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Abstract 
 
Accurate land cover information is necessary for successful monitoring, planning and 
management of the land cover features. Thanks to free-access satellite images, studies 
have focused on the creation of more accurate thematic maps, which have been used as a 
base data in many applications. The cloud-based Google Earth Engine (GEE) service makes 
it easier to access, store and process these satellite images. This study aims to improve the 
accuracy of a land cover map produced with the Sentinel-2 satellite image. For this 
purpose, as the very first step, study site was classified using only traditional bands of the 
Sentinel-2 data. To improve the classification accuracy, Sentinel-1 Synthetic Aperture 
Radar (SAR) data, Advanced Land Observing Satellite (ALOS) World 3D data, various 
spectral indices and gray-level co-occurrence matrix (GLCM) features were added to the 
traditional bands of the Sentinel-2 data, leading to a multi-source classification process. In 
this study, where the city center of Trabzon was selected as the study area, the accuracy 
of the land cover map produced using the Random Forest (RF) classification algorithm was 
increased from 83.51% to 92.78% with the auxiliary data used.   
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Özet  
 
Yeryüzü nesnelerinin başarılı bir şekilde izlenmesi, planlanması ve yönetimi için yüksek 
doğruluklu arazi örtüsü bilgisi gereklidir. Ücretsiz erişilebilen uydu görüntüleri sayesinde, 
birçok uygulamada temel altlık verisi olarak kullanılabilen yüksek doğruluklu tematik 
haritaların oluşturulmasına yönelik çalışmalar yoğunlaşmıştır. Bulut tabanlı Google Earth 
Engine (GEE) platformu, bu tür uydu görüntülerine erişmeyi, depolamayı ve işlemeyi 
kolaylaştırmaktadır. Bu çalışma, Sentinel-2 uydu görüntüsü ile üretilmiş bir arazi örtüsü 
haritasının doğruluğunu artırmayı amaçlamaktadır. Bu amaçla, ilk aşamada, çalışma alanı 
Sentinel-2 verilerinin yalnızca geleneksel bantları kullanılarak sınıflandırılmıştır. Daha 
sonra, sınıflandırma doğruluğunu iyileştirmek için Sentinel-2 görüntüsünün geleneksel 
bantlarına Sentinel-1 Yapay Açıklıklı Radar (SAR) verisi, Gelişmiş Arazi Gözlem Uydusu 
(ALOS) 3 boyutlu sayısal yükseklik modeli verileri, çeşitli spektral indeksler ve Gri Seviyeli 
Eşdizimlilik Matrisi (GLCM) özellikleri eklenerek çok kaynaklı bir sınıflandırma prosedürü 
geliştirilmiştir. Trabzon ilinin şehir merkezinin çalışma bölgesi olarak seçildiği bu çalışmada, 
Rastgele Orman (RF) sınıflandırma algoritması kullanılarak üretilen arazi örtüsü haritasının 
doğruluğu kullanılan yardımcı veriler ile %83.51'den %92.78'e yükseltilmiştir.  
 
Anahtar kelimeler: Google Earth Engine, Arazi örtüsü haritalama, Görüntü sınıflandırma, 
Sentinel-2
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1. Introduction 
 
With the rapid development in technology, remote sensing methods have become much more important for monitoring 
the development of land cover and urban areas. The high-resolution information provided by the commercial satellites 
WorldView, Quickbird and IKONOS enables highly accurate land cover information (Pu, 2011; Akar and Güngör, 2012; 
Akar et al., 2017; Saralioglu and Gungor, 2020). However, the fact that these satellite images are not free has motivated 
researchers to use free-of-charge satellite data. The satellites of the Landsat mission (i.e., 4-TM (Thematic Mapper), 5-
TM, 7-ETM+ (Enhanced Thematic Mapper Plus), and 8-OLI (Operational Land Imager)), which are in the freely-accessible 
satellite data category, have been generally used in previous studies for land cover mapping for half a century (Wulder 
et al., 2019; Nguyen et al., 2021). The Sentinel mission, which is another free-to-use satellite data, has been available 
since 2015.  

The literature reports various studies where different image features were used together with the Sentinel-2 MSI 
(MultiSpectral Instrument) and Landsat TM/ETM+/OLI images to improve image classification performance (Coulter et 
al., 2016; Hu et al., 2021). For example, Sentinel-1 SAR data may be used with the Sentinel-2 MSI in situations where 
the Sentinel-2 MSI has insufficient optical capacity, such as acquiring information from dark surfaces (Hu et al., 2021). 
Moreover, SAR imagery has been preferred in many studies as an additional feature due to the fact that it is not affected 
by weather conditions, providing information about the material of the surface structures, and that it is able to 
penetrate through the soil or vegetation (Weng, 2012; Dong et al., 2020; Chong et al., 2021). Spectral indices that are 
used to extract valuable information from the imageries are another auxiliary data that can be used to improve the 
classification performance. The normalized difference vegetation index (NDVI), normalized difference water index 
(NDWI) and normalized difference built-up index (NDBI) are some of the commonly used spectral indices (Rawat and 
Kumar, 2015; Ko et al., 2015; Sonobe et al., 2017; Kobayashi et al., 2020). Thanks to their ability to separate different 
land cover classes and even the land features of similar spectral characteristics with respect to their reflectance at 
different wavelengths, spectral indices are considered almost indispensable for optical remote sensing observations and 
practices. The elevation information is also another data source used to increase the image classification performance. 
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) (Shrestha and Saepuloh, 2019; Chen et al., 
2021), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER 
GDEM) (Saputra and Lee, 2019; Birhanu et al., 2019), and Advanced Land Observing Satellite (ALOS) World 3D (Maffei 
Valero et al., 2022) are among the datasets mostly used for improving the classification performance. A significant 
amount of the previous studies made use of texture extraction filters like gray-level co-occurrence matrix (GLCM) 
(Haralick et al., 1973) Gabor filter (Xiao et al., 2010; Dumitru et al., 2016) or morphological operators (Iftikhar and 
Khurshid, 2011). Previous studies showed that textural information can help distinguish class types having different 
texture but similar spectral features (Ressel et al., 2015; Ayhan and Kwan, 2020). 

In this study, the Sentinel-2 MSI data, Sentinel-1 SAR data, ALOS World 3D elevation data, green normalized 
difference vegetation index (GNDVI) (Gitelson and Merzlyak, 1998), modified normalized difference water 
index (MNDWI) (Han-Qiu, 2005), normal difference built-up index  (NDBI) (Zha et al., 2003), bare soil index (BSI) (Chen 
et al., 2004), modified bare soil index (MBSI) (Nguyen et al., 2021) and GLCM texture features were employed in 
different combinations to improve the classification accuracy of the Sentinel-2 optical satellite data. All experiments 
were conducted in the Google Earth Engine (GEE) (Gorelick et al., 2017) (with JavaScript API code editor), which is a 
cloud-based Earth observation and analysis platform. The GEE has been resorted a lot in the recent years as it provides 
a huge amount of open-access geospatial and remote sensing datasets for comfortable and fast processing without any 
storage space problems (Tsai et al., 2018; Sun et al., 2019; Wagle et al., 2020). 
 

2. Material and Methods 
 

2.1 Study Area 
 
The selected study region, which covers an area of approximately 215 km2, is in the city centre of Trabzon, which is 
located in the northeast of Turkey. The coastal parts of the study region are generally urban areas with a dense presence 
of man-made structures, whereas the inner parts are rural areas. At the same time, the coastal part, which has a 
relatively flatter topography, turns into a rather rough mountainous terrain as moving inland. The study area is mostly 
covered by forests and vegetation. Figure 1 shows the study area.  
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Figure 1. Study area 
 

2.2 Data Used 
 
This study used the Sentinel optical and SAR satellite imageries provided by the European Space Agency (ESA) 
Copernicus program. The pre-processed Sentinel-2 MSI data (Level 2A, Bottom-Of-Atmosphere (BOA) surface 
reflectance product) in the GEE collection (collection id: COPERNICUS/S2_SR) was used as the optical imagery. The 
Sentinel-2 MSI data includes 13 spectral bands with spatial resolutions ranging between 10 m and 60 m (10 m: B2, B3, 
B4, B8; 20 m: B5, B6, B7, B8A, B11, B12; 60 m: B1, B9, B10; B refers to band) (https://sentinels.copernicus.e
u/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial). The image collections were filtered with cloudy pixel 
percentage less than 5% to ensure working with clear image. Of the 21 images in the image collection created for May 
2021, three images remained after cloud filtering. To provide balance among the pixel values of the image, median 
reducer function was applied and the image to be classified was generated. The SAR data was also acquired through the 
GEE with collection id: ‘COPERNICUS/S1_GRD’. The pre-processed collection offers Sentinel-1 (C-band) Ground Range 
Detected (GRD) scenes with orbit file correction, GRD border noise removal, thermal noise removal, radiometric 
calibration, and terrain correction applied using the SRTM 30 m or ASTER DEM (https://developers.google.com/earth-
engine/guides/sentinel1). The 10-m Sentinel-1 images were acquired in the Interferometric Wide Swath (IW) mode with 
two polarizations as vertical transmit/vertical receive (VV) and vertical transmit/horizontal receive (VH), with 
descending mode. A refined Lee filter with a pixel size of 9 × 9 was then used to remove the speckle noise of the SAR 
data (Lee et al., 2008). Plenty of attention was paid in this study to select the optical and SAR images with close 
acquisition dates. The SAR data was acquired on the 16th of May, 2021, whereas the optical data was generated as the 
median of the imageries acquired on the 12th, 15th and 20th of May 2021. The ALOS World 3D – 30 meter (AW3D30) 
DEM data was used to introduce the elevation and slope information to the classifier. This study used the updated 
version (ver 3.2) of the AW3D30, which is available in the GEE platform with collection id: ‘JAXA/ALOS/AW3D30/V3_2’ 
(Tadono et al., 2014; Takaku et al., 2014; Takaku et al., 2016; Tadono et al., 2016). 
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2.3 Methodology 
 
Different scenarios were designed to improve the accuracy of the land cover maps produced with the Sentinel-2 satellite 
image. The first scenario considers only the traditional bands (B2, B3, B4, B8) of the Sentinel-2 image for classification. 
All spectral bands of the Sentinel-2 data except the B1 (coastal aerosol band) and B10 (SWIR-cirrus band) were classified 
in the second scenario. The spectral indices GNDVI, MNDWI, NDBI, BSI and MBSI, which were calculated through the 
Sentinel-2 bands, were included in the classification in the third scenario. The fourth scenario includes the elevation and 
slope data obtained from the AW3D30 in the classification. The fifth scenario incorporates the VV and VH polarizations 
of the Sentinel-1 SAR data. In the last scenario, the four GLCM metrics, namely angular second moment (asm), contrast 
(contrast), difference variance (dvar) and information measure of correlation 2 (imcorr2), were computed from the first 
principal component of the Sentinel-2 data transformed into the PCA (principal component analysis) domain. The GEE 
offers 14 GLCM features (Haralick et al., 1973) and four additional textural features (Conners et al., 1984). Four texture 
features used in this study were selected after various trials. 
 

Table 1. The spectral indices used in this study 
 

Indices Used Abbreviation Formulation 

Green Normalized Difference Vegetation Index GNDVI (NIR - Green) / NIR + Green) 

Modified Normalized Difference Water Index MNDWI (Green - SWIR1) / Green + SWIR1) 

Normal Difference Built-up Index NDBI (SWIR1 - NIR) / SWIR1 + NIR) 

Bare Soil Index BSI ((SWIR1 + Red) - (NIR + Blue)) / ((SWIR1 + Red) + (NIR + Blue)) 

Modified Bare Soil Index MBSI ((SWIR1 - SWIR2 - NIR) / (SWIR1 + SWIR2 + NIR)) + 0.5 

 
In the first phase of the implementation, pixel samples were collected for five classes, including built-up, water, bare-

soil, forest and vegetation. Table 2 presents further details on the classes. The number of the test points required to 
evaluate the classification result was estimated with respect to the multinomial distribution approach (Congalton and 
Green, 2019; Yilmaz et al., 2018; Yilmaz, 2021). This approach revealed that a minimum of 663 validation points had to 
be used for a reasonable accuracy assessment. To increase the robustness of the accuracy assessment, the number of 
the validation points used was set to a much greater value than needed. Hence, a total of 5727 pixel samples were 
collected for all land classes. The collected pixel samples were then divided into two groups, approximately 70% (i.e., 
3996 pixels) of them for training and 30% (i.e., 1731 pixels) of them for validation. The validation data included 438, 83, 
272, 556 and 382 pixels for the built-up, water, bare-soil, forest and vegetation classes, respectively. Since the water 
class had a homogeneous colour content, relatively smaller number of pixels were collected for this class. Afterwards, 
a non-parametric machine learning algorithm, the random forest (RF), was used to classify the images produced within 
each scenario. The RF was preferred due to its flexibility, robust performance and easy-to-tune hyper-parameters 
(Rodriguez-Galiano, 2012; Akar and Güngör, 2012). (1) Number of trees (ntree - “numberOfTrees”), (2) number of 
variables to split the nodes of trees (mtry - “variablesPerSplit”), (3) minimum leaf population (“minLeafPopulation”), (4) 
fraction of input to bag per tree (“bagFraction”), (5) maximum number of leaf nodes (“maxNodes”), and (6) random 
seed variable (“seed”) are six input parameters required to tune the algorithm. Since the ntree and mtry are the most 
critical parameters of the RF (Amani et al., 2017), extreme care was taken while specifying their values. As a result of 
the trials, setting the ntree parameter to 60 and the mtry parameter to the number of input features (bands) in each 
scenario was found to have led to the best RF performance. The remaining four parameters were set to their default 
input values  (https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest). 
 

Table 2. Description for the land cover classes considered in the study 
 

Land Classes Class Description 

Built-up All settlements, industrial areas, roads, coastal structures including harbor, pier, breakwater 

Water All water bodies including sea, river 

Bare-soil Soil or sand that is not cover by grass or other plants 

Forest Mixed tree varieties 

Vegetation All cultivated and uncultivated plants 
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The accuracy of the classified images was evaluated thorough the validation data consisting of 1731 pixel samples. The 
accuracy of each land cover map produced within each scenario was evaluated through the confusion matrix derived 
based on the comparison of the classification outputs with the ground truth samples (Congalton, 1991; Tassi et al., 
2021). The confusion matrices produced include the producer’s accuracy (PA), user’s accuracy (UA) and overall accuracy 
(OA) (Congalton and Green, 2019) metrics. The PA indicates the probability of a reference pixel being correctly classified, 
whereas the UA indicates the probability that a classified pixel is actually from that class on the ground. The OA, as its 
name implies, shows the general classification accuracy and is computed by dividing the total number of correctly 
classified pixels to the total number of reference pixels (Congalton, 1991; Liu et al., 2007). 
 

3. Results and Discussion 
 
This section investigates to what extent each scenario affected the OA, PA and UA. Figures 2 and 3 present the land 
cover maps produced for all scenarios. The accuracy of the land cover maps produced within all scenarios were 
investigated quantitatively. 
 

 
 

Figure 2. Land cover maps produced for the scenarios 1, 2, 3 and 4 
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Figure 3. Land cover maps produced for the scenarios 5 and 6 
 

The PA, UA, F-1 score (Ustuner and Balik Sanli, 2019; Tonbul et al., 2022) and OA values derived from the classified maps 
are given in Table 3. As seen in the table, in the first scenario, the traditional bands of the Sentinel-2 data resulted in 
the best PA and UA for the water class, which shows that the reference water pixels are classified with a high accuracy 
and that the classes other than water were generally not misclassified as water. The lowest PA (73.37%) and UA (76.19%) 
for this scenario were obtained for the vegetation and bare-soil classes, respectively. The lowest and highest F-1 scores 
were obtained by the vegetation and water classes in this scenario, respectively. The OA achieved for this scenario was 
found to be 83.51%. Table 3 shows that, in the second scenario, the greatest PA was achieved for the water class and 
the greatest UA was obtained for the vegetation class. The lowest PA and UA were obtained for the bare-soil class in 
this scenario. The lowest and highest F-1 scores were obtained by the bare-soil and forest classes in this scenario, 
respectively. The OA for this scenario was calculated as 85.70%. 

As can be seen, using 11 bands of the Sentinel-2 data slightly increased the OA. In the third scenario, the greatest 
PA and UA were achieved for the water and forest classes, correspondingly. On the other hand, the bare-soil class was 
found to be the one that was found with the lowest accuracy, which was also the case in the second scenario. The bare-
soil and forest classes received the lowest and highest F-1 scores in this scenario, correspondingly. The OA of the third 
scenario was computed as 86.27%. This reveals the fact that adding the spectral indices to the dataset of the second 
scenario led to a slight increase in the OA. It can also be concluded that, in this scenario, adding the spectral indices into 
the classification procedure resulted in a considerable increase in the classification accuracy of the forest and vegetation 
classes. As seen in Table 3, the highest PA was achieved for the water class in the fourth scenario. The table also shows 
that the lowest UA was obtained for the bare-soil class. The bare-soil and water classes led to the lowest and highest F-
1 scores in this scenario, correspondingly. This scenario has an interesting point. As seen in the table, 82.72% of the 
reference bare-soil pixels were correctly classified, which can be considered a relatively good classification accuracy. 
However, 66.77% of the pixels classified as bare-soil were actually bare-soil pixels. In other words, a user who has an 
intention to use this land cover map on the field will notice that 33.23% of the pixels were misclassified with respect to 
the current condition of the field. Table 3 also depicts that, in the fifth scenario, the greatest PA and UA were achieved 
for the water and forest class, respectively. On the other hand, the lowest PA and UA were obtained for the built-up 
and bare-soil classes, respectively. The lowest and highest F-1 scores were obtained by the bare-soil and water classes 
in this scenario, respectively. The OA achieved for this scenario was calculated as 89.02%. As can be seen, including the 
VV and VH polarizations of the Sentinel-1 SAR data into the classification made a considerable contribution to the OA.  
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In the sixth scenario, the class that was best separated from the others was the forest class as a PA and UA of 97.84% 
and 98.73% were achieved for this class as a result of the classification. The lowest PA and UA were obtained for the 
bare-soil class. The bare-soil and forest classes led to the lowest and highest F-1 scores in this scenario, correspondingly. 
The OA of the sixth scenario was found to be 92.78%. As can be seen, adding the Sentinel-2 bands B5, B6, B7, B8A, B9, 
B11 and B12; spectral indices; topographic features; SAR information and GLCM features to the traditional Sentinel-2 
MSI bands led to an 11.10% increase in the OA. 

 
Table 3. PA, UA, F-1 score and OA metric values computed for all scenarios 

 
Scenario Class PA (%) UA (%) F-1 score (%) OA (%) 

1 
 Sentinel-2 MSI 

(B2, B3, B4, B8) 

Built-up 84.02 91.77 87.72 

83.51 

Water 92.77 90.59 91.67 

Bare-soil 82.35 76.19 79.15 

Forest 89.20 81.95 85.42 

Vegetation  73.37 81.21 77.09 

2 
 Sentinel-2 MSI 

(all bands except B1 and B10) 

Built-up 85.16 86.95 86.05 

85.70 

Water 97.59 79.41 87.57 

Bare-soil 73.90 78.52 76.14 

Forest 92.74 87.33 89.95 

Vegetation  81.72 88.42 84.94 

3 
 Sentinel-2 MSI (all bands except B1 and B10) 

 GNDVI, MNDWI, NDBI, BSI, MBSI 

Built-up 85.39 87.38 86.37 

86.27 

Water 97.59 81.82 89.01 

Bare-soil 73.90 78.21 75.99 

Forest 92.39 88.62 90.47 

Vegetation  84.60 88.04 86.29 

4 

 Sentinel-2 MSI (all bands except B1 and B10) 

 GNDVI, MNDWI, NDBI, BSI, MBSI 

 AW3D30 - DEM and slope 

Built-up 77.17 89.89 83.05 

88.28 

Water 97.59 97.59 97.59 

Bare-soil 82.72 66.77 73.89 

Forest 96.81 95.12 95.96 

Vegetation  90.34 93.80 92.04 

5 

 Sentinel-2 MSI (all bands except B1 and B10) 

 GNDVI, MNDWI, NDBI, BSI, MBSI 

 AW3D30 - DEM and slope 

 Sentinel-1 SAR - VV and VH 

Built-up 78.99 90.34 84.28 

89.02 

Water 97.59 96.43 97.01 

Bare-soil 83.82 68.06 75.12 

Forest 96.76 96.59 96.67 

Vegetation  91.10 93.55 92.31 

6 

 Sentinel-2 MSI (all bands except B1 and B10) 

 GNDVI, MNDWI, NDBI, BSI, MBSI 

 AW3D30 - DEM and slope 

 Sentinel-1 SAR - VV and VH 

 GLCM features 

Built-up 90.18 90.39 90.28 

92.78 

Water 97.59 96.43 97.01 

Bare-soil 82.35 80.00 81.16 

Forest 97.84 98.73 98.28 

Vegetation  94.76 95.51 95.13 

 
The water class was successfully separated from the other classes in all scenarios, which is not surprising as the 

spectral features of the pixels of this class were much different than the pixels of the other classes. The forest and 
vegetation classes have spectrally similar features, which, of course, makes it more challenging to separate them, 
especially with a spatial resolution of 10 m. As can be seen in Table 3, including the DEM and slope information; VV and 
VH polarizations of the Sentinel-1 SAR data; and GLCM features into the classification procedure, played a significant 
role in the discrimination of these classes. The GLCM features were also found to have made a considerable contribution 
to the OA as they increased the OA achieved in the fifth scenario by 4.22%. 
 

4. Conclusion 
 
This study aimed to increase the RF classification performance of the Sentinel-2 data with the aid of auxiliary data such 
as spectral indices, topographical features, SAR information and GLCM texture features. These features were used to 
form different scenarios in the GEE platform and to what degree each scenario affected the OA was investigated. All of 
the auxiliary data used was found to increase the overall classification accuracy to a certain degree. However, the 
greatest OA increase was achieved as a result of the inclusion of the GLCM features into the classification procedure.  
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Although the SAR data was expected to make a good contribution to the classification accuracy, the experiments 
revealed the opposite. Despite the Lee filtering, SAR data still included a certain amount of noise, which is why it did 
not make a considerable contribution to the classification accuracy. It was also concluded that the ntree and mtry 
parameters of the RF classifier had a significant effect on the classification performance. The GEE makes it easier to 
observe and manage large-extent areas, which is a huge advantage compared to traditional techniques. On the other 
hand, the GEE includes hundreds of easy-to-use built-in functions in both Python and JavaScript environments, which 
makes it efficient for analysts. It offers widely-used satellite imageries such as MODIS, Landsat, Sentinel etc., together 
with their achieve imageries. Its rich data content and easy-to-use data analysis capabilities make the GEE one of the 
best cloud computing platforms for remote sensing applications.  
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