(R) ⊆ P. This completes the proof of the theorem. �
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Theorem 2.6. Let R be a ring with involution ∗ of the second kind, P a prime ideal of
R such that S(R)∩Z(R) * P and char(R/P) 6= 2. If R admits a generalized derivation
F associated with a derivation φ, such that [F (x), x ◦ x∗] ∈ P for all x ∈ R, then either
R/P is a commutative integral domain or φ(R) ⊆ P.

Proof. Given that
[F (x), x ◦ x∗] ∈ P for all x ∈ R. (2.40)

Linearizing (2.40), we obtain

[F (x), x ◦ y∗] + [F (x), y ◦ x∗] + [F (y), x ◦ x∗]

+[F (x), y ◦ y∗] + [F (y), y ◦ x∗] + [F (y), x ◦ y∗] ∈ P (2.41)

for all x, y ∈ R. Substituting −y for y in (2.41) and combining it with (2.41), we get

2([F (x), y ◦ y∗] + [F (y), y ◦ x∗] + [F (y), x ◦ y∗]) ∈ P (2.42)

for all x, y ∈ R. Since char(R) 6= 2, this implies that

[F (x), y ◦ y∗] + [F (y), y ◦ x∗] + [F (y), x ◦ y∗] ∈ P (2.43)

for all x, y ∈ R. Replacing x by xh0 in (2.43) where h0 ∈ H(R) ∩ Z(R), we obtain

[F (x), y ◦ y∗]h0 + [x, y ◦ y∗]φ(h0) + [F (y), y ◦ x∗]h0 + [F (y), x ◦ y∗]h0 ∈ P (2.44)

for all x, y ∈ R. Application of (2.43) into (2.44), yields that

[x, y ◦ y∗]φ(h0) ∈ P for all x, y ∈ R. (2.45)

Taking h0 = k2
0 in (2.45), we get

2[x, y ◦ y∗]φ(k0)k0 ∈ P for all x, y ∈ R.

for all x, y ∈ R. This further gives that

[x, y ◦ y∗]φ(k0) ∈ P for all x, y ∈ R. (2.46)

Replacing x by xk0 in (2.43), where k0 ∈ S(R) ∩ Z(R), find that

[F (x), y ◦ y∗]k0 + [x, y ◦ y∗]φ(k0) − [F (y), y ◦ x∗]k0 + [F (y), x ◦ y∗]k0 ∈ P (2.47)

for all x, y ∈ R. Using (2.46) in (2.47), we obtain

[F (x), y ◦ y∗]k0 − [F (y), y ◦ x∗]k0 + [F (y), x ◦ y∗]k0 ∈ P (2.48)

for all x, y ∈ R. Since P is a prime ideal of R and S(R) ∩ Z(R) * P, we conclude that

[F (x), y ◦ y∗] − [F (y), y ◦ x∗] + [F (y), x ◦ y∗] ∈ P (2.49)

for all x, y ∈ R. Subtracting (2.49) from (2.43), we obtain

2[F (y), y ◦ x∗] ∈ P

for all x, y ∈ R. This implies that

[F (y), y ◦ x∗] ∈ P for all x, y ∈ R. (2.50)

Substituting x by h0 in (2.50) where h0 ∈ H(R) ∩ Z(R) and using the hypothesis of
S(R)∩Z(R) * P, implies that [F (y), y] ∈ P for all y ∈ R. Thus in view of [23, Lemma
1.1], we conclude our result. This completes the proof of the theorem. �
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3. Applications
This section presents applications of the results proved in Section 2. Primarily, we ex-

plore the structure of prime rings with involution and find the specific forms of generalized
derivations. Throughout the section, Q will denote the ring of quotients of R with center
C. The center C of Q is known as the extended centroid of R. It is well-known that
if R is a prime ring, then Q is also a prime ring (see [4] for details). In [5], Bell and
Daif investigated a certain kind of commutativity preserving maps as follows: Let S be
a subset of R. A map f : S → R is called strong commutativity preserving (SCP) on S
if [f(x), f(y)] = [x, y] for all x, y ∈ S. Precisely, they proved that if a semiprime ring R
admits a derivation which is SCP on a right ideal ρ, then ρ ⊆ Z(R). In particular, R is
commutative if ρ = R. In [12], Deng and Ashraf proved that if there exist a derivation
d of a semiprime ring R and a map f : I → R defined on a nonzero ideal I of R such
that [f(x), d(y)] = [x, y] for all x, y ∈ I, then R contains a nonzero central ideal. In
particular, they showed that R is commutative if I = R. In [18–20], authors have studied
SCP conditions for generalized derivations on prime and semiprime rings. On the other
hand, Ali et al. [2] established a relationship between the commutativity of a prime ring
R with involution ∗ involving strong commutativity preserving mappings. The following
result is a natural generalization of the classical theorem proved in [2, Theorem 1].

Theorem 3.1. Let R be a prime ring of char(R) 6= 2 with involution ∗ of the second
kind. If R admits two generalized derivations F and G associated with two derivations
φ and ψ respectively, such that such that F 6= 1R or G 6= 1R satisfying the condition
[F (x),G (x∗)] ± [x, x∗] = 0 for all x ∈ R, then either R is a commutative integral domain
or there exist a, b ∈ C such that F (x) = ax and G (x) = bx for all x ∈ R with ab = ∓1.

Proof. First, we consider the case
[F (x),G (x∗)] + [x, x∗] = 0 (3.1)

for all x ∈ R. Application of Theorem 2.1 yields that R is a commutative integral domain
or φ = ψ = 0. The latter case gives us F and G are left centralizers of R. In view of
[3, Lemma 2.3], there exist a, b ∈ Q such that F (x) = ax and G (x) = bx for all x ∈ R.
Therefore, (3.1) becomes

[ax, bx∗] + [x, x∗] = 0 (3.2)
for all x ∈ R. A direct linearization of (3.2) yields that

[ax, by∗] + [ay, bx∗] + [x, y∗] + [y, x∗] = 0 (3.3)
for all x, y ∈ R. Replacing x by xk0, where 0 6= k0 ∈ S(R) ∩ Z(R), we obtain

([ax, by∗] − [ay, bx∗] + [x, y∗] − [y, x∗])k0 = 0
for all x, y ∈ R, which gives that

[ax, by∗] − [ay, bx∗] + [x, y∗] − [y, x∗] = 0 (3.4)
for all x, y ∈ R. Combining (3.3) and (3.4), we get

2([ax, by∗] + [x, y∗]) = 0
for all x, y ∈ R. This implies that

[ax, by] + [x, y] = 0 (3.5)
for all x, y ∈ R. If a = 0 or b = 0, then R is commutative. Thus we may now assume
that a 6= 0 and b 6= 0. Substituting yr for y in (3.5), we get

by[ax, r] + y[x, r] = 0
for all x, y, r ∈ R. In particular, for x = k0, where 0 6= k0 ∈ S(R) ∩ Z(R), we have

by[a, r] = 0
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for all y, r ∈ R. Since b 6= 0 and R is a prime ring, we conclude that a ∈ C. Similarly, we
can also prove that b ∈ C. From (3.5), we have

ab[x, y] + [x, y] = 0
for all x, y ∈ R and hence for all x, y ∈ Q (see [4, Theorem 6.4.4]). So, the above expression
can be written as

(ab+ 1)[x, y] = 0
for all x, y ∈ Q. The primeness of Q forces that Q is commutative or ab+ 1 = 0, which is
the required result.
By using the similar arguments, we can prove the result for the case
[F (x),G (x∗)] − [x, x∗] = 0 for all x ∈ R. Thereby the proof of the theorem is now
completed. �

Corollary 3.2. Let R be a prime ring of char(R) 6= 2 with involution ∗ of the second
kind. If R admits a generalized derivation F associated with derivation φ such that
[F (x),F (x∗)] ± [x, x∗] = 0 for all x ∈ R, then either R is a commutative integral domain
or there exists a ∈ C such that F (x) = ax for all x ∈ R with a2 = ∓1.

Corollary 3.3 ([11, Theorem 2.3]). Let R be a noncommutative prime ring of char(R) 6= 2
with involution ∗ of the second kind. If R admits a generalized derivation F associated
with derivation φ such that [F (x),F (x∗)] − [x, x∗] = 0 for all x ∈ R, then F (x) = x for
all x ∈ R or F (x) = −x for all x ∈ R.

Theorem 3.4. Let R be a prime ring of char(R) 6= 2 with involution ∗ of the second
kind. If R admits a generalized derivation F associated with derivation φ such that
[F (x ◦ x∗), x] = 0 for all x ∈ R, then either R is a commutative integral domain or there
exists a ∈ C such that F (x) = ax for all x ∈ R.

Proof. By the assumption, we have
[F (x ◦ x∗), x] = 0 (3.6)

for all x ∈ R. In view of Theorem 2.4, R is commutative integral domain or φ = 0. If
φ = 0, then F is a left centralizer of R, and hence there exists a ∈ Q such that F (x) = ax
[3, Lemma 2.3]. Thus, the relation (3.6) can be written as

[a(x ◦ x∗), x] = 0 (3.7)
for all x ∈ R. Writing x+ y in place of x in (3.7), we get

[a(x ◦ y∗), x] + [a(x ◦ x∗), y] + [a(y ◦ x∗), x] + [a(x ◦ y∗), y]

+[a(y ◦ y∗), x] + [a(y ◦ x∗), y] = 0 (3.8)
for all x, y ∈ R. Taking x = −x in (3.8) and combining it with the obtained relation, we
obtain

2([a(x ◦ y∗), x] + [a(x ◦ x∗), y] + [a(y ◦ x∗), x]) = 0
for all x, y ∈ R. Since char(R) 6= 2, it follows that

[a(x ◦ y∗), x] + [a(x ◦ x∗), y] + [a(y ◦ x∗), x] = 0 (3.9)
for all x, y ∈ R. In particular, for x = k0, where 0 6= k0 ∈ S(R) ∩ Z(R), we have

−2[a, y]k2
0 = 0

for all y ∈ R. Using the hypotheses of the theorem, we conclude that a ∈ C. This proves
the theorem. �

The proof of the following theorems are almost identical to the proof of Theorem 3.4,
so we write these results without proof.
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Theorem 3.5. Let R be a prime ring of char(R) 6= 2 with involution ∗ of the second
kind. If R admits a generalized derivation F associated with derivation φ such that
[F (x) ◦ x∗, x] = 0 for all x ∈ R, then either R is a commutative integral domain or there
exists a ∈ C such that F (x) = ax for all x ∈ R.

Theorem 3.6. Let R be a prime ring of char(R) 6= 2 with involution ∗ of the second
kind. If R admits a generalized derivation F associated with derivation φ such that
[F (x), x ◦ x∗] = 0 for all x ∈ R, then either R is a commutative integral domain or there
exists a ∈ C such that F (x) = ax for all x ∈ R.
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