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Abstract. The interaction between prey and predator is one of the most
fundamental processes in ecology. In this paper, we first consider the system

incorporating a feedback control and we discuss the dynamic behavior of prey-

predator interaction model that includes two competitive predators and one
prey with a generalized interaction functional. The primary presumption in

the model construction is the effects of feedback control and the competition

between two predators on the only prey which gives a strong implication of
the real-world situation. By analyzing characteristic equations, we carry out

detailed discussion with respect to stability of equilibrium points of the con-
sidered model. Further, we investigate the impact of the memory measured

by fractional time derivative on the temporal behavior.

1. Introduction

Mathematical modeling of the real-world phenomenon is a potent tool for pre-
dicting some ecological and biological components. The validity of this mathe-
matical approximation depends on the model itself. The crucial component that
describes the interaction between different species in a certain environment is the
interaction functional. There are many types of these functionals in the literature
[9,10,14,15,19]. Each one describes a specific manner of intermingling between two
species. The reason for this great diversity in functionals is due to the variety of
environmental conditions in the problem. Some of the factors that influence the
selection of these parameters are the behavior of the prey and predator and the
studied area. For the last factor, many components play a crucial role such as
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rivers (water availability), food (for the prey) and the density of prey and predator.
Overall, the functional selection depends on many factors.

In the environment, the intermingling is not limited to just two populations, but
interactions can be defined between more than two species in one single place. The
scientists interested in this point of view have put efforts to model such complex
interactions in the last few decades. We can take as an example two types of
prey and one predator [5], where the predator has the capability of hunting both
prey populations. Moreover, in prey–predator–super predator models the predator
feeds the prey only, and the super predator feeds both prey and predator. In some
models, it is studied the interaction between two predators and one prey model
where two types of predators are fed the same prey. Due to the intrinsic nature
of the predators, there will always be a constant struggle to capture this one prey.
The predator-prey models with three species have been attracted many researchers.
In [8], it is highlighted and studied the intermingling and competition between two
competitive predators on one prey with a generalized class of interaction functionals
in the presence of the time-fractional derivative. Fractional ordinal systems are
not just an extension of traditional integer ordinal systems in mathematics but
also have some merits that integer-order systems do not have, such as memory and
hereditary properties [11,21]. As known, many biological systems have memory [18].
Fractional order systems compared to integer order systems can more accurately
describe population patterns and reveal the relationships between prey species and
predatory species [1,4].

In real situations, it is seen that one predator determines its own hunting terri-
tory. The presence of other predators in such territories is entirely unacceptable.
This situation is called competition. The models in which competition is found,
have also received much attention in many research papers such as.

When examining the local asymptotic stability of the equilibrium points of dy-
namic systems, note that the equilibrium value of the considered system is some-
times not as we would like, and maybe in some cases what we need is a smaller
value. In this case, we may change the system structurally by introducing a feed-
back control variable [2,12], which can be implemented by employing biological
control strategy. In [13], the dynamic behavior of fractional-order predator–prey
model incorporating a constant prey refuge and feedback control has investigated.

In this paper, we are interested in studying the intermingling and competition
between two competitive predators on one prey with a generalized class of interac-
tion functionals in the presence of the time-fractional derivative. By summarizing
all the previously mentioned components let us focus on the following incorporat-
ing feedback control time-fractional formulation with a generalized consumption
functional:


c
0D

q
tx(t) = x(r − ax− rx

k )− f(x)y − g(x)z − cu,
c
0D

q
t y(t) = e1f(x)y − µ1y − βyz,

c
0D

q
t z(t) = e2g(x)z − µ2z − γyz,

c
0D

q
tu(t) = −hu+mx,

x(0) = x0

y(0) = y0

z(0) = z0

u(0) = u0

(1.1)

where 0 < q < 1, c0D
q
t is the Caputo q−order fractional derivative. The condi-

tions on the functionals f and g are defined as
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(A1) f(0) = 0, g(0) = 0,
(A2) f ′(x) > 0, g′(x) > 0 for x > 0.

In the system (1.1), x(t), y(t) and z(t) are the densities of prey, first predator
and second predator populations at time t, respectively; u(t) denotes the feedback
control variable for prey population at time t. We assume that the prey population
reproduces logistically with the increasing rate r, a is the intraspecific competition
coefficient of prey population and the carrying capacity k of the space, e1 and
e2 are respectively the conversion rate of the prey biomass into the first predator
population and the diversion of the prey biomass into the second predator biomass,
µ1 and µ2 are the mortality rates of the first and second predators, respectively,
β(resp., γ) is the competition rate of the first predator with the second one (resp.,
of the second predator with the first one). The functionals f and g are respectively
the interaction functionals for the first and second predator populations with the
prey population. Here all the parameters are assumed to be positive.

The rest of this paper is organized as follows. In section 2, we introduce some
notations, definitions and lemmas. In section 3, we give the equilibrium points
of fractional-order predator–prey model (1.1), and we discuss their stability. The
concluding section of the paper is intended to highlight the biological meanings of
the acquired numerical results.

2. Preliminaries

We introduce some useful definitions and lemmas in this section which are nec-
essary for our latter study.

Definition 2.1. [11] The q−order fractional integral for a function ζ is defined as

0I
q
t ζ(s) =

1

Γ(q)

∫ t

0

(t− s)q−1ζ(s)ds, q > 0

where Γ(.) is the well-known Gamma function which is defined by Γ(q) =
∫∞

0
e−ttz−1dt.

Definition 2.2. [11] The Caputo q−order fractional derivative for a function ζ is
defined as

c
0D

q
t ζ(s) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1ζn(s)ds,

where n is a positive integer, n− 1 < q < n. Particularly, when 0 < q < 1,

c
0D

q
t ζ(s) =

1

Γ(1− q)

∫ t

0

(t− s)−qζ
′
(s)ds.

Lemma 2.1. [11] If the Caputo q−order fractional derivative c
0D

q
t is integrable

then

0I
q
t
c
0D

q
t ζ(s) = ζ(t)−

n−1∑
k=0

ζk(0)

k!
tk.

Especially, for 0 < q ≤ 1, one can obtain
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0I
q
t
c
0D

q
t ζ(s) = ζ(t)− ζ(0).

Lemma 2.2. [3] Let V (t) be a continuous function on [0,+∞) and satisfying

c
0D

q
tV (t) ≤ θ V (t),

where 0 < q < 1 and θ is a constant. Then

V (t) ≤ V (0) Eq(θt
q) ∀t ≥ 0.

Lemma 2.3. [20] Consider the following q−order fractional system:{
c
0D

q
t z(t) = f(z),

z(0) = z0,
(2.1)

where 0 < q < 1 and z ∈ Rn. The equilibrium points of the system (2.1) can be
calculated by solving the following equation: f(z) = 0. These points are locally

asymptotically stable if all eigenvalues λi of the Jacobian matrix J = ∂f
∂z evaluated

at the equilibrium points satisfy the Matignon conditions:

|arg (λi)| >
qπ

2
.

Theorem 2.4. [13] The trivial equilibrium point of the system attained by the
λ2 + (k − r)λ+ cm− rk = 0 characteristic equation is locally asymptotically stable
if either of the following criteria is satisfied.

(H1) k ≥ r and rk < cm,

(H2) k < r, rk < cm, (k + r)
2
< 4cm and 0 < q < 2

π arctan

(√
4(cm−rk)−(k−r)2

r−k

)
.

Theorem 2.5. [13] The predator-extinction equilibrium point of the system at-
tained by the λ2 +

(
r − 2cm

k + k
)
λ+ rk − cm = 0 characteristic equation is locally

asymptotically stable if either of the following criteria is satisfied.
(H3) k2 + rk − 2cm ≥ 0 and rk > cm,

(H4) k2+rk−2cm < 0, rk > cm,
(
k2 + rk − 2cm

)2
< 4k2(rk−cm) and 0 <

q < 2
π arctan

(√
4k2(rk−cm)−(k2+rk−2cm)2

2cm−k2−rk

)
.

3. Mathematical analysis and asymptotic behavior of the solution

3.1. Equilibria of the model. In this subsection, we determine the local behavior
of the system (1.1). First, we determine the equilibria of the system (1.1), which
are the solutions of the following system:

0 = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

0 = e1f(x)y − µ1y − βyz,
0 = e2g(x)z − µ2z − γyz,
0 = −hu+mx. (3.1)

As a first remark, we deduce that the system 3.1 has the following particular cases:
(i) For the system (1.1) there always exists the trivial equilibrium point E0(0, 0, 0, 0),

which represents the extinction of the three populations.
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(ii) E1(x1, 0, 0, u1) which implies the extinction of two types of predators,

where x1 = k(rh−cm)
h(ak+r) , u1 = km(rh−cm)

h2(ak+r) . This point is called the predator-free

equilibrium (PFE).
(iii) Searching for the first predator-free equilibrium (FPFE) as E2(x2, 0, z2, u2),

we insert y = 0. By replacing this result in the third equation of system (3.1) we get,

x2 = g−1
(
µ2

e2

)
, u2 = m

h g
−1(µ2

e2
) where g−1 is the inverse function of g, which exists

since g is a bijective function from the conditions (A1) and (A2 ). Substituting this
last result into the first equation of (3.1) yields

z2 =
e2x2

(
r − ax2 − rx2

k −
cm
h

)
µ2

,

which is positive if x2 <
k(rh−cm)
h(ak+r) . Summarizing all the results, we can conclude

that FPFE E2(x2, 0, z2, u2) exists if x2 <
k(rh−cm)
h(ak+r) .

(iv) Seeking for the second predator-free equilibrium (SPFE) as E3(x3, y3, 0, u3)
by replacing z = 0 in (3.1). By substituting this result into the second equation of
system (3.1) we get x3 = f−1(µ1

e1
), u3 = m

h f
−1(µ1

e1
) where f−1 is the inverse func-

tion of f , which exists since f is a bijective function function from the conditions
(A1) and (A2 ). Taking this last result along with the first equation of (3.1), we get

y3 =
e1x3

(
r − ax3 − rx3

k −
cm
h

)
µ1

,

which is biologically relevant if x3 <
k(rh−cm)
h(ak+r) . Summarizing all the results, we

can deduce that SPFE as E3(x3, y3, 0, u3) exists if x3 <
k(rh−cm)
h(ak+r) .

Remark. It is assumed that both functional f and g are increasing in x. From
x3 and x2, if limx→∞ f(x) = a (resp.,limx→∞ g(x) = b) then another condition on
the parameters arises, µ1

e1
< a (resp., µ2

e2
< b), which is a necessary condition for

having a solution for the equation f(x) = µ1

e1
(resp., g(x) = µ2

e2
).

(v) Now we are in a position to seek the coexistence equilibrium point
E4(x∗, y∗, z∗, u∗), which is the positive solution of the following system:

0 = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

0 = e1f(x)− µ1 − βz,
0 = e2g(x)− µ2 − γy,
0 = −hu+mx. (3.2)

From 0 = e2g(x)− µ2 − γy we obtain,

y∗ =
e2

γ
g(x)− µ2

γ
. (3.3)

Moreover, from 0 = e1f(x)− µ1 − βz we find that

z∗ =
e1

β
f(x)− µ1

β
. (3.4)
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Substituting (3.3) and (3.4) into (3.2), from the first equation, we get F1(x) =
F2(x), where

F1(x) = x(r − ax− rx

k
)− cmx

h
,

F2(x) = f(x)g(x)

(
e2

γ
− e1

β

)
−
(
µ2

γ
f(x)− µ1

β
g(x)

)
. (3.5)

Some straightforward calculations suggest that

F1(0) = F1

(
k(rh− cm)

h(ak + r)

)
= 0, F1(x) =

{
> 0 for x < k(rh−cm)

h(ak+r)

< 0 for x > k(rh−cm)
h(ak+r) .

To guarantee at least one nontrivial intersection between two curves of the func-
tionals F1 and F2, we introduce the following assumption:

F1(x̃) > F2(x̃), F2

(
k(rh− cm)

h(ak + r)

)
> 0 with x̃ = max{x2, x3},

which it can be rewritten as

x̃ < k(rh−cm)
h(ak+r) , r > rε :=

k

(
f(x)g(x)( e2γ −

e1
β )−(µ2γ f(x)−µ1

β
g(x))

x + cm
h +ax

)
(k−x) .

Under this condition , we get the existence of at least one nonnegative solution
of system.

3.2. Asymptotic behavior of the system (1.1). In this part, we are interested
in determining the asymptotic stability of the equilibria obtained in the previous
section. For the time-fractional-order derivative, the concept of the local stability
is very different from the first-order derivative, where in this case, we have an
expansion of the stability region in comparison with the first-order derivative.

Let E(x, y, z, u) be an equilibrium for the system (1.1). The Jacobian matrix of
system (1.1) at E(x, y, z, u) is expressed as

J(E) =


r − 2ax− 2rx

k − f
′
(x)y − g′(x)z −f(x) −g(x) −c

e1f
′
(x)y e1f(x)− µ1 − βz −βy 0

e2g
′
(x)z −γz e2g(x)− µ2 − γy 0
m 0 0 −h


(3.6)

At E0(0, 0, 0, 0), the Jacobian matrix of the system (1.1) is

J(E0) =


r −f(0) −g(0) −c
0 e1f(0)− µ1 0 0
0 0 e2g(0)− µ2 0
m 0 0 −h

 ,

and the characteristic equation for J(E0) is
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(λ− (e1f(0)− µ1)) (λ− (e2g(0)− µ2)) (λ2 + (h− r)λ+ cm− rh) = 0. (3.7)

The eigenvalues of (3.7) are

λ2 = e1f(0)− µ1, λ3 = e2g(0)− µ2, λ1,4 =
−(h− r)±

√
∆1

2
, (3.8)

where ∆1 = (h− r)2 − 4(cm− rh).
Obviously, λ2 = e1f(0)−µ1 < 0 and λ3 = e2g(0)−µ2 < 0 are always negative.

Now we discuss the eigenvalues λ1 and λ4 , it is clear that the cases h > r, h = r
and h < r are possible, so we consider three separate cases.

Case 1. h > r
(1a) rh < cm. If ∆1 ≥ 0, we can derive from (3.8) that four eigenvalues

λ1, λ2, λ3 and λ4 are negative, which imply that the equilibrium point E0 is locally
asymptotically stable for all 0 < q < 1. In fact, | arg(λ1,2,3,4)| = π > qπ

2 for
all 0 < q < 1, which satisfy the condition of Lemma 2.3. If ∆1 < 0, then λ1

and λ4 are complex conjugates with negative real parts, which imply | arg(λ1,4)| =
arctan

(√
−∆1

r−h

)
+π > qπ

2 for all 0 < q < 1. According to Lemma 2.3, we know that

the equilibrium point E0 is locally asymptotically stable.
(1b) rh = cm. From (3.7) we know that one eigenvalue must be zero and

remaining three eigenvalues are negative. Then E0 is marginally stable.
(1c) rh > cm. Then ∆1 = (h + r)2 − 4(cm) > 0 . From (3.8), we see that

one of the eigenvalues λ1 and λ4 is positive and the other eigenvalue is negative.
Let λ4 < 0 and λ1 > 0, which imply | arg(λ4)| = π > qπ

2 and | arg(λ1)| = 0 < qπ
2

for all 0 < q < 1. Hence E0 is unstable.
Case 2. h = r.

(2a) rh < cm. Then ∆1 < 0 and (3.7) has pure imaginary roots λ1 =
2
√
cm− rhi and λ4 = −2

√
cm− rhi , which mean | arg(λ1,4)| = π

2 > qπ
2 for all

0 < q < 1. Since λ2 < 0, λ3 < 0 according to Lemma 2.3, we know that the
equilibrium point E0 is locally asymptotically stable.

(2b) rh = cm. From (3.7), we see that λ1 = λ4 = 0 , λ2 and λ3 is negative.
Then E0 is marginally stable.

(2c) rh > cm. From (3.7), we know that λ1 = 2
√
cm− rh and λ4 =

−2
√
cm− rh, which imply | arg(λ4)| = π > qπ

2 and | arg(λ1)| = 0 < qπ
2 for all

0 < q < 1. Hence E0 is unstable.
Case 3. h < r.

(3a) rh < cm. If ∆1 ≥ 0, then the two eigenvalues λ1 and λ4 are positive
which imply | arg(λ1,4)| = 0 < qπ

2 for all 0 < q < 1. Thus the equilibrium point E0

is unstable. If ∆1 < 0, then λ1 and λ4 are complex conjugates with positive real
parts. According to Lemma 2.3, we know that the equilibrium point E0 is locally

asymptotically stable if | arg(λ1,4)| = arctan
(√
−∆1

r−h

)
> qπ

2 is satisfied.

(3b) rh = cm. It is clear that (3.7) has a positive eigenvalue λ1 = r − h,
which means | arg(λ1)| = 0 < qπ

2 for all 0 < q < 1. Hence E0 is unstable.

(3c) rh > cm. Then ∆1 = (h + r)2 − 4(cm) > 0. From (3.7) , we see that
one of the eigenvalues λ1 and λ4 is positive and the other eigenvalue is negative.
Thus the equilibrium point E0 is unstable.
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If h < r, rh < cm, (h+ r)2 < 4(cm), one has | arg(λ1,4)|= arctan
(√
−∆1

r−h

)
< π

2 ,

where ∆1 = (h − r)2 − 4(cm − rh), thus q < 2
π arctan

(√
4(cm−rh)−(h−r)2

r−h

)
<

2
π ×

π
2 = 1.

Hence we resume the stability conditions for the equilibrium E0(0, 0, 0, 0) by
the following theorem.

Theorem 3.1. The trivial equilibrium point E0(0, 0, 0, 0) representing the extinc-
tion of the three populations of the system (1.1) is locally asymptotically stable if
either of the following criteria is satisfied:

(i) h ≥ r and rh < cm,

(ii) h < r, rh < cm, (h+ r)
2
< 4cm and 0 < q < 2

π arctan

(√
4(cm−rh)−(h−r)2

r−h

)
.

At the predator-free equilibrium E1(x1, 0, 0, u1), the Jacobian matrix of the sys-
tem (1.1) is

J(E1) =


r − 2cm

h −f
(
k(rh−cm)
h(ak+r)

)
−g
(
k(rh−cm)
h(ak+r)

)
−c

0 e1f
(
k(rh−cm)
h(ak+r)

)
− µ1 0 0

0 0 e2g
(
k(rh−cm)
h(ak+r)

)
− µ2 0

m 0 0 −h

 (3.9)

and the characteristic equation for E1(x1, 0, 0, u1) is

(λ− (e1f (x1)− µ1)) (λ− (e2g (x1)− µ2))

(
λ2 +

(
r − 2cm

h
+ h

)
λ+ rh− cm

)
= 0.

(3.10)
The Jacobian matrix (3.9) has the eigenvalues

λ2 = e1f

(
k(rh− cm)

h(ak + r)

)
− µ1, λ3 = e2g

(
k(rh− cm)

h(ak + r)

)
− µ2,

λ1,4 =
−h

2+rh−2cm
h ±

√
∆2

2
, (3.11)

where

∆2 =

(
h2 + rh− 2cm

)2 − 4h2(rh− cm)

h2
.

Then, we have

λ2 =

{
< 0 for k(rh−cm)

h(ak+r) < x3

> 0 for k(rh−cm)
h(ak+r) > x3

and

λ3 =

{
< 0 for k(rh−cm)

h(ak+r) < x2

> 0 for k(rh−cm)
h(ak+r) > x2.
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Obviously, λ2 and λ3 are negative if x < x̃ = min{x2, x3}. Now we discuss the
eigenvalues λ1 and λ4, it is clear that the cases h2 +rh−2cm > 0, h2 +rh−2cm =
0 and h2 +rh−2cm < 0 are possible, respectively, so we consider three separate
cases.

Case 4. h2 + rh− 2cm > 0.
rh > cm. If ∆2 ≥ 0, we can derive from (3.11) that four eigenvalues

λ1, λ2, λ3 and λ4 are negative if x < x̃ = min{x2, x3} , which imply that the
equilibrium point E1 is locally asymptotically stable for all 0 < q < 1. In fact,
| arg(λ1,2,3,4)| = π > qπ

2 for all 0 < q < 1, which satisfy the condition of Lemma
2.3. If ∆2 < 0 , then λ1 and λ4 are complex conjugates with negative real parts,

which imply | arg(λ1,4)| = arctan
(

h
√
−∆2

2cm−h2−rh

)
+π > qπ

2 for all 0 < q < 1. Accord-

ing to Lemma 2.3, we know that the equilibrium point E1 is locally asymptotically
stable

Case 5. h2 + rh− 2cm = 0.
rh > cm. Then ∆2 < 0 and (3.10) has pure imaginary roots λ1 = 2

√
rh− cmi

and λ4 = −2
√
rh− cmi which means that | arg(λ1,4)| = π

2 > qπ
2 for all 0 < q < 1.

If x < x̃ = min{x2, x3} holds, then we have λ2 < 0 and λ3 < 0. According to
Lemma 2.3, we know that the equilibrium point E1 is locally asymptotically stable.

Case 6. h2 + rh− 2cm < 0.
rh > cm, If ∆2 ≥ 0, then the two eigenvalues λ1 and λ4 are positive

which imply | arg(λ1,4)| = 0 < qπ
2 for all 0 < q < 1. Thus the equilibrium point

E1 is unstable. If ∆2 < 0 then λ1 and λ4 are complex conjugates with positive
real parts. In addition, x < x̃ = min{x2, x3} holds, then we have λ2 < 0 and
λ3 < 0. According to Lemma 2.3, we know that the equilibrium point E1 is locally

asymptotically stable if | arg(λ1,4)| = arctan
(

h
√
−∆2

2cm−h2−rh

)
> qπ

2 is satisfied.

When h2 + rh− 2cm < 0 , rh > cm,
(
h2 + rh− 2cm

)2
< 4h2(rh− cm), one has

| arg(λ1,4)| = arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
< π

2 , thus

q < 2
π arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
< 2

π ×
π
2 = 1.

Hence we resume the stability conditions for the equilibrium E1(x1, 0, 0, u1) by
the following theorem.

Theorem 3.2. The predator-extinction equilibrium point of the system is locally
asymptotically stable if either of the following criteria is satisfied:

(i) h2 + rh− 2cm ≥ 0 , rh > cm and x < x̃ = min{x2, x3},
(ii) h2 + rh− 2cm < 0, rh > cm,

(
h2 + rh− 2cm

)2
< 4h2(rh− cm),

0 < q < 2
π arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
and x < x̃ = min{x2, x3}.

Now we analyze the linear stability of FPFE point of E2(x2, 0, z2, u2). The
Jacobian matrix corresponding to the equilibrium FPFE is evaluated as

J(E2) =


r − 2ax2 − 2rx2

k − g
′
(x2)z2 −f(x2) −g(x2) −c

0 e1f(x2)− µ1 − βz2 0 0

e2g
′
(x2)z2 −γz2 0 0
m 0 0 −h

 .

(3.12)
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As a first look, we can deduce that λ2 = e1f (x2) − µ1 − βz2 is an eigen-
value of the Jacobian matrix (3.12). By replacing the explicit formula of z2 =
e2x2(r−ax2− rx2k −

cm
h )

µ2
we obtain λ2 = e1f (x2) − µ1 −

βe2x2(r−ax2− rx2k −
cm
h )

µ2
. Obvi-

ously, if e1f (x2) − µ1 < 0 (equivalent to x2 < x3 ), then | arg(λ2)| > qπ
2 . Now we

presume that if e1f (x2)− µ1 > 0 (equivalent to x2 > x3 ). Then

λ2 =

{
> 0 for r < r1 :=

k
(

(e1f(x2)−µ1)µ2
βe2x2

+ax2+ cm
h

)
k−x2

,

< 0 for r > r1.

Under the condition λ2 > 0, we get | arg(λ2| < qπ
2 . This means that FPFE is

an unstable equilibrium point. Besides, from λ2 > 0, we conclude that | arg(λ2)| <
qπ
2 . This means that three remaining eigenvalues of the Jacobian matrix (3.12)

determine the stability (resp., instability) of this equilibrium. Note that these
significant eigenvalues are the eigenvalues of the matrix

J̃ =

 r − 2ax2 − 2rx2

k − g
′
(x2)z2 −g(x2) −c

e2g
′
(x2)z2 0 0
m 0 −h

 . (3.13)

To determine the nature of the eigenvalues of the reduced matrix (3.13), we
define the characteristic equation of (3.13) as

P (λ) = λ3 + ϑ1λ
2 + ϑ2λ+ ϑ3,

where

ϑ1 = h− r + 2ax2 +
2rx2

k
+ g

′
(x2)z2,

ϑ2 = −cm− hr + 2hax2 +
2hrx2

k
+ hg

′
(x2)z2 + e2g

′
(x2)g(x2)z2,

ϑ3 = he2g
′
(x2)g(x2)z2.

D(P ) denotes the discriminant of the cubic polynomial P (λ), as follows:

D(P ) =

∣∣∣∣∣∣∣∣∣∣
1 ϑ1 ϑ2 ϑ3 0
0 1 ϑ1 ϑ2 ϑ3

3 2ϑ1 ϑ2 0 0
0 3 2ϑ1 ϑ2 0
0 0 3 2ϑ1 ϑ2

∣∣∣∣∣∣∣∣∣∣
= 18ϑ1ϑ2ϑ3 + (ϑ1ϑ2)2 − 4ϑ3(ϑ1)2 − 4(ϑ2)2 − 27(ϑ3)2

Using the Routh-Hurwitz stability criterion for fractional calculus defined in [7],
[16] and [17] we get the stability conditions for the nontrivial equilibrium.

Theorem 3.3. The positive equilibrium point is asymptotically stable if either of
the following criteria is satisfied:
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(i) D(P ) > 0, ϑ1 > 0, ϑ3 > 0, ϑ1ϑ2 − ϑ3 > 0 for all q ∈ (0, 1),
(ii) D(P ) < 0, ϑ1 ≥ 0, ϑ2 ≥ 0, ϑ3 > 0, 0 < q < 2

3 ,
(iii) D(P ) < 0, ϑ1 > 0, ϑ3 > 0, ϑ1ϑ2 = ϑ3 for all q ∈ (0, 1).

Hence we resume the stability conditions for the equilibrium E2(x2, 0, z2, u2) by
the following theorem. Therefore,

Theorem 3.4. For FPFE, if x2 <
k(rh−cm)
h(ak+r) , then we have;

(i) If x2 > x3 and r < r1, then the FPFE is unstable,
(ii) For x2 < x3 or (x2 > x3 and r > r1) if one of the condition

(i), (ii) or (iii) in Theorem 3.3 holds we get the local stability of FPFE.

To study the stability of the SPFE of E3(x3, y3, 0, u3), the Jacobian matrix
corresponding to the equilibrium SPFE is evaluated as

J(E3) =


r − 2ax3 − 2rx3

k − f
′
(x3)y3 −f(x3) −g(x3) −c

e1f
′
(x3)y3 0 −βy3 0
0 0 e2g(x3)− µ2 − γy3 0
m 0 0 −h

 .

(3.14)

As a first look, we can deduce that λ3 = e2g(x3) − µ2 − γy3 is an eigen-
value of the Jacobian matrix (3.14). By replacing the explicit formula of y3 =
e1x3(r−ax3− rx3k −

cm
h )

µ1
we obtain λ3 = e2g(x3) − µ2 −

γe1x3(r−ax3− rx3k −
cm
h )

µ1
. Obvi-

ously, if e2g(x3) − µ2 < 0 (equivalent to x2 > x3 ), then | arg(λ3)| > qπ
2 . Now we

presume that if e1f (x2)− µ1 > 0 (equivalent to x2 < x3 ). Then

λ3 =

{
> 0 for r < r2 :=

k
(

(e2g(x3)−µ2)µ1
γe1x3

+ax3+ cm
h

)
k−x3

,

< 0 for r > r2.

Under the condition λ3 > 0, we get | arg(λ3)| < qπ
2 . This means that FPFE is

an unstable equilibrium point. Besides, from λ3 > 0, we conclude that | arg(λ3)| <
qπ
2 . This means that three remaining eigenvalues of the Jacobian matrix (3.14)

determine the stability (resp., instability) of this equilibrium. Note that these
significant eigenvalues are the eigenvalues of the matrix

J̃ =

 r − 2ax3 − 2rx3

k − f
′
(x3)y3 −f(x3) −c

e1f
′
(x3)y3 0 0
m 0 −h

 . (3.15)

To determine the nature of the eigenvalues of the reduced matrix (3.15), we
define the characteristic equation of (3.15 ) as

P ∗(λ) = λ3 + θ1λ
2 + θ2λ+ θ3,
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where

θ1 = h− r + 2ax3 +
2rx3

k
+ f

′
(x3)y3,

θ2 = −cm− hr − 2hax3 +
2hrx3

k
+ hf

′
(x3)y3 + e1f

′
(x3)f(x3)y3,

θ3 = he1f
′
(x3)f(x3)y3.

D(P ∗) denotes the discriminant of the cubic polynomial
D(P ∗) = 18θ1θ2θ3 + (θ1θ2)2 − 4θ3(θ1)2 − 4(θ2)2 − 27(θ3)2

With the same technics in Theorem 3.3, we get the stability conditions for the
nontrivial equilibrium. Therefore

Theorem 3.5. For SPFE if x2 <
k(rh−cm)
h(ak+r) , then we have;

(i) If x2 < x3 and r < r2, then the FPFE is unstable.
(ii) For x2 > x3 or (x2 < x3 and r > r2) if one of the conditions in

(i), (ii) or (iii) in Theorem 3.3 holds, we get the local stability of FPFE.

Now we are in a position to focus on studying the local behavior of the coexistence
equilibrium. For this positive equilibrium point, we have that assumption for the
existence of at least one non-negative solution of the system (1.1). The Jacobian
matrix of the system (1.1) evaluated at the equilibrium E4(x∗, y∗, z∗, u∗) is given
by

J(E4) =


r − 2ax∗ − 2rx∗

k − f ′(x∗)y∗ − g′(x∗)z∗ −f(x∗) −g(x∗) −c
e1f

′
(x∗)y∗ e1f(x∗)− µ1 − βz∗ −βy∗ 0

e2g
′
(x∗)z∗ −γz∗ e2g(x∗)− µ2 − γy∗ 0
m 0 0 −h

 .

(3.16)

Therefore, the characteristic equation associated with Jacobian (3.16) is

∆(λ) = λ4 + Φ1λ
3 + Φ2λ

2 + Φ3λ+ Φ4,

where

Φ1 = h− r + 2ax∗ +
2rx∗

k
+ g

′
(x∗)z∗ + f

′
(x∗)y∗,

Φ2 = cm− rh+ 2hax∗ +
2rhx∗

k
+ hg

′
(x∗)z∗ + hf

′
(x∗)y∗ + βy∗γz∗ + e1f

′
(x∗)f(x∗)y∗

+e2g
′
(x∗)g(x∗)z∗,

Φ3 = hβy∗γz∗ + he1f
′
(x∗)f(x∗)y + he2g

′
(x∗)g(x∗)z∗ − rβy∗γz∗ + 2ax∗βy∗γz∗

+
2rx∗

k
βy∗γz∗ + g

′
(x∗) (z∗)

2
βy∗γ + f

′
(x∗) (y∗)

2
βγz∗ − f(x∗)βy∗e2g

′
(x∗)z∗

−g(x∗)e1f
′
(x∗)y∗γz∗,

Φ4 = cmβy∗γz∗ − rhβy∗γz∗ + hβy∗γz∗2ax∗ +
2hrx∗

k
βy∗γz∗ + hg

′
(x∗) (z∗)

2
βy∗γ

+hf
′
(x∗) (y∗)

2
βγz∗ − hf(x∗)βy∗e2g

′
(x∗)z∗ − hg(x∗)e1f

′
(x∗)y∗γz∗.
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and D(4) denotes the discriminant of the polinom 4(λ) as follows,

D(∆) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 4 0 0 0
Φ1 1 0 3Φ1 4 0 0
Φ2 Φ1 1 2Φ2 3Φ1 4 0
Φ3 Φ2 Φ1 Φ3 2Φ2 3Φ1 4
Φ4 Φ3 Φ2 0 Φ3 2Φ2 3Φ1

0 Φ4 Φ3 0 0 Φ3 2Φ2

0 0 Φ4 0 0 0 Φ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 256 (Φ4)

3 − 192Φ1Φ3 (Φ4)
2 − 128 (Φ4)

2
(Φ2)

2
+ 144Φ2(Φ3)2Φ4

−27(Φ3)4 + 144(Φ1)2Φ2(Φ4)2 − 6(Φ1)2(Φ3)2Φ4 − 80Φ1(Φ2)2Φ3Φ4

+18Φ1Φ2(Φ3)3 + 16(Φ2)4Φ4 − 4(Φ2)3(Φ3)2 − 27(Φ1)4(Φ4)2

+18(Φ1)3Φ2Φ3Φ4 − 4(Φ1)3(Φ3)3 − 4(Φ1)2(Φ2)3Φ4 + (Φ1)2(Φ2)2(Φ3)2.

Using the Routh-Hurwitz stability criterion for fractional calculus, we get the
stability conditions for the nontrivial positive equilibrium.

Theorem 3.6. The positive equilibrium point E4(x∗, y∗, z∗, u∗) is asymptotically
stable if either of the following criteria is satisfied:

(i) D(∆) > 0,Φ1 > 0, Φ3 > 0, Φ4 > 0, Φ1Φ2 − Φ3 > 0,

Φ3(Φ1Φ2 − Φ3)− (Φ1)
2

Φ4 > 0
(ii) D(∆) < 0, Φ1 ≥ 0, Φ2 ≥ 0, Φ3 ≥ 0, Φ4 ≥ 0, 0 < q < 2

3 .
(iii) D(∆) < 0, Φ1 > 0, Φ3 > 0, Φ4 > 0, Φ1Φ2 = Φ3, Φ3(Φ1Φ2 − Φ3) =

(Φ1)
2

Φ4) for all q ∈ (0, 1).

4. Numerical analysis of the system (1.1)

The main purpose of this section is to solve the following fractal problem nu-
merically:

c
0D

q
tV (t) = P (t, V (t)) . (4.1)

By applying the fundamental theorem of fractional calculus on (1.1), we get

V (t)− V (0) =
1

Γ(q)

∫ t

0

P (s, V (s)) (t− s)q−1ds. (4.2)

Letting t = tn = nh in (4.2), we arrive at

V (tn) = V (0) +
1

Γ(q)

n−1∑
i=0

∫ ti+1

ti

P (s, V (s)) (tn − s)q−1ds.

Now we can approximate the function P (t, V (t)) by the following linear approx-
imation:
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P (t,K(t)) ≈ P (ti+1, Vi+1) +
t− ti+1

h
(P (ti+1, Vi+1)− P (ti, Vi)) , tε[ti, ti+1]

(4.3)
with the notation Vi = V (ti).
By substituting equation (4.2) into (4.3) and applying some algebra (for more

detail, see [6]) we get

Vn = V0 + hq

(
ΦnP (t0, V0) +

n∑
i=1

Ψn−iP (ti, Vi)

)
(4.4)

with

Φn =
(n− 1)q+1 − nq(n− q − 1)

Γ(q + 2)
,

Ψn =

{
1

Γ(q+2) , n = 0,
(n−1)q−2nq+(n+1)q

Γ(q+2) n = 1, 2, 3, ...

Using the numerical method presented in the formula (4.4) to solve the problem
(4.1), we obtain the following iterative schemes:

xn = x0 + hq

(
ΦnP1 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP1 (xi, yi, zi, ui)

)
,

yn = y0 + hq

(
ΦnP2 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP2 (xi, yi, zi, ui)

)
,

zn = z0 + hq

(
ΦnP3 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP3 (xi, yi, zi, ui)

)
,

un = u0 + hq

(
ΦnP4 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP4 (xi, yi, zi, ui)

)
,

where

P1(x, y, z, u) = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

P2(x, y, z, u) = e1f(x)y − µ1y − βyz,
P3(x, y, z, u) = e2g(x)z − µ2z − γyz,
P4(x, y, z, u) = −hu+mx.

5. Conclusion

In this research, we studied an ecological model with two predators fighting on
one prey with a generalized functional response. We consider a fractional-order
predator–prey model incorporating feedback control. The reason behind consid-
ering a comprehensive generalized class of functional interaction is to model the
diversity in predator–prey interaction with the environment. These interactions
can be affected by many factors, such as the environment and the adaptation of
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the three species. We analyzed the existence of different equilibrium points and
some criteria were derived to ensure the asymptotical stability of these equilibrium
points. In the first section, we studied the existence of the equilibria of the sys-
tem (1.1), where we can have many equilibrium points next to the predator-free
equilibrium. By analyzing the existence of the equilibria we obtained that these
populations may have many scenarios. They include the extinction of three pop-
ulations, two types of predators, the extinction of each population of predators,
and finally the coexistence of the three populations. For the coexistence stage, we
provided some conditions on the model parameters for the existence of this equi-
librium. The theoretical results show that feedback control play important roles in
adjusting coexistence of prey species and predator species. To determine which sce-
nario will prevail, we have utilized the local asymptotic stability using the Jacobian
matrix.
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Email address: mutluuserapp@gmail.com

Metin Başarır,
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